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Abstract

Automated microscopy image analysis is a fundamental
step for digital pathology and computer aided diagnosis.
Most existing deep learning methods typically require post-
processing to achieve instance segmentation and are compu-
tationally expensive when directly used with 3D microscopy
volumes. Supervised learning methods generally need large
amounts of ground truth annotations for training whereas
manually annotating ground truth masks is laborious espe-
cially for a 3D volume. To address these issues, we propose
an ensemble learning and slice fusion strategy for 3D nuclei
instance segmentation that we call Ensemble Mask R-CNN
(EMR-CNN) which uses different object detectors to gener-
ate nuclei segmentation masks for each 2D slice of a volume
and propose a 2D ensemble fusion and a 2D to 3D slice
fusion to merge these 2D segmentation masks into a 3D seg-
mentation mask. Our method does not need any ground truth
annotations for training and can inference on any large size
volumes. Our proposed method was tested on a variety of
microscopy volumes collected from multiple regions of organ
tissues. The execution time and robustness analyses show
that our method is practical and effective.

1. Introduction

Optical microscopes have been widely used for imag-
ing microscopic organisms and are important for the un-
derstanding of subcellular structures and disease diagnosis
[1, 2]. The advances in digital fluorescence microscopy en-
abled multi-channel high resolution 3D imaging by using
a diffraction-limited laser beam which can image deeper
subcellular tissue structures [3, 4]. The 3D volumes gener-
ated by fluorescence microscopy need to be quantitatively
analyzed to obtain useful information [5]. Manual assess-
ment of large-scale microscopy volumes is laborious and
time-consuming.

Deep learning-based methods have shown significant per-
formance for computer vision tasks such as image classi-
fication, object localization and segmentation [6]. One of
the major challenges in analyzing 3D microscopy volumes
is to accurately delineate the boundary of individual nuclei
having high intraclass variability and densely overlapping
distributions [7, 8]. Many deep learning methods for im-
age segmentation such as encoder-decoder-based networks
typically require post-processing such as watershed or mor-
phological operations to separate touching objects which
may result in unstable results [9, 10]. Large computational
resources such as large amounts of GPU memory are also
necessary. One solution to reduce computational complexity
is to process the volume as 2D slices and then merge the re-
sults to form a 3D nuclei segmentation. Robustly merging or
fusing the 2D nuclei segmentations without compromising
the overall accuracy remains challenging since the 3D nuclei
information is not learned properly. Ensemble learning has
been widely used to increase the overall robustness of seg-
mentation approaches as well as increasing the segmentation
accuracy by integrating the voting results from different net-
works [11]. However, supervised learning methods require
large amounts of annotated training samples to achieve ac-
curate results. Due to the lack of large amounts of ground
truth data, quantitative analysis for some applications needs
to be conducted without ground truth annotation for training
supervised learning models [12].

In this paper, we describe an ensemble method for 3D nu-
clei segmentation, known as Ensemble Mask R-CNN (EMR-
CNN), that is based on a collection of Mask R-CNN models
with different network architectures for detecting and seg-
menting 3D nuclei in fluorescence microscopy volumes. We
propose a weighted 2D mask fusion technique for aggre-
gating 2D detection results from different Mask R-CNN
networks to achieve more accurate and robust 2D results.
We describe a 2D to 3D slice fusion method for merging
segmentation results from 2D slices to a 3D volume using an
unsupervised clustering method. By using ensemble learn-
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ing, we demonstrate that our method achieves high nuclei
detection accuracy compared to other methods we exam-
ined. In addition, we use Generative Adversarial Networks
(GANs) to generate synthetic 3D microscopy volumes for
training our EMR-CNN. Therefore our approach does not
require any hand annotated ground truth for training which
will be more useful when the hand annotated data is limited.

2. Related Work
Many methods have been reported in the literature for

nuclei segmentation. They can generally be divided into five
categories: threshold-based methods, clustering methods,
energy-based methods, region-based methods, and machine
learning methods [13].

The thresholding methods such as Otsu’s method try to
determine a threshold that separates the foreground and back-
ground pixels by minimizing the intraclass intensity variance
[14]. The typical region-based method is watershed [15],
which treats the grayscale image as a topographic landscape
with ridges and valleys, and the watershed transform is used
to build barriers on the ridges to separate water source from
different regions. The use of Otsu’s thresholding and water-
shed has been a popular combination for microscopy image
segmentation [16, 17, 18]. Energy-based methods known
as “Active contours” seek an equilibrium between the fore-
ground object and background pixels by iteratively moving a
deformable spline to minimize an energy function [19, 20].

Unsupervised learning techniques such as k-means, ag-
glomerative hierarchical clustering (AHC), fuzzy C-means
(FCM), and mean shift clustering have been used to split
touching nuclei [21, 22, 23, 24]. These clustering methods
explore the structure of nuclei and aggregate the pixels with
similar features into different nuclei instances. The meth-
ods described above have been implemented and integrated
as ImageJ plugins as well as other open source tools for
quantitative microscopy image analysis [25, 17, 20, 26].

More recently, deep learning-based methods have shown
promising results for cellular image analysis [27]. The
encoder-decoder networks such as U-Net [28] and Seg-
Net [29] have been used in microscopy image segmentation
[30, 31, 32, 33], which demonstrate significant improved per-
formance over classical image segmentation techniques. To
segment different nuclei instances, post-processing such as
watershed or morphological operation with proper parameter
tuning is required [34]. To address this issue, the network
has been modified to learn the centroid and boundary in-
formation of individual nucleus using a voting mechanism
[35] or vector gradient map [36]. Similarly, [37] models the
nuclei as ellipsoids and directly estimates the centroids and
radii of the nuclei for instance segmentation. Alternatively,
instead of directly segmenting an entire image, top-down
approaches such as Region Proposal Networks (RPN) first
identify the regions of interest (RoIs) and then segment the

RoIs to obtain instance segmentations [38].
Ensemble learning techniques have been used to improve

the overall detection performance by combining multiple
diverse detectors, which can compensate for the errors gener-
ated by individual detectors [39]. An ensemble Mask-aided
R-CNN described in [40] uses a graph clique voting method
for improving the detection performance. In [41] an en-
semble learning method based on CNNs and random forest
(RF) for blood vessel segmentation is presented. Similarly,
in [42] a transform modal ensemble learning for breast tu-
mor segmentation is described. In addition, [43] described
a cross-modality fusion and feature learning level ensem-
ble learning for multimodal medical image segmentation
and demonstrated the superiority of feature fusion over net-
work output fusion such as voting. A weighted boxes fusion
method was described for aggregating detected bounding
boxes from different object detection models [44].

For segmenting 3D microscopy volumes, directly using
3D CNN networks can generally obtain more accurate results
since the 3D information is utilized. However, 3D methods
require 3D annotated ground truth for training, which is dif-
ficult to obtain in practice, especially for 3D microscopy
volumes. To address these issues, many 2D to 3D methods
have been introduced, which first perform the segmentation
on the x-, y-, and z-direction of a volume and then fuse the re-
sults. In [45] 3D vector gradients are estimated by averaging
2D vector gradients from a modified 2D U-Net from three
different directions of a volume, and followed by a cluster-
ing method to group the pixels to 3D masks. Similarly, [46]
uses majority voting to combine 2D segmentation results
obtained from SegNet into a 3D segmentation. However,
accurately and robustly aggregating these 2D segmentation
into 3D masks remains challenging.

To obtain satisfactory segmentation results, deep learning
methods typically need large amounts training images with
corresponding ground truth annotations. Manually delineat-
ing 3D nuclei contours or even 2D nuclei contours is labori-
ous in a microscopy volume even for an expert. To address
these issues, data augmentation methods including elastic
deformation [47], random intensity correction, and spatial
transformation are commonly used [48]. However, these
methods require an adequate number of existing ground truth
images. Learning-based data augmentation techniques such
as generative adversarial networks (GANs) [49] can generate
synthetic data without ground truth images. In [32] and [50],
nuclei segmentation masks are generated by modeling nuclei
as 3D ellipsoids and 3D non-ellipsoids using Bézier curves.
In [31], a synthetic microscopy image generation method
that is based on a modified CycleGAN [51], known as Sp-
CycleGAN, uses the binary nuclei segmentation masks to
generate corresponding synthetic microscopy images. In this
paper we will use GANs to generate synthetic microscopy
volumes for training our proposed method.
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Figure 1. Overview of the proposed EMR-CNN for 3D nuclei instance segmentation using ensemble learning and slice fusion

3. PROPOSED METHOD

In this section we describe the proposed Ensemble Mask
R-CNN (EMR-CNN). We denote I as a 3D volume with
dimension X × Y × Z. Izj is the j-th slice of a volume
on the z direction where j ∈ {1, ..., Z}, and Iz denotes all
2D slices along the z direction of I . Also, Iorig denotes
the original microscopy volumes. Ibi and I label denote the
binary segmentation masks and corresponding labels.

Let E be a collection or ensemble of 2D object de-
tectors where mi is a detector in E and i ∈ {1, ...,M}.
Given a 2D microscopy image Iorigzj and an object detec-
tor mi, the detection results are denoted as Detmi,zj =
{Det

mi,zj
1 , ...,Detmi,zj

n } where n = N
mi,zj
det is the total

number of detected objects in Iorigzj from mi, and each detec-
tion result Det

mi,zj
d = {Segmi,zj

d ,Ctr
mi,zj
d ,Pr

mi,zj
d } con-

sists of a segmentation mask Seg
mi,zj
d , an object centroid

Ctr
mi,zj
d and a confidence score Pr

mi,zj
d . Seg

mi,zj
d is a

binary image of size X × Y where segmented pixels are
highlighted with intensity 1. Ctr

mi,zj
d is a 2D coordinate

indicating the centroid of the segmentation mask Seg
mi,zj
d ,

and Pr
mi,zj
d ∈ (0, 1) is the detection confidence score of the

segmentation mask.
Also, let Detm,zj = {Ctrm,zj ,Segm,zj ,Prm,zj} be the

2D detection results on Iorigzj for all detectors in E. Our
goal is to take all the detection results and fuse them together.
Let Detzj = {Ctrzj ,Segzj ,Przj} be the fused 2D detection
result using ensemble 2D fusion method described in Section
3.3. Let Detz represent a set of all 2D fused results for Iorig,
and Det = {Seg,Ctr,Pr} is the final 3D results fused from
Detz . Next we take the fused 2D results Detz and merge
them to form our final 3D detection Det using a 2D to 3D
slice fusion method described in Section 3.4.

3.1. Synthetic Data Generation

As we indicated earlier it is very difficult to obtain man-
ually annotated microscopy volumes due to the tedious na-
ture of the annotation process. We use a data augmenta-

tion process that consists of generating synthetic 3D mi-
croscopy volumes using GANs [51, 31]. As shown in Figure
1, the synthetic data generation module includes 3D ground
truth nuclei segmentation masks generation and synthetic
microscopy volume generation.

Ground truth segmentation mask generation. We
first generate synthetic 3D segmentation masks of nuclei
that serve as the ground truth for the training data. Our
approach is different from previous approaches described
in [32, 50] in that we model each candidate nucleus as a
deformed 3D ellipsoid parameterized by three parameters a,
t, and θ, where a = (ax, ay, az) defines three axis lengths
of an ellipsoid, t = (tx, ty, tz) is the spatial translation that
defines the location of a nucleus, and θ = (θx, θy, θz) is the
spatial rotation that defines the orientation of a nucleus. The
parameters a, t and θ are randomly generated in a range
shown in Table 1 for each candidate nucleus. These candi-
date nuclei are recursively added to an empty 3D volume
I label with an incremental unique intensity k that is used to
distinguish different nuclei instances. The total number of
nuclei is set to N , and the overlapping voxels of two nuclei
must be less than Tov.

Figure 2. Real nuclei (left) and deformed ellipsoids generated using
elastic transform (right)

In the data we used for our experiments, we observed
many nuclei are not strictly ellipsoids but more like “de-
formed” ellipsoids (Figure 2). To model these type of nuclei,
we further deform the binary ellipsoids using an elastic trans-
form [52]. Specifically, given a volume I of size X×Y ×Z
that needs to be deformed, we first generate a random coarse
displacement, which is a matrix of size 3 × P × P × P ,
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sampled from a normal distribution N (0, σ2). Then a dis-
placement vector field Ivec was generated by interpolating
the coarse displacement from size 3 × P × P × P to size
3 × X × Y × Z by cubic spline interpolation [53]. Then,
Ivec is used to shift the voxels in I to obtain the deformed
volume Ibi (Figure 2).

Microscopy volume generation. We use the SpCycle-
GAN described in [31, 51] to generate the synthetic 3D mi-
croscopy volume. As shown in Figure 3, for SpCycleGAN
training, we use all XY focal planes of unpaired original mi-
croscopy volumes Iorig and synthetic binary segmentation
masks Ibi. Once the SpCycleGAN is trained, we use Ibi as
input to SpCycleGAN to generate a corresponding synthetic
microscopy volume Isyn. We generate the volume slice by
slice and stack the results together.

Step #2Step #1

SpCycleGAN
Training

Trained 
SpCycleGAN 𝑰𝒃𝒊

𝑰𝒐𝒓𝒊𝒈

SpCycleGAN 
Inference

"𝑰𝒃𝒊 𝑰𝒔𝒚𝒏

Step 1: SpCycleGAN Training

SpCycleGAN
Training

𝑰𝐛𝐢

𝑰𝐨𝐫𝐢𝐠

Trained 
SpCycleGAN 

SpCycleGAN 
Inference

𝑰𝐛𝐢 𝑰𝐬𝐲𝐧

Step 2: SpCycleGAN Inference

Figure 3. 3D synthetic microscopy volume generation using SpCy-
cleGAN

SpCycleGAN consists of 5 networks G, F , H , DA and
DB where G is the generator that translates the image from
binary domain to microscopy domain. Similarly, F trans-
lates the image from microscopy domain to the binary do-
main. DA and DB are two discriminators that are used
to discriminate whether a given image is real or synthetic.
The additional segmentation network H has the same archi-
tecture as F along with spatial constrained loss Lsc were
introduced in [31] to preserve the spatial shift of objects in
the generated images. The entire objective loss function of
SpCycleGAN is shown in Equation 1.

L(G,F,H,DA, DB) = LGAN(G,DA, I
bi, Iorig)

+ LGAN(F,DB , I
orig, Ibi)

+ λ1Lcycle(G,F, Iorig, Ibi)

+ λ2Lsc(G,S, Iorig, Ibi) (1)

where Lsc is the spatial constrained loss defined as a L2

norm shown in Equation 2.

Lsc(G,S, Iorig, Ibi) = EIbi [||H(G(Ibi))− Ibi||2] (2)

3.2. Ensemble Mask R-CNN: EMR-CNN

In order to increase the robustness and accuracy of nuclei
segmentation, we propose a simple but effective method that
trains a collection of M different but similar Mask R-CNN
detectors implemented by [54]. The details of the training
are described in Section 4.1. Our method includes ensemble
2D fusion that is able to fuse the 2D detection results from all

detectors, and a 2D to 3D slice merging method that merges
the detection results from fused 2D slices to 3D volumes.

…
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Figure 4. Overview of weighted 2D mask fusion

3.3. Ensemble 2D Fusion

We propose a weighted 2D mask fusion method for fusing
2D detection results from different detectors into a final 2D
detection. This is an extension of the weighted boxes fusion
described in [55]. Instead of simply using Non-Maximum
Suppression (NMS), we use the estimated confidence scores
to compute the fused 2D segmentation mask which is rep-
resented by a probability map. A fused mask with new
confidence score is generated. Given the detection results
of a 2D slice Iorigzj from M detectors, the goal is to fuse
Segm,zj and Prm,zj into Segzj and Przj .

Object matching. For an object, we need to identify
all objects detected with the M detectors and then fuse the
results. We use the agglomerative hierarchical clustering
(AHC) with average linkage criterion to match the same seg-
mented object in the segmentation masks Segm,zj . Specifi-
cally, we use Ward’s minimum variance implemented with
Lance–Williams dissimilarity (L) [56] to determine which
segmentation mask to be merged at each iteration. The
Lance–Williams dissimilarity measures the similarity be-
tween an existing cluster and newly merged cluster. AHC
will treat each sample as one cluster initially and merge the
most similar sample pair based on the Lance–Williams dis-
similarity until all samples are merged as one cluster. To
evaluate the clustering performance, we define the mean
intracluster distance a(i), and the mean intercluster distance
b(i) for a given number of clusters k in Equation 3.

a(i) =
1

nc − 1

∑
i,j∈Cc,i̸=j

d(i, j)

b(i) =
1

k − 1

∑
q,q ̸=c

 1

nq

∑
i∈Cc,j∈Cq

d(i, j)

 (3)

For a given segmentation mask centroid i and its cluster
Cc, a(i) measures the intracluster distance between i and
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other samples j within the same cluster. Similarly, b(i) mea-
sures the intercluster distance between i and other clusters
Cq. nc is the number of elements in cluster Cc. Note that
d(i, j) is the Euclidean distance between two centroids. Fi-
nally, the Silhouette Coefficient (SC) is used to determine
the ideal number of clusters N cluster

zj . As shown in Equation
4, SCzj (k) is the Silhouette Coefficient for the j-th slice
given k as the number of clusters.

SCzj (k) =
1

n

∑
i∈Ctrm,zj

b(i)− a(i)

max(a(i), b(i))
(4)

Our objective function can be formulated in Equation 5 to
find the number of clusters k ∈ {kmin, ..., kmax} with the
highest Silhouette Coefficient.

N cluster
zj = argmax

k
SCzj (k), k ∈ {kmin, ..., kmax} (5)

where kmin and kmax shown in Equation 6 are the minimum
and maximum number of detection for all detectors and σ2

is the variance of the number detections for all M meth-
ods. Note that AHC requires there to be at least 2 potential
clusters for unclustered centroids.

kmin = max

(
min

i∈{1,...,M}
(N

mi,zj
det )− σ2, 2

)
kmax = max

i∈{1,...,M}
(N

mi,zj
det ) +M + σ2 (6)

The majority voting mechanism is used to increase the ro-
bustness of the fusion by removing false positive detections
or outliers. As shown in Equation 7, if the number of de-
tections for an object in cluster Cr is less than M/2, the
corresponding detection results will be removed.

Detm,zj = Detm,zj −
⋃

d∈Cr

Det
m,zj
d (7)

Weighted 2D mask fusion. To fuse the 2D segmenta-
tion masks from the M detectors, we propose weighted 2D
mask fusion that takes the matched objects as input and out-
puts the fused 2D detections with corresponding confidence
scores. This is shown in Equation 8.

Segzjw =

∑
i∈Cw

Pr
m,zj
i Seg

m,zj
i∑

i∈Cw
Pr

m,zj
i

> 0.5

Przjw =
1

|Cw|
∑
i∈Cw

Pr
m,zj
i (8)

where Cw is the w-th cluster within which the detection
results are matched. Then Ctrzjw is the center of mass of
Segzjw .

3.4. 2D to 3D Slice Fusion

As described above, for a given an image slice Iorigzj
from the original volume, we obtain M 2D detentions
and fuse them to form a 2D fused slice result Detzj =
{Segzj ,Ctrzj ,Przj}. Our 2D to 3D slice fusion method
merges 2D fused detections from all slices Detz into a 3D
detection Det = {Seg,Ctr,Pr}. As shown in Figure 1, we
use two 2D to 3D slice fusion approaches, both based on
the spatial location of the 2D centroid of the fused slices.
The first approach known as blob-slice (BS) [57, 17] merges
each 2D fused segmentation from the top slice to the bot-
tom slice based on a predefined Euclidean distance of the
centroid. The second approach uses agglomerative hierar-
chical clustering (AHC) described in Equation 3, 4, and 5
to cluster Ctrz . The confidence scores of the final 3D fused
segmented objects are the average of confidence scores of
corresponding 2D segmentations within the same cluster.

Slice merging. Since EMR-CNN operates on different
slices of a volume independently without knowing the 3D
nuclei structures in the z-direction, it may fail to detect the
nuclei in a slice due to artifacts or the effect of point spread
function. This results in a single segmented nucleus con-
taining two or more disjoint connected components. We
propose a technique for merging these disconnected compo-
nents. For the 3D fused segmentation of a single nucleus
Segd, suppose a 2D fused segmentation Segzjr is missing on
the j-th slice, and suppose the 2D fused segmentation for
its neighbor slices are Segzj−1

p and Segzj+1
q , then the miss-

ing segmentations are given by the intersection of its two
neighbor segmentations (Segzjr = Segzj−1

p ∩ Segzj+1
q ).

4. EXPERIMENTAL RESULTS
Datasets. In our experiments, we use three microscopy

datasets denoted as D1, D2, and D3 for evaluation. The
data is from various regions of a rat kidney using confocal
fluorescent microscopy with fluorescence label (Hoechst
33342 stain). Original microscopy data were collected by
Malgorzata Kamocka and Michael Ferkowicz at the Indiana
Center for Biological Microscopy [58]. Microscopy D1

consists of one volume of X × Y × Z = 128 × 128 × 64
voxels, D2 consists of 16 volumes of size 128 × 128 × 32
voxels, and D3 consists of 4 volumes of size 128× 128× 40
voxels. These datasets were manually annotated using ITK-
SNAP [59]. For training, we generate synthetic data for
training EMR-CNN and other comparison methods. The
synthetic D1, D2, and D3 are generated using 3 different
trained SpCycleGANs (Figure 3). Each type of synthetic
dataset consists of 50 volumes of size 128× 128× 128.

4.1. Experimental Setup

The training of SpCycleGAN requires unpaired Iorigz and
Ibiz images. We first generate 54 binary segmentation masks
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Ibi for D1, D2, and D3 respectively, using the method de-
scribed in Section 3.1. The axes lengths, translation dis-
tances, and rotation angles are randomly selected from uni-
form distributions having ranges rx,y,z , tx,y,z , and θx,y,z ,
which are provided in Table 1, respectively. For synthetic
microscopy volume generation, shown in Figure 3, we use
all XY focal planes of 4 sub-volumes of Iorig along with 4
volumes of Ibi for training each SpCycleGAN model, respec-
tively. We use the trained SpCycleGANs and the remaining
50 binary volumes to generate corresponding Isyn volumes
for each dataset. Example images of the synthetic volumes
are shown in Figure 5. The SpCycleGAN parameters are the
same settings as described in [23, 31].

Table 1. Parameters for generating synthetic binary segmentation
volumes. rx,y,z , tx,y,z , θx,y,z are randomly generated for each
nucleus, and P , σ, N and Tov are predefined values based on
actual microscopy volumes

Data rx,y,z tx,y,z θx,y,z Tov N P σ

D1 (4, 8) (1,128) (0,2π) 5 400 0 0
D2 (10, 14) (1,128) (0,2π) 10 40 0 0
D3 (8, 10) (1,128) (0,2π) 300 400 4 4

𝒟! 𝒟" 𝒟#

Figure 5. Original microscopy image (first row), synthetic nuclei
segmentation mask (second row), and corresponding synthetic mi-
croscopy image (third row) for each dataset

EMR-CNN training and inference. In our experi-
ments, we trained 3 EMR-CNNs each consisting of M Mask
R-CNN detectors that are initialized with different network
architectures randomly chosen from ResNet-50, ResNet-101
[60], ResNeXt-101 [61], Feature Pyramid Network [62], and
deep CNN layers [63]. All the networks are pretrained on
the MSCOCO dataset [64] and are available at [54]. The
networks are then retrained on a subset of the synthetic mi-
croscopy images and tested on actual microscopy volumes.
The training subset is randomly chosen from the entire syn-
thetic image training set. All ensemble models are trained

on 4 TITAN XP GPUs in parallel with a base learning rate of
2.5e−4 and batch size of 2 for 2000 iterations. The remaining
parameters, which are Mask R-CNN detector parameters, are
set to their default values [54]. In addition, since the training
images are of size 128×128 while the testing images can be
arbitrarily large, directly inferencing on those large volumes
may not generate accurate detection results (see Figure 6
left column) because the objects are downscaled. To address
this, we propose a divide-and-conquer inference scheme that
partitions the input volume to multiple 128× 128× 128 sub-
volumes with a 16-pixel border overlap (see Figure 6 right
column). After the EMR-CNN inferencing stage, partial
objects that lie on the overlapping boundaries of each par-
tition are reconstructed based on their overlapping regions.
Specifically, two objects on the partition boundaries that
overlap by more than 10 pixels are merged into one object.
Figure 6 middle column demonstrates how a naı̈ve divide-
and-conquer inferencing that does not utilize overlapping
sub-volumes will result in segmentation errors at the border
of the inference windows.

Figure 6. Segmentation results of EMR-CNN+AHC (M=4) on
large microscopy D2. Left column: direct inference on each slice.
Middle column: naı̈ve segmentation based on non-overlapping
partitions. Right column: results using our proposed divide-and-
conquer inference method.

4.2. Quantitative Evaluation

To evaluate the accuracy of our method, we define
that a ground truth nucleus is successfully detected if the
Intersection-over-Union (IoU) between this ground truth nu-
cleus and a detected nucleus is greater than an IoU threshold
t. Then we count the True Positive (TP) detections (number
of ground truth nuclei that are successfully detected), the
False Positive (FP) detections (number of objects that are
falsely detected as nuclei), and the False Negative (FN) de-
tections (number of ground truth nuclei that are not detected).
We use the F1 score (F1 = 2TP

2TP+FP+FN ) for object-based
evaluation. In addition, we adopt the widely used Aver-
age Precision (AP), known as the PR curve [67], and the
mean Average Precision (mAP) metrics used by the VOC
PASCAL [68] and MSCOCO evaluation benchmarks [64].
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Table 2. The object-based evaluation results using Average Precision (AP), Mean Average Precision (mAP), and mean F1 scores (mF1)

Methods
Microscopy D1 Microscopy D2 Microscopy D3

AP.25 AP.45 mAP mF1 AP.25 AP.45 mAP mF1 AP.25 AP.45 mAP mF1

3D Watershed 61.51 35.12 48.87 68.31 67.58 51.20 60.30 76.36 22.33 4.62 11.96 30.22
CellProfiler [25] 50.46 27.35 37.79 59.41 64.26 48.66 57.52 75.09 20.46 2.85 10.15 27.75
3D Squassh [20] 12.39 6.19 9.21 23.51 66.79 53.76 61.61 78.15 0.59 0.36 0.49 4.73
VTEA [17] 45.52 38.25 42.71 61.64 64.69 45.90 57.76 74.11 25.91 10.44 17.89 38.45
VNet [65] 77.31 61.78 70.29 82.41 53.67 34.97 45.88 64.61 37.03 12.58 23.74 41.73
3D U-Net [66] 75.56 62.97 69.63 81.81 66.89 48.14 58.12 74.62 36.89 12.40 25.19 43.39
DeepSynth [30] 81.57 75.59 79.51 87.19 76.42 51.86 66.19 79.42 34.98 10.91 22.83 41.77
Cellpose [45] 81.70 81.70 81.70 89.47 71.92 64.61 68.92 80.74 45.29 17.01 30.43 51.41
EMR-CNN+BS, M=8 82.31 69.60 76.64 86.44 77.81 70.31 75.50 85.68 53.18 33.93 45.53 64.90
EMR-CNN+AHC, M=8 93.19 89.46 91.04 94.95 82.37 75.71 80.13 88.15 68.26 47.65 59.61 71.05
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Figure 7. Average Precision (AP) under different IoU thresholds for microscopy D1 − D3. BS and AHC specifies the blob slice or
agglomerative hierarchical clustering used for slice fusion module. M represents number of detectors in an ensemble.

To reduce evaluation bias given the variability of the seg-
mentation results for different testing data, we use a mov-
ing average Intersection-over-Union (IoU) threshold rang-
ing from 0.25 to 0.45 in 0.05 increments (t ∈ TIoUs =
{0.25, 0.3, ..., 0.45}). To this end, we define APt and F1(t)
as the AP and F1 score evaluated under IoU threshold t,
respectively. We then define mAP = 1

|TIoUs|
∑

t∈TIoUs
APt

and mF1 = 1
|TIoUs|

∑
t∈TIoUs

F1(t) as the mean AP and F1

score among all the IoU thresholds, respectively. The evalu-
ation results of our proposed technique and other compared
methods on the actual datasets D1 −D3 are given in Table
2. Figure 7 shows the AP of EMR-CNN using BS and AHC
(see Section 3.4) with a different number of detectors in an
ensemble. All segmentation results and evaluation criteria
were verified by a biologist.

4.3. Running Time Analysis

The running time of our approach and compared methods
are given in Table 3. The times reported are based on the
training and testing of D2. The compared deep learning
methods were trained for 200 epochs on 4 TITAN XP GPUs
using the same synthetic data for training EMR-CNN. Our
approach takes significantly less training time because each
Mask R-CNN model is trained with a subset of the entire
training set for only 2000 iterations (2 images/iteration).
EMR-CNN and Cellpose take longer time in inferencing

Table 3. Running time analysis. Training: total training time
(hours), Inference: model inference time (seconds/volume), Pro-
cessing: Pre-and Post-processing time (seconds/volume).

Microscopy D2

Methods Training Inference Processing
CellProfiler - - 30.00 s
Squassh - - 30.00 s
3D Watershed - - 4.90 s
VTEA - - 2.00 s
VNet 3.07 h 0.24 s 3.11 s
UNet 5.13 h 0.29 s 3.24 s
DeepSynth 2.53 h 0.19 s 3.33 s
Cellpose 4.63 h 4.48 s 0.47 s
EMR-CNN+BS, M=8 0.20 h 1.01 s 1.38 s
EMR-CNN+AHC, M=8 0.20 h 1.01 s 1.68 s

since they have to run multiple batches for one volume. The
processing of EMR-CNN includes ensemble 2D fusion and
2D to 3D slice fusion. The processing for VNet, UNet,
and DeepSynth includes 3D watershed and morphological
operations to split touching nuclei.

4.4. Robustness Analysis

Due to the randomly initialized networks and randomly
sampled training set, each detector in the ensemble may
produce different False Positive segmentation results for a
given image slice. In order to test the stability and robustness
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Figure 8. Example testing sub-volumes from original microscopy images and the nuclei instance segmentation results for compared methods.
The last column is the segmentation results of our EMR-CNN + AHC, M=8

of our system, we conducted two experiments. In the first
experiment, we randomly add to each detection Detmi,zj , a
different number N (ranging from 1 to 7) of false positive
segmentations of a round shape mask with radius R = 4
having a random confidence score between 0.7 and 1.0 (see
Figure 9 (left)). In the second experiment, we randomly add
N = 2 false positive segmentations with different radii R
ranging from 2 to 8 (see Figure 9 (right)). As the figure
indicates, the false positive outliers were removed by our
weighted 2D mask fusion with only small losses incurred in
the accuracy metrics.
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Figure 9. Robustness analysis of proposed method by randomly
adding false positive segmentations to each detected image slice

4.5. Discussion

Our proposed method was compared with both traditional
methods and deep learning-based methods. The traditional
methods such as 3D Watershed, CellProfiler, 3D Squash,
and VTEA require tuning of many parameters and may work
well with one dataset but fail for others. Deep learning-based
techniques such as 3D U-Net and DeepSynth are all 3D
CNN-based models that directly work on 3D data, whereas
Cellpose uses a 2D to 3D reconstruction. In contrast, for
the proposed EMR-CNN technique, which is based on Mask

R-CNN [54], we utilized two different 2D to 3D slice fusion
approaches: Blob-Slice (BS) [57, 17] and Agglomerative
Hierarchical Clustering (AHC) [23], with M = 1, 4, 8 de-
tectors in an ensemble. As shown in Table 2, the proposed
EMR-CNN + AHC approach outperforms the other tech-
niques, based on the AP, mAP, and mF1 metrics. As ex-
pected, the ensemble with M = 8 detectors achieves higher
accuracy than M = 4 and M = 1 for both BS and AHC
strategies.

5. CONCLUSION

In this paper, we described an ensemble learning and slice
fusion strategy for 3D nuclei segmentation. The proposed
method uses a weighted 2D mask fusion technique to fuse 2D
segmentation masks from different object detectors as well
as unsupervised clustering for combining 2D segmentation
masks into a 3D segmentation mask. The evaluation results
indicate that our approach is stable and robust in the presence
of false detections or outliers as well as outperforms some
recent 3D CNN-based methods. Moreover, our method does
not need any ground truth annotations for training and can
inference on any large size volumes. Code has been made
available at: http://skynet.ecn.purdue.edu/

˜micro/emrcnn/emrcnn_release.zip
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