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Abstract

Multi-class cell detection (cancer or non-cancer)
from a whole slide image (WSI) is an important task for
pathological diagnosis. Cancer and non-cancer cells of-
ten have a similar appearance, so it is difficult even for
experts to classify a cell from a patch image of individ-
ual cells. They usually identify the cell type not only on
the basis of the appearance of a single cell but also on
the context of the surrounding cells. For using such
information, we propose a multi-class cell-detection
method that introduces a modified self-attention to ag-
gregate the surrounding image features of both classes.
Experimental results demonstrate the effectiveness of
the proposed method; our method achieved the best
performance compared with a method, which simply
uses the standard self-attention method.

1. Introduction

Cancer cell detection from a whole slide image
(WSI) is an important task for pathological diagno-
sis. In some diagnoses, the rate of cancer cells over
all the cells (cancer and non-cancer cells) is measured.
For example, to check if cancer immunotherapy will be
useful for a patient, a PDLI1-test is widely used for di-
agnosis [3]. With this diagnosis, if the rate of cancer
cells that are stained as brown over all the cancer cells
is high, the therapy will be useful. To compute the
rate, cancer cells must be counted from a WSI, which
contains both cancer and non-cancer cells. However,
it is time-consuming to count all the cells in a WSI
because a WSI contains thousands of cells. In real di-
agnoses, pathologists roughly estimate the rates sub-
jectively, and thus, their diagnoses often differ from
amongst each other. Therefore, an automatic cancer
cell counting system is required.
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Figure 1. Examples of cancer and non-cancer cells. Left:
wide-field view; Right: enlarged images of individual cells in
each class. Some cells have similar appearances, and thus,
it is difficult even for pathologists to identify class of cell
from patch image. They usually use surrounding context
of cell of interest.

To achieve this goal, it is necessary to detect all cells
and classify these cells as cancer or non-cancer. The
classification of cancer and non-cancer cells is challeng-
ing due to their similar appearances as shown in Fig. 1.
The third rows of the enlarged images have very simi-
lar appearances. It is difficult even for pathologists to
classify cells from only the enlarged patch images that
contain individual cells. They identify the cell type not
only on the basis of the appearance of a single cell but
also on the context from the surrounding cells.

Cell detection for a single cell type has been stud-
ied in past decades, and high detection performances
have been achieved. However, multi-class cell detection
(such as cancer and non-cancer cells) is still challeng-
ing. Object detection for general objects, such as Faster
R-CNN [23], can be directly applied to the multi-
class cell detection task [17], which estimates bound-
ing boxes of each cell and their class. This method
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classifies the object in a bounding box on the basis of
the local features. Therefore, it is difficult to accu-
rately classify cells due to a lack of context from the
surrounding cells. Other methods are based on Yolo
v.3 [14], which performs multi-task learning, bound-
ing box estimation and rough semantic-segmentation
(i.e., a grid pixel belongs to a class). Rough semantic
segmentation can use global spatial information unlike
R-CNN based methods. The multi-class cell-detection
method proposed by Abousamra et al. [1] simultane-
ously estimates the cell position mask (which contains
all cell types) and the semantic segmentation masks for
each class. It can use the spatial context for classifying
each cell better compared to bounding box-based meth-
ods. However, it depends on the representation ability
of the cell classifier, i.e., a single branch network has
less feature extraction ability to classify cells.

In this paper, we propose a multi-class cell-detection
method that has two decoders for estimating the cell
position heat maps for each class, that is, cancer or
non-cancer. To use the spatial context of the surround-
ing cells, we introduce a self-attention technique for
aggregating image features of both classes, where self-
attention has been used for transformers [10], such as
ViT [11] and DETR [7]. Because the standard self-
attention produces mixed features that contain both
classes due to the summation operation, the network
could not identify the discriminative features for can-
cer detection from the mixed feature. We thus propose
a modified self-attention method that concatenates the
features extracted by self-attention to the original fea-
tures. The experimental results demonstrate the effec-
tiveness of our method. The method using our modi-
fied self-attention improved the detection performance
compared with that using the standard self-attention.

2. Related work
2.1. Cell detection

Cell detection has been studied in past decades,
and it can be roughly categorized into three ap-
proaches: segmentation-based, bounding box-based,
and point-based detection approaches. Segmentation
methods can estimate detailed nuclei shapes. Many
image-processing-based methods have been proposed
for this approach: automatic threshold-based methods
[4,21,25], watershed-based methods [3], and graph-cut-
based methods [2]. However, when the cell population
is dense, the methods often fail to segment the bound-
aries of cells that are touching because the boundaries
are blurry, and small errors in the boundary segmen-
tation cause mistakes, where several cells are identified
as a single cluster. The deep learning-based method,

such as convolutional neural network (CNN), has been
popularly used for cell segmentation [15,16,19]. These
methods outperform image-processing-based methods
on datasets having various conditions. However, they
require that the boundaries of cells be annotated, and
thus, the annotation is time consuming.

In bounding box-based approach, general object de-
tection methods, such as R-CNN [23], have been ap-
plied to cell detection tasks [17]. These bounding box-
based methods classify cells on the basis of the local
features in a bounding box. However, as discussed in
the introduction, the context of the surrounding cells
is important to identify the class of a cell.

Recently, point-based cell-detection methods have
been proposed. One of the advantages of these methods
is that the annotation cost is lower than the other two
approaches: one click is only required for annotating
one cell, and it is enough for cell counting. One major
approach is estimating a cell position heat map, where
a cell centroid position becomes a peak with a Gaussian
distribution in the map [20]. This method can detect
cells even in dense conditions, and it has shown the
good detection performance in various tasks, such as
weakly-supervised learning [20], domain adaptation [9],
and learning from imperfect annotation [12]. However,
these heat map-based methods have not been applied
to multi-class cell detection.

Our method is categorized as a heat map-based
method. If we simply use this method for multi-class
detection, where the network has branches for each
class, some of the detection results for each class may
be duplicated (i.e., a cell belongs two classes) because
neither of the decoders can use the discriminative fea-
tures extracted from each other. To overcome this is-
sue, we introduce a modified self-attention that can ag-
gregate the features extracted from the two decoders.

2.2. Self-attention

Transformers have been successfully applied in many
tasks, such as natural language processing [6, 10] and
vision tasks [7,11]. In the transformer for vision tasks,
self-attention is used to aggregate a wide range of asso-
ciative features among patch images, in which an im-
age is separated into patches and these patches are fed
into the transformer. These methods have been used
for many vision tasks, such as classification [11], de-
tection [7], and segmentation [13,22]. They basically
use self-attention for aggregating the spatial context
among different patches. In contrast, our modified self-
attention interchanges features extracted by different
decoders for each class.
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Figure 2. Overview of proposed method. Patch image is fed into network, and network then outputs cell positions for each
class through two decoders and modified self-attention (mSA). mSA aggregates features of both classes, d.(fe(I)) for cancer
and dc(fe(I)) for non-cancer. This framework can use context from surrounding cells to identify class of individual cells.

3. Multi-class cell detection by modified self-
attention

3.1. Overview

Fig. 2 shows an overview of the proposed method.
Given an image I, the proposed method estimates two
cell position heat maps: one for cancer cells §¢ and
another for non-cancer cells §™. The coordinates of
the peaks in the maps indicates the centroid positions
of cells for each cell type in the input image.

To estimate these heat maps, the network consists
of seven sub-networks: 1) an encoder f. for extract-
ing features for both cell types, 2) and 3) decoders for
extracting features of cancer cells d. and non-cancer
cells d,,, respectively, 4) and 5) modified self-attention
modules SA., SA, for aggregating the features of both
types, 6) and 7) output layers (1 x 1 convolution) o,
o0y, for the results of detecting cancer and non-cancer,
respectively. As discussed in the introduction, our key
idea is that features of a different cell type are use-
ful for detecting another type of cell. Therefore, we
propose a modified self-attention module for aggregat-
ing the features of both cell types. In addition, we
introduce post-processing to avoid duplicate detection
results, which selects either cell type on the basis of the
strength of the estimated signal in the same regions.

3.2. Cell position heat maps of each cell type

Many object detection methods use bounding boxes
as the ground truth for object locations. Because the
annotation of the bounding box is time consuming, we
use point-level annotations, where a cell is annotated
by one-click annotation (one click around the centroid
of a cell). For point-level annotations, our method esti-
mates cell-position heat maps for each class [20], which
has been widely used and it has shown good perfor-

mance.

Given a set of the annotated cell positions for an
input image I, the ground-truths of a cell-position
heatmap y¢ for cancer cell detection and y™ for non-
cancer cell detection are generated so that the cell cen-
troid position becomes a peak with a Gaussian distri-
bution in the map. We generate an individual Gaussian
distribution y;:

(1)

cl|2
c U — p;
¥ (u) = exp (—") ,

o2

where ¢ is an index of each cell, u indicates the posi-
tion coordinate in the map, p{ indicates the ground-
truth position of the i-th cancer cell, and o adjusts the
Gaussian blur as a hyper-parameter. Then, a cancer
cell position heat map y°¢ is generated as the ground
truth by maximizing y{ for each cell position p§:

y© = max ys, (2)

where the maximum operation is performed for each
pixel, i.e., a pixel u takes a maximum value among
y$(w),Vi. A non-cancer cell position heat map y™ is
also generated in the same manner as y® using the
ground-truth position of non-cancer cells {p!},.

To train the entire network, we use the sum of the
mean of the squared error (MSE) loss function between
the predicted map ¢ and the ground-truth y for each
cell type:

loss = ||§° — y°||* + [|[9" — y™||%, (3)

where both decoders are simultaneously trained with
multi-task learning. The two decoders for each cell type
have a representation ability that is better than a single
network for classification, in which the segmentation
results of each class are produced as channels.

1857



ZC
| | Wive > 4

cancer
wive.

Con
wsv z"

o L]

non-cancer

Z€

ﬂwfv” —»@..@

W{lyf cancer

n
wiv™ z

|jw%v"+79—> j

non-cancer

Figure 3. Illustration of standard self-attention (Left) and our modified self-attention (Right). w are computed by query
and key (refer to Eq. 4 and 5), “+” is operation of summation, and & is operation of concatenation. Standard self-attention
produces mixed features of both classes. In contrast, modified self-attention can use extracted features individually by

concatenation.

3.3. Feature aggregation by modified self-attention

The network extracts discriminative features for
each cell type. However, a cancer cell has a similar ap-
pearance to a non-cancer cell, and thus, the extracted
features may still contain the features of both cell types
(i.e., the network may not sufficiently disentangle these
features on the basis of the local appearance). This has
an adverse effect on cell detection even though post-
processing is applied to avoid duplicate detection. As
discussed in the introduction, to classify a cell, the con-
text around the cell of interest is useful. Features for
cancer cell detection do not contain information on the
regions of surrounding cell of interest when the neigh-
bor cells are non-cancer cells, i.e., the network cannot
recognize that cells are sparsely placed (no neighbor
cells) or that there are neighbor cells that are non-
cancer cells, only from the features for cancer cell de-
tection. Therefore, the features extracted by the other
decoder for non-cancer cells are also useful for detect-
ing cancer cells, and vice versa. For example, even if
a cell appears to be similar to cancer cells, when cells
around the cell of interest are estimated as non-cancer
cells, this cell is more likely to be a non-cancer cell.

The self-attention technique has the potential to ef-
ficiently aggregate such information. However, features
extracted by the standard self-attention contain the
features of both cell types due to the summation op-
eration of the original feature and the extracted fea-
tures. This indicates that the output layer o. cannot
identify the discriminative features for cancer detection
from mixed features. We thus propose a modified self-
attention that concatenates the features extracted by
self-attention to the original features.

Fig. 3 shows the summary of the difference of
the standard and the modified self-attention module.
We denote the input features for the modified self-

attention module as x¢ = d.(fe(I)) for cancer and
" = d,,(fe(I)) for non-cancer, which are outputs from
decoders d. and d,,. In the same manner as the stan-
dard self-attention [11], &€ is converted into a query q°,
key k¢, and value v° by convolution, and the matrix is
then flattened into a vector with dimension D. Using
the features of the query and key, the weights of the
features in the self-attention are defined as:

1

(wi,w3) = softmax(-(q k% q° k")), (4)
1

(wi,wy) = softmax(-(q" k% q" k")), (5)

where w{, w§ are the weights of features for cancer
and wY, wy are weights for non-cancer, “-” is an inner
product operation, and ¢ is a hyper-parameter for con-
trolling the softmax operator. The weight w{ for the
features of cancer cells becomes large when the query
q¢ of the features in the cancer cell detector is more
similar to the key k¢ in the cancer cell detector than
the key k™ for non-cancer cell detection. On the ba-
sis of the estimated weights, the weighted sum of the
values is concatenated to the original feature x¢ as:

z¢ = z° @ wiv® dwiv", (6)

2" = =" ®wiv® dwyv", (7)

where @ is the operation of concatenation, and z¢ and
z" are the output features of the modified self attention
module for cancer and non-cancer cells. Then, these
extracted features are converted into cell position heat
maps g° = 0.(z°), " = o0,(2™) via 1 x 1 convolution
layers o, and o,.

Using these concatenated features, the network can
localize cells and identify the class of the cells. Let us
consider a case where a non-cancer cell has a similar

appearance to a cancer cell. In this case, the features
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Figure 4. Overview of post-processing. If detection result
is duplicated in both classes, sum of intensity in local patch
is compared; cell belongs to class that has larger intensity
than other class.

may be contained in both v{ and v*. If the neighbor
cells are more likely to be cancer cells, q¢ is similar
to k¢ than k", and thus, the magnitude of the vector
w{v® is larger than w§v™. Using this information, the
network can identify the cell of interest as cancer. If a
cell is obviously a non-cancer cell, the features of the
cell may be contained in only »}* and not in v§. In this
case, even if the neighbor cells are cancer cells (i.e., w§
is large), the magnitudes of the region of the cell of
interest w{v{ are not large, and thus, the network can
identify the cell as non-cancer.

3.4. Post-processing

The proposed modified self-attention module has the
ability to avoid duplicate detection results by using the
surrounding context of both classes. However, it is still
not perfect, and duplicate detection remains (i.e., a cell
could appear to be both cancer and non-cancer). To
prevent the network from assigning multiple labels for
one cell, we conduct post-processing in the inference
step.

Fig. 4 shows the illustration of the post process-
ing. We first find the duplicate detection points that
are detected from both detectors for cancer and non-
cancer cells, i.e., the detected cell has multiple labels
(duplicate detection). To find the duplicate detection,
we perform one-by-one matching for between detection
results ¢ and y" on the basis of the distance of the de-
tected points using linear programming. After match-
ing, if the distance between the corresponding detected
points is less than thg, these detection points can be
considered as duplicate detection.

For duplicate detection, we select the class on the
basis of the heat maps ¢, y”. We compare the sum of
the intensity in the local area of the duplicate detection,
in which the local area is a 64 x 64 bounding box in a
40x magnification image, whose center is the detected

point in each map. If the value in the local area of y°
is higher than that in ", the detected cell is a cancer
cell, and vice versa.

4. Experiment

We evaluated our method using real data in the PD-
L1 test. The PD-L1 test is one test for pathological
diagnosis. The purpose of the PD-L1 test is to decide
on a policy for cancer treatment. In this diagnosis,
it is important to count the cancer cells from a WSI
that contains both cancer and non-cancer cells. In real
diagnosis, it is difficult to count all the cancer cells be-
cause a WSI contains thousands of cells. Therefore,
they are usually roughly estimated subjectively. How-
ever, such subjective diagnoses tend to fluctuate among
pathologists. Therefore, an automatic counting system
is required.

4.1. Data set

We used a PD-L1 data set that was collected from a
hospital. The data set contains 53 large images of dif-
ferent patients, in which the size of each image is about
9,000 x 9,000, and each image contains thousands of
cells.

To make a ground truth, we conducted semi-
automatic annotations using two types of annotations:
cell localization by non-experts and cell classification
by experts. It is easy even for non-experts to localize
individual cells without classification. Therefore, the
annotation for cell detection was performed by non-
experts. Once given the ground-truth for cell detection,
we trained a cell detection network and then applied
the network to detect all the cells, which included can-
cer and non-cancer cells. From the results, most of the
cells were well detected. However, it was difficult for
non-experts to classify each cell. Thus, pathologists
conducted annotation for classifying the detected cells.
In this expert annotation, pathologists annotated re-
gions that enclosed detected cells belonging to a single
class (either cancer or non-cancer) and gave a class la-
bel for all the cells in the region at once. In this process,
the pathologists confirmed the detected cells as correct.

As a result, the number of patch images was 20,092,
which were cropped from large images of 53 patients
with a size of 256 x 256 (40x magnifications). In the
patches, the numbers of cancer cells and non-cancer
cells were 16,703 and 72,084, respectively.

In the experiments, we split the data set into five
sets for 5-fold cross-validation so that the different sets
did not contain patch images cropped from the same
patients. We used three sets for training, one for val-
idation, and one for test in the 5-fold cross-validation
in all the experiments.
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4.2. Implementation details

The set of the encoder and decoder in our network
has a U-net architecture [24], where the encoder and
decoder were connected by skip connections. In our
network, there are two decoders, thus one layer of the
encoder has two skip connections for each decoder. The
size of the output features from each decoder was 256 x
256 x 64. In the modified self-attention module, we
used convolutional layers for producing a key, query,
and value. The output layers o¢ and o™ consist of three
layers of the 1 x 1 convolution, which estimate the heat
maps of each class. We set thy = 20, which was defined
based on the cell size (a cell radius is about 20), and ¢ =
256 x 8, which was a default value in the transformer.

In training, we used Adam [18] for the optimization
function with a learning rate of 10~°. To stop the train-
ing, we used early stopping; if the validation loss had
not improved during 10 epochs, we stopped training.
Then, we selected the best model using the validation
data.

4.3. Performance metric

For evaluation, we used three performance metrics:
the mean of the recall (mRecall), the mean of the pre-
cision (mPrecision), and the F1 score as:

1 TP,
mRecall = — —_—
M kez{w} TP, + FN,
1 TP
mPrecision = M E m’

ke{c,n}
mRecall x mPrecision
F1 = 2 8
x mRecall + mPrecision’ (8)

where mRecall and mPrecision are the mean of the
precision of each class: cancer (c), and non-cancer (n).
TP, FN, and FP are numbers of true positives, false
negatives, and false positives, respectively. To define
TP, FN, and FP, we conducted one-by-one matching
among the detection results and the ground-truth in
each class, which assigns each detection point to one
ground-truth by minimizing the sum of the distances
between corresponding positions using linear program-
ming [5]. If the distance between a detected point and
the assigned ground truth was less than a threshold (20
pixels) and had the same class label, we counted it as a
TP. The threshold was determined on the basis of the
cell size, where the radius of a cell is about 20 to 30 pix-
els. Non-assigned detection results were counted as FP
and non-assigned ground-truth results were counted as
FN.

Table 1. Performance metrics for each method.

mPrecision mRecall F1
Nishimura 0.156 0.316 0.169
Multi task 0.855 0.687 0.759
Baseline 0.774 0.736 0.753
Proposed 0.870 0.739 0.799

| . cancer X I noncancer |

Figure 5. Examples of detection results for each method.
(a)Ground truth, (b) multi-task learning-based method,
and (c) ours. x, xindicate cancer and non-cancer cells.
Areas enclosed by lines are annotated by experts but those
outside are not.

4.4. Comparison with other methods

To confirm the effectiveness of our proposed net-
work, we compared the proposed network with two
current methods and the baseline method of ours: 1)
Nishimura [20], which was designed for cell detection
without classification, where the network estimates a
cell position heat-map. Using this method, two U-nets
for each class were trained individually; 2) Multi-task
learning based on [1], which simultaneously performs
detection for all cells and semantic segmentation for cell
classed; 3) Baseline of our method, which was almost
the same with our method except it did not use the
self-attention mechanism and post-processing (i.e., it
consisted of f, d., de, 0., and 0,,); and 4) our method,
which uses the modified self-attention module.

Table. 1 shows the performance metrics of the
methods. Nishimura’s method, which trained the in-
dividual detection networks for each class, produced
much overdetection, and thus, the performance was ex-
tremely worse since it is difficult to detect cancer cells
from among many similar cells. In contrast, the base-
line method improved the detection performance com-
pared with individual training by sharing the features
for detecting both classes. However, there was dupli-
cate detection, which affected the performance. The
multi-task learning-based method was better than the
baseline method because the semantic-segmentation
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Figure 6. Examples of detection results in ablation study. (a) Original, (b) baseline, (¢) with PP, (d) with modified SA
without PP, (e) with standard SA , and (f) ours (modified SA). x, xdenote cancer and non-cancer cells. xdenotes duplicate
detection, which appears only in method without using post-processing.

Table 2. Ablation study

post-process standard SA  modified SA mPrecision mRecall F1
Baseline 0.774 0.736 0.753
with PP v 0.848 0.711 0.773
with modified SA w/o PP v 0.791 0.761 0.775
with standard SA v v 0.838 0.739 0.785
ours (modified SA) v v 0.870 0.739  0.799

branch avoided the duplicate detection. Our method
outperformed the multi-task learning-based method in
terms of all metrics. We consider this to be because the
modified self-attention module made it possible for the
network to use the spatial context of the surrounding
cells of both classes.

Fig. 5 shows examples of the detection results for
each method, where the regions enclosed by lines were
annotated by experts. Most of the cells were detected
by all methods accurately. However, the classification
performance was different among the methods. For
multi-task learning, there were incorrect classification
results in each class. Our method clearly improved the
classification for both classes: cancer in Fig. 5 (Top)
and non-cancer (Bottom).

4.5. Ablation study

Next, to show the effectiveness of each module in our
method, we compared our method with four settings: a
baseline that did not use the self-attention mechanism

and post-processing (i.e., consisting of fe, d., de, o,
and o, ), a baseline with post-processing (PP) (i.e., con-
sisting of f., d., de, 0c, 0, and PP); a baseline with the
modified self-attention without using post-processing;
a baseline with the standard self-attention and post-
processing. Our method used all modules.

Table 2 shows the detection results of each set-
ting. When we used only the multi-decoder net-
work for multi-class cell detection, the F1 score was
worse. There were many instances of duplicate de-
tection, and this had an adverse effect on the per-
formance. Introducing post-processing improved the
F1 score since there was no duplicate detection af-
ter the post-processing. The self-attention mechanism
improved the mRecall and F1-score, but the mPreci-
sion decreased. The standard self-attention method
extracted the mixed features of cancer and non-cancer
cells, and thus, the improvement was limited. Our
method using the modified self-attention further im-
proved all the metrics. Fig. 6 shows the detection re-
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Figure 7. Examples of detection results. (a) Baseline (b)
Baseline + standard self-attention, and (c) Baseline + mod-
ified self-attention. , xdenotes cancer and non-cancer
cells. xdenote duplicate detection (i.e., cell was detected
in heat maps of both classes).

Table 3. Evaluation of duplicate detection rate. “stan-
dard”, “modified” indicate method used standard and mod-
ified self-attention, respectively.

standard modified duplicate rate

Baseline 0.079
ours v 0.101
ours v 0.052

sults for each method, where the first and second rows
show the examples of non-cancer cells, and the third
row shows the examples of cancer cells. We can observe
that our method clearly reduced the miss-classification
results in both classes.

4.6. Effectiveness of modified self-attention for re-
ducing duplicate detection

As discussed above, if the post-processing is not
used, the method may produce duplicate detection
results (i.e., a cell is detected in heat maps of both
classes). We consider our modified self-attention mod-
ule to have the ability to reduce duplicate detection
results even without post-processing.

To show the effectiveness of the modified self-
attention, we evaluated the rate of duplicate detection.
It was defined as the number of instances of dupli-
cate detection over the sum of the detection results in
both classes. We compared the baseline method which
has two decoders without interchanging features, the
method that uses the standard self-attention module,
and the proposed method, which uses the modified self-
attention module for interchanging the features of each
class. To evaluate the self-attention module itself for
feature extraction, none of the methods used the post-
processing.

Tab. 3 shows the duplication rate of each method.
The baseline method had an 8 % duplicate detection
rate. The method using the standard self-attention
could not improve the duplicate detection even though
it can improve the detection results as discussed above
regarding the ablation study. Our modified self-
attention module reduced duplicate detection from
0.079 to 0.052. This also had a good effect on over-
all cell detection results as shown in ablation study.

Fig. 7 shows examples of the detection results. The
baseline method contained many duplicate detection
results. As seen in the top row, the proposed method
could greatly reduce duplicate detection. In the bot-
tom row, our method reduced it in the green area, but
duplicate detection still remained in the red area. We
think that when cells that have very similar features
are distributed densely, our method cannot improve
the performance. However, when difficult cells are in
discriminative cells as shown in Fig. 7 (Top) and the
green region in (Bottom), our method could improve
the detection performance.

5. Conclusion

In this paper, we proposed a multi-class cell detec-
tion method that estimates cell position heat maps for
cancer cells and non-cancer cells. Because it is im-
portant to use the spatial context of the surrounding
cells in addition to the features in the appearance of a
cell of interest, we introduced a modified self-attention
module for effectively using the image features of both
classes. This can reduce duplicate detection by using
the features extracted from different classes. As a re-
sult, the proposed method achieved better performance
in comparison.

One of the limitations is that our method could not
improve the detection performance in the case when
cells that have very similar features are distributed
densely because the aggregated features also contain
ambiguity. We consider that the information aggrega-
tion by our method is still not sufficient to identify such
cases. Since pathologists identify cancer cells using the
global context, such as the spatial positional distribu-
tion, we will introduce a mechanism into the detection
method to aggregate the further global spatial context
and detailed features together in future work.
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