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Abstract

Aging people may be prone to accidents in bathrooms
and toilets. The detection of strain motion for a smart toilet
application has not been studied sufficiently. In this paper,
we propose a method for strain detection from a force
sensor placed on a toilet seat for a smart toilet healthcare
application. The method first extracts breath and motion
features that are assumed to be key components for the
strain detection. The method then learns the discriminator
model based on the random forest classifier using the
aforementioned features. Finally, the method recognizes
actions in the toilet room. There were five detection
actions: seating, taking up toilet paper, wiping bottom,
which are normal actions when sitting on a toilet seat, and
strain actions (strong and weak). An experiment with 19
subjects was also conducted. Compared with a microwave
sensor-based recognition, which is a conventional method
(accuracy = 61.6%), our method was able to recognize the
actions with high accuracy of 80.2% (significant test: T =
12.7, P < 0.01) in the experiment. QOur strain detection
method has the potential to be used as a smart toilet system
to prevent blood pressure elevation and collapse caused by
strain in the future.

1. Introduction

As the global population ages, several studies on health
care monitoring have been conducted recently [1-7]. Using
widely variable sensors from wearable-based [7] to
noncontact-based [4], a lot of applications such as activity
recognition [5], vital sensing [8], and identification were
investigated. In particular, several studies focused on
activities done daily, including those done in a bathroom.
This is because accidents in a bathroom are often harmful
for aging people as they may lead to heart attacks or
hypertension [2, 4, 7].

Several researches have statistically analyzed accidents
that occur in the bathroom based on a large number of
patients with subarachnoid hemorrhage, cerebral
infarctions, and cardiac arrests. The incidence of these
diseases frequently occurred in lavatory and occurred more
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frequently here than in any other place in the house [9-13].
The number of incidences for elderly people was also
higher than that for younger people [10, 11].

Among patients affected by cardiac arrest in the toilet
space, only 10% were found soon after the heart attack;
furthermore, only 1% lived longer than 12 months after the
heart attack [9].

From the physiological aspect, defecation induces
cardiovascular and blood pressure changes, and has
relation with cardiac arrest occurrences [14]. When a
person is under strain, a sudden rise in blood pressure
occurs [15], which can lead to cardiopulmonary arrest or
cerebral infarction for elderly people [16]. Regarding the
healthcare of elderly people, it is known that the percentage
of people suffering from chronic constipation increases
with age [17]. In the case of constipation, excessive strain
occurs during bowel movement. The longer the cardiac
arrest, the lower the probability of recovery and survival
[18]; however, the time taken to realize that someone has a
cardiac arrest in the toilet tends to be greater since the toilet
space is a private space [9].

Therefore, we propose a strain detection method for a
smart toilet system. The paper is organized as follows.
Section 2 describes works related to smart toilets and
healthcare monitoring techniques. Section 3 describes the
methods employed in the study. Section 4 provides the
experimental settings of the study, while Section 5
provides the result and discusses them. Finally, Section 6
concludes the study.

2. Related works

Several studies have been conducted on public toilet
maintenance systems for smart toilet applications. These
systems monitor toilet occupation, activities of the user,
and the water condition, for toilet maintenance using big
data from sensors attached to the toilet [1, 2].

For more personal usage and health care monitoring,
motion recognition using cameras or infrared sensors, as
well as the monitoring of daily life based on the usage of
home appliances have been studied [4, 19, 20]. As
described in Section 1, monitoring at home, especially in
the bathroom space, is becoming increasingly important,
and privacy needs to be considered.



There are several researches on individual
identifications and vital sign sensing for smart toilet, while
placing emphasis on privacy [5, 21]. For monitoring the
elderly people in the toilet room, several anomaly detection
techniques have been investigated, such as the falling
detection and unusual long-stay [8].

For noncontact based technologies that ensure privacy,
microwave sensor-based sensing, such as anomaly
detection [22] and motion recognition [23], have been
proposed. The microwave sensor detects reflected waves
from the human body and estimates the motion of the
human. From the pattern of the reflected waves, the method
detects the following actions: falling, unusual long-stay,
taking off pants, and the winding of toilet paper.

Another type of sensor that ensures privacy is the
pressure sensor, and studies have also been conducted on
them [4, 5, 8]. From the obtained pressure signals, several
states, such as being occupied, number of uses, length,
human falling, and daily change of weight, etc. were
detected.

Although these types of sensors detect motion well, all
motions occur after the user falls, and these sensors do not
necessarily predict or prevent them efficiently enough.
Although these researches detect the anomaly after the
event well, detecting the signs of the abnormal event or
factors of the fall or faint are still challenging for healthcare
monitoring systems in the toilet room.

For prevention from emergency caused diseases, daily
vital sign detection systems embedded on the toilet seat
were also proposed [3, 21]. The pressure on toilet seat
measures the weight of the wuser, and their
electrocardiogram is used as a daily heart rate monitor; the
system achieves this while ensuring privacy.

However, only a few studies have been conducted on
the detection of strain motion for a smart toilet application.

If a smart toilet system is able to detect whether a user
while in toilet strains or not, or detects the intensity and
frequency of the strain, sudden rises in blood pressure and
collapse due to excessive strain can be prevented. The
system can also notify a third person who supervises the
user, such as a caregiver or a doctor, when the user
generates excessive strain or undertakes unusual motion.

Therefore, this study aims to detect strain motion in the
toilet room. During the strain period, large body
movements occur less frequently; therefore, detecting
strains using only motion features is quite challenging.
However, when people strain, several small movements
and tremors often appear on the body, and the breath
decreases or ceases completely. Therefore, a key idea of
this work is to estimate the strain by extracting the tiny
movement of the body and their characteristics. However,
in the toilet, other motions also occur, such as staying calm,
winding of the toilet paper, and wiping [24]. Therefore, the
system also needs to distinguish the strain from these
multiple actions.
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Figure 1: Gravity for the basic sitting posture and during strain
motion.

In addition to recognizing the strain, it is necessary for
the smart toilet system to detect motions without taking
daily measurements. This work uses a pressure sensor
attached on the toilet sheet. The pressure sensor extracts
tiny movement and breath features.

3. Strain detection method

In this section, a procedure for extracting the motion and
respiration signals of the subject from the pressure sheet
sensor is described. Furthermore, an explanation on the
way to create feature parameters from the signals and
classify them using Random Forest is explained.

3.1. Strain motion

Figure 1 illustrates examples of strain motions and
physical features. When a person is under strain, the upper
body tends to tilt forward and the center of gravity shifts
due to the force applied to the lower abdomen. Furthermore,
as the body tilts forward, the weight is distributed to the
grounded foot, and the weight on the buttocks decreases.
However, there are cases where the subject pulls the legs
toward the body, in which case the center of gravity shifts
backward and the weight on the buttocks increases. In
addition, during the strain motion, muscle tremors occur
and the weight on the buttocks changes slightly.

3.2. Motion feature

In the toilet room, people generate several motions,
even in the seated position. The movement generates
change in the center of gravity on the seat, and weight shifts
from the body to the feet. In addition, although the
movement does not involve a large body movement, it is
assumed that the abovementioned changes occur
unconsciously and that tiny body tremors occur due to the
force applied in the abdomen. To capture the change in the
center of gravity due to body movement and the change of
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Figure 2: From left to right, signal of basic sitting posture, strain, winding paper and wiping, respectively. From top to bottom, each
graph shows the mean value, center of gravity in the x axis and y axis, estimated respiration, and respiration of the grand truth.

Horizontal axis of each signals shows time.

the weight on the seat, the average time variation of the
center of gravity and the entire sensor is extracted.

3.3. Breath features

Fast independent component analysis (FastlICA) was
used to extract the respiratory features [25]. The extracted
signals are assumed to compose of body movements,
respiration, noise, muscle movements, and pulse waves.
Therefore, the number of independent signals is set to five
in this study.

The respiration signal was then selected from the
separated five signals. The selection was based on the
frequency spectrum. Breathing rate of an adult generally
ranges between 12 to 18 times per minute (approximately
from 0.2 to 0.3 Hz). However, the peak derived from the
heartbeat appears to be approximately 1.0 Hz, and even
when the signal is separated by the ICA, it is not
completely separated, and the respiratory component might
include the component derived from the heartbeat.
Therefore, among the five signals separated by ICA, the
signal with the maximum evaluation value according to the
following equation is selected as the respiratory waveform
[26].

ET' =R/C1 (1)

R is a peak value in the 0.1—- 0.7 Hz range and C; is a
peak value in 0.9—1.1 Hz range.

3.4. Features of each motion

The example of signals obtained in this study are
illustrated in Figure 2. Figures 2(a), (b), (¢), and (d) present
the following motions: stay calm, winding of the toilet
paper, wiping, and strain, respectively. From top to bottom,
the signals, mean of force value, center of gravity in X axis
and y axis, estimated respiration, and grand truth of
respiration are shown. In contrast to Figure 2(a), which
shows staying, relatively huge motions such as winding
paper and wiping generate huge change in the center of
gravity and mean value since the upper body moves, as
shown in Figures 2(c) and (d). Therefore, differences in
value, variance, and interval of peaks are reasonable
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Figure 3: (a) experiment setup and (b) pressure sensor value
(2-dimensional surface of one shot and 1 cell of time series
data).

features that can be used. In contrast, staying (Figure 2(a))
and strain (Figure 2(b)) tend to show less motion and
relatively clear breath signals. Furthermore, the strain
motion causes less or pauses of breath. Therefore, the
interval of the peak and the breath variance might also be
effective as features.

In general, the use of several features in modeling
classification can cause overfitting, and the use of less or
in-effective features can cause the model to degrade. To
select only effective features systematically, we use the
Boruta method [27] for classification. Boruta creates fake
features that do not contribute to discrimination and adds
them to train the random forest. From the training results,
the importance of the prepared features and the fake
features are calculated. The number of times that the
importance prepared features exceed the maximum
importance of a false feature determines whether the
prepared feature should be used. By using Boruta, in



addition to removing noisy features, it is possible to select
effective features for classification.

Table 1 shows the features selected by Boruta. In total,
nine, eight, seven, and four features are selected from the
mean weight, center of gravity in x-axis, center of gravity
in y-axis, and respiration signal, respectively.

3.5. Motion recognition

To recognize the motions, the random forest technique
was used. Eighty percent of the data from all subjects was
used for training and the other 20 percent was used as test
data, and evaluation was 50-time epochs.

4. Experimental

4.1. Experimental setup

Figure 3(a) illustrates the experimental setup. Assuming
a smart toilet, a commercially available force sensor was
embedded on the seat surface, that is, a prototype of a
western -style toilet bowl with a height of 43 cm. Figure
3(b) is an example of the sitting state data by a color heat
map. The heavier weight is red; the lighter is blue. The
number of cells on the seat is 144, and the size per cell is
24 mm x 24 mm. Since there is no area in the center of the
toilet seat, the center of the image is also shown in blue,
which means there is no change of weight in the area. In
contrast, the area of the back and foot are shown as red.
The dynamic range is about 0.1-4 kgf / cm2.

To obtain the grand truth of the breath signal, a
respiratory sensor (BANDO, Chemical Industries, LTD.,
Japan) was attached around the chest of the subjects. A
conventional microwave sensor [28] was set behind the
subject as a comparison method.

4.2. Protocol of experiment

The experiment was conducted on 19 subjects (ages:
25-59 years; gender: 17 males, 2 female). They were
instructed to act five motions; staying, winding paper,
wiping, strain strongly, and strain moderately [22]. Each
action was performed in order. Approximately a 30 s pause
was imposed in each action. Subjects performed the strain
motion during bowel movement. Subjects were also
instructed to perform the strain in two ways: strong and
weak. The strong strain was instructed as normal strength,
and the weak one was the half of the normal strength. After
the strain motion, subjects were ordered to stay normal and

perform the winding paper and wiping actions sequentially.

The subjects were also instructed to do these motions
naturally. The experiment was conducted with the approval
of the in-house Ethical Review Committee and with the
informed consent of the subjects.
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Figure 4: Accuracy of five classes (normal posture, strong
strain, weak strain, winding paper and wiping bottom) by the
proposed method.

Table 1: Features selected by the Boruta method

Signal Selected features

Average of peak interval, variance of peak interval,
variance of peak value, variance of signal value,
difference between the maximum and minimum values,
number of peaks, variance of peak detection confidence,
maximum power spectrum value and frequency of
maximum power spectrum value

Mean

Average of peak interval, variance of peak interval,
variance of peak value, variance of signal value,
Center of difference between the maximum and minimum values,
gravity x-axis addition value of small vibrations, variance of peak
detection confidence and maximum power spectrum
value

Average of peak interval, variance of peak interval,
variance of signal value, difference between the
maximum and minimum values, addition value of small
vibrations, variance of peak detection confidence and
maximum power spectrum value

Center of
gravity y-axis

Average of peak interval, variance of peak value and

Respiration 1. imum difference between peak values

5. Result and discussion

5.1. Result of motion recognition

The data set was cut every 10 s. Total data set
accumulated to 708 for staying data, 600 for wipe operation,
590 for strong and weak strains, 574 for winding operation,
and 630 for wiping operation. Classification of these five
motions was performed. The average accuracy of 50 trials
is shown in Figure 4. The vertical axis shows the accuracy,
and each model were aligned in the horizontal axis by
features. From left to right, the microwave signal
(described as Radar), the average signal of the entire cell
of the pressure sensitive sheet sensor, the center of gravity
signal, the estimated respiratory waveform, and the
proposed method that combined the mean, the center of
gravity, and the respiratory feature, were described in
horizontal axis. Error bars indicate standard deviation.



The accuracy of the proposed method was 80.2%,
showing improvement on that of a conventional method
(microwave sensor) whose accuracy was 61.6% with a
significant difference (significant test: T =12.7, P <0.01).

The accuracy of each feature by the pressure sensor,
which was breath, mean, and gravity center, was 52.8%,
69.7%, and 76.3%, respectively. The microwave sensor
was superior to the pressure sensor when only using the
respiration feature, indicating its advantage in detecting
breathing features. However, the strain motion generated
tiny motion and a change in gravity. Thus, the pressure
sensor, which detected combinations of these features,
detected the motions better in this study.

5.2. Comparison of methods for strain detection

Figures 5(a) and (b) show the confusion matrix of the
five motions with the proposed method and microwave
sensor, respectively. Rows and columns denote the true and
estimated labels in each sensor, respectively. As shown in
Figure 5(a), every motion was estimated with high
accuracy.

In the microwave sensor, which is a conventional
method, the accuracy of staying, rolling paper, and wiping,
were 76.3%, 60.2%, 82.8%, respectively. In the proposed
method, all motions except for strain were approximately
90%, which were higher than those of the conventional
method. Focusing on the strain motion, in the conventional
method, strong and weak strains were 45.2% and 37.2%,
respectively. In the proposed method, they were 61.5% and
58.6%, respectively. Owing to the variety of strength
caused by individual differences, distinguishing between
weak and strong was more difficult than the other motions.
However, without distinguish from weak and strong, the
accuracy of the strain recognition was also approximately
92.0%, which was also higher than that of the convectional
method.

In this study, the proposed method extracted the
respiratory component and added it as a feature for
classification since the body movement tended to be small
and in contrast. However, the breath feature change was
huge, such as stop, slowness, or disturbance when the
subject were under strain. Among conventional methods,
the microwave sensor is a prevalent method that captures
the respiratory component well [29]. Considering the
respiratory component, the force sensor seemed to be
inevitably inferior to the microwave since the force sensor
was attached on toilet sheet. Therefore, the microwave
sensor was also assumed to suit for strain detection.
However, the results of Figure 4(a) in the matrix show that
the accuracy of the classification of strain by the force
sensor (= 92.0%) was superior to that of the microwave
sensor (= 71.3%).

When the subject strains, they generate motion features
as well as respiratory features, and the force sensor could
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Table 2: Cell position used to extract the center-of-gravity
signal

Accuracy Accuracy
Cell Position of of
5class[%] strain[%)]

The average value is

calculated within a block of

2x2 cells. 80.1 92.4
8X8 blocks are used to extract

the center of gravity signal.

2X2cells
block mean

Extract the center of gravity
signal using 3 cells on each
side (near buttocks, middle
and near knees).

6 cells

Extract the center of gravity
signal using 2 cells on each
side (near buttocks and near
knees).

4 cells 75.4 88.1

Extract the center of gravity
3 cells (only signal using 3 cells on the
left side) left(near buttocks, middle and
near knees).

73.5 85.4

capture a combination of these features better than the
microwave sensor. While the microwave sensor can obtain
signals that are flat in left and right directions, the force
sensor can acquire detailed movements of the body in the
front, back, left, and right in the form of center of gravity
signals, which may have contributed the accuracy.

Owing to the ideal conditions of the experiment, we
could classify the motions with relatively high accuracy.
Thus, with these results we are still not able to conclude
that this method and force sensor are superior to previous
methods in actual usage. For example, motions in a real
toilet might vary and is different from that were simulated
by subjects as an experiment.

Furthermore, even though we collected data from a
wide range of ages (25-59 years), further analysis with
more subjects is required for individual differences since
the strength of strain might be different depending on ages.
Physical conditions such as constipation also affect the
motion. Further improvement and robustness with actual
motion data with variable subjects are required for daily
use.

In this study, the random forest technique was used
because this technique relatively recognizes the motions
well even with a small amount of data. However, further
investigation and comparison with other methods such as
DNN-based modeling is also required with a large amount
of the variable subjects.

5.3. Resolution and setting place of force sensor

For commercial usage, resolution and number of
sensors are important issues. To confirm the effects of the
resolution and the number and place of the sensors, we
varied the number and position of the force sensor cells.
Table 2 shows the number of cells and positions and
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accuracy of all actions and only stain when using the cells.
When the resolution was reduced to one block of 2 x 2 cells,
the accuracy did not decrease much (= 80.2%). However,
when the number of cells was reduced, the accuracy of the
motions decreased by 4—7 %, and it was confirmed that the
accuracy tended to decrease as number of cells decreased.

The result indicates that measuring the entire surface of
the seat pressure seems effective in detecting the detailed
toilet motions by capturing the trend of the center of gravity.

Even if in case of strain motion detection, we also
confirmed decrease in 6 cells, 4 cells and 3 cells. In
particular, 3 cells sensor means using only the left side
sensor. Different from the winding paper action, the strain
seemed to have less movement from the left to right side of
the body. However, a decrease in accuracy was observed.
This indicates that although there is no visible change in
the center of gravity between the left and right side of the
body when the subject is under strain, there is a
characteristic change in the center of gravity, which is
effective in measuring the entire surface.

5.4. Times and duration of strain state

In addition to the estimated motion label, the start and
end points of the estimated motions were shown according
their actual motions in Figure 6. Considering the usual
usage, normal motion sequences, which were stay, several
strains, winding paper, and wiping were performed. From
top to bottom, instructed motion (as true value), estimated
motion, and mean pressure signals are illustrated in Figure
6. Furthermore, errors of the start/end points in each
motion, and every motion and its duration were estimated
well, as shown in Figure 6. The error of each motion were
at most 0.5 s. Furthermore, the method was able to detect
the duration and times of the strain. For healthcare
application, the duration and times of the strains are
informative for daily healthcare monitoring [10, 14].
Therefore, the result indicates the potential of this method
for future applications as a smart toilet.
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Figure 6: The confusion matrix of five classes by (a) using the
radar signal and (b) proposed method.

6. Conclusion

In this study, we proposed a strain detection method
using a pressure distribution sensor for a smart toilet. By
combining breathing and body movement features from the
time-series data of pressure distribution, motions in the
toilet room, such as sitting, wiping, paper winding, and
wiping were estimated well with an accuracy of 80.2%. In



addition, it was confirmed that the accurate time for
breathing could be estimated after the behavior
classification, including the strength of breathing, was
performed from the continuous time series data.

Future works can model the estimated strength and
weakness of breathing and the relationship between the
time and the degree of risk caused by it, which can provide
information that can be effectively used by the user.
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