
 

Abstract 

 

Aging people may be prone to accidents in bathrooms 

and toilets. The detection of strain motion for a smart toilet 

application has not been studied sufficiently. In this paper, 

we propose a method for strain detection from a force 

sensor placed on a toilet seat for a smart toilet healthcare 

application. The method first extracts breath and motion 

features that are assumed to be key components for the 

strain detection. The method then learns the discriminator 

model based on the random forest classifier using the 

aforementioned features. Finally, the method recognizes 

actions in the toilet room. There were five detection 

actions:  seating, taking up toilet paper, wiping bottom, 

which are normal actions when sitting on a toilet seat, and 

strain actions (strong and weak). An experiment with 19 

subjects was also conducted. Compared with a microwave 

sensor-based recognition, which is a conventional method 

(accuracy = 61.6%), our method was able to recognize the 

actions with high accuracy of 80.2% (significant test: T = 

12.7, P < 0.01) in the experiment.  Our strain detection 

method has the potential to be used as a smart toilet system 

to prevent blood pressure elevation and collapse caused by 

strain in the future. 

 

1. Introduction 

As the global population ages, several studies on health 

care monitoring have been conducted recently [1-7]. Using 

widely variable sensors from wearable-based [7] to 

noncontact-based [4], a lot of applications such as activity 

recognition [5], vital sensing [8], and identification were 

investigated. In particular, several studies focused on 

activities done daily, including those done in a bathroom. 

This is because accidents in a bathroom are often harmful 

for aging people as they may lead to heart attacks or 

hypertension [2, 4, 7]. 

Several researches have statistically analyzed accidents 

that occur in the bathroom based on a large number of 

patients with subarachnoid hemorrhage, cerebral 

infarctions, and cardiac arrests. The incidence of these 

diseases frequently occurred in lavatory and occurred more 

frequently here than in any other place in the house [9-13].  

The number of incidences for elderly people was also 

higher than that for younger people [10, 11]. 

Among patients affected by cardiac arrest in the toilet 

space, only 10% were found soon after the heart attack; 

furthermore, only 1% lived longer than 12 months after the 

heart attack [9]. 

From the physiological aspect, defecation induces 

cardiovascular and blood pressure changes, and has 

relation with cardiac arrest occurrences [14]. When a 

person is under strain, a sudden rise in blood pressure 

occurs [15], which can lead to cardiopulmonary arrest or 

cerebral infarction for elderly people [16]. Regarding the 

healthcare of elderly people, it is known that the percentage 

of people suffering from chronic constipation increases 

with age [17]. In the case of constipation, excessive strain 

occurs during bowel movement. The longer the cardiac 

arrest, the lower the probability of recovery and survival 

[18]; however, the time taken to realize that someone has a 

cardiac arrest in the toilet tends to be greater since the toilet 

space is a private space [9]. 

Therefore, we propose a strain detection method for a 

smart toilet system. The paper is organized as follows. 

Section 2 describes works related to smart toilets and 

healthcare monitoring techniques. Section 3 describes the 

methods employed in the study. Section 4 provides the 

experimental settings of the study, while Section 5 

provides the result and discusses them. Finally, Section 6 

concludes the study.   

2. Related works 

Several studies have been conducted on public toilet 

maintenance systems for smart toilet applications. These 

systems monitor toilet occupation, activities of the user, 

and the water condition, for toilet maintenance using big 

data from sensors attached to the toilet [1, 2].  

For more personal usage and health care monitoring, 

motion recognition using cameras or infrared sensors, as 

well as the monitoring of daily life based on the usage of 

home appliances have been studied [4, 19, 20]. As 

described in Section 1, monitoring at home, especially in 

the bathroom space, is becoming increasingly important, 

and privacy needs to be considered. 
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There are several researches on individual 

identifications and vital sign sensing for smart toilet, while 

placing emphasis on privacy [5, 21]. For monitoring the 

elderly people in the toilet room, several anomaly detection 

techniques have been investigated, such as the falling 

detection and unusual long-stay [8]. 

For noncontact based technologies that ensure privacy, 

microwave sensor-based sensing, such as anomaly 

detection [22] and motion recognition [23], have been 

proposed. The microwave sensor detects reflected waves 

from the human body and estimates the motion of the 

human. From the pattern of the reflected waves, the method 

detects the following actions: falling, unusual long-stay, 

taking off pants, and the winding of toilet paper. 

Another type of sensor that ensures privacy is the 

pressure sensor, and studies have also been conducted on 

them [4, 5, 8]. From the obtained pressure signals, several 

states, such as being occupied, number of uses, length, 

human falling, and daily change of weight, etc. were 

detected. 

Although these types of sensors detect motion well, all 

motions occur after the user falls, and these sensors do not 

necessarily predict or prevent them efficiently enough. 

Although these researches detect the anomaly after the 

event well, detecting the signs of the abnormal event or 

factors of the fall or faint are still challenging for healthcare 

monitoring systems in the toilet room. 

For prevention from emergency caused diseases, daily 

vital sign detection systems embedded on the toilet seat 

were also proposed [3, 21]. The pressure on toilet seat 

measures the weight of the user, and their 

electrocardiogram is used as a daily heart rate monitor; the 

system achieves this while ensuring privacy. 

However, only a few studies have been conducted on 

the detection of strain motion for a smart toilet application.  

If a smart toilet system is able to detect whether a user 

while in toilet strains or not, or detects the intensity and 

frequency of the strain, sudden rises in blood pressure and 

collapse due to excessive strain can be prevented. The 

system can also notify a third person who supervises the 

user, such as a caregiver or a doctor, when the user 

generates excessive strain or undertakes unusual motion. 

Therefore, this study aims to detect strain motion in the 

toilet room. During the strain period, large body 

movements occur less frequently; therefore, detecting 

strains using only motion features is quite challenging. 

However, when people strain, several small movements 

and tremors often appear on the body, and the breath 

decreases or ceases completely. Therefore, a key idea of 

this work is to estimate the strain by extracting the tiny 

movement of the body and their characteristics. However, 

in the toilet, other motions also occur, such as staying calm, 

winding of the toilet paper, and wiping [24]. Therefore, the 

system also needs to distinguish the strain from these 

multiple actions. 

In addition to recognizing the strain, it is necessary for 

the smart toilet system to detect motions without taking 

daily measurements. This work uses a pressure sensor 

attached on the toilet sheet. The pressure sensor extracts 

tiny movement and breath features. 

3. Strain detection method 

In this section, a procedure for extracting the motion and 

respiration signals of the subject from the pressure sheet 

sensor is described. Furthermore, an explanation on the 

way to create feature parameters from the signals and 

classify them using Random Forest is explained. 

3.1. Strain motion 

Figure 1 illustrates examples of strain motions and 

physical features. When a person is under strain, the upper 

body tends to tilt forward and the center of gravity shifts 

due to the force applied to the lower abdomen. Furthermore, 

as the body tilts forward, the weight is distributed to the 

grounded foot, and the weight on the buttocks decreases. 

However, there are cases where the subject pulls the legs 

toward the body, in which case the center of gravity shifts 

backward and the weight on the buttocks increases. In 

addition, during the strain motion, muscle tremors occur 

and the weight on the buttocks changes slightly. 

3.2. Motion feature 

In the toilet room, people generate several motions, 

even in the seated position. The movement generates 

change in the center of gravity on the seat, and weight shifts 

from the body to the feet. In addition, although the 

movement does not involve a large body movement, it is 

assumed that the abovementioned changes occur 

unconsciously and that tiny body tremors occur due to the 

force applied in the abdomen. To capture the change in the 

center of gravity due to body movement and the change of  

 
Figure 1: Gravity for the basic sitting posture and during strain 

motion. 

 
 

Basic center of gravity Shift of the center of gravity
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the weight on the seat, the average time variation of the 

center of gravity and the entire sensor is extracted. 

3.3. Breath features 

Fast independent component analysis (FastICA) was 

used to extract the respiratory features [25]. The extracted 

signals are assumed to compose of body movements, 

respiration, noise, muscle movements, and pulse waves. 

Therefore, the number of independent signals is set to five 

in this study. 

The respiration signal was then selected from the 

separated five signals. The selection was based on the 

frequency spectrum. Breathing rate of an adult generally 

ranges between 12 to 18 times per minute (approximately 

from 0.2 to 0.3 Hz). However, the peak derived from the 

heartbeat appears to be approximately  1.0 Hz, and even 

when the signal is separated by the ICA, it is not 

completely separated, and the respiratory component might 

include the component derived from the heartbeat. 

Therefore, among the five signals separated by ICA, the 

signal with the maximum evaluation value according to the 

following equation is selected as the respiratory waveform 

[26]. 

 (1) 

R is a peak value in the 0.1– 0.7 Hz range and C1 is a 

peak value in 0.9–1.1 Hz range. 

3.4. Features of each motion 

 The example of signals obtained in this study are 

illustrated in Figure 2. Figures 2(a), (b), (c), and (d) present 

the following motions: stay calm, winding of the toilet 

paper, wiping, and strain, respectively. From top to bottom, 

the signals, mean of force value, center of gravity in x axis 

and y axis, estimated respiration, and grand truth of 

respiration are shown. In contrast to Figure 2(a), which 

shows staying, relatively huge motions such as winding 

paper and wiping generate huge change in the center of 

gravity and mean value since the upper body moves, as 

shown in Figures 2(c) and (d). Therefore, differences in 

value, variance, and interval of peaks are reasonable 

features that can be used. In contrast, staying (Figure 2(a)) 

and strain (Figure 2(b)) tend to show less motion and 

relatively clear breath signals. Furthermore, the strain 

motion causes less or pauses of breath. Therefore, the 

interval of the peak and the breath variance might also be 

effective as features. 

In general, the use of several features in modeling 

classification can cause overfitting, and the use of less or 

in-effective features can cause the model to degrade. To 

select only effective features systematically, we use the 

Boruta method [27] for classification. Boruta creates fake 

features that do not contribute to discrimination and adds 

them to train the random forest. From the training results, 

the importance of the prepared features and the fake 

features are calculated. The number of times that the 

importance prepared features exceed the maximum 

importance of a false feature determines whether the 

prepared feature should be used. By using Boruta, in 

 
 (a) (b) (c) (d) 

Figure 2: From left to right, signal of basic sitting posture, strain, winding paper and wiping, respectively. From top to bottom, each 

graph shows the mean value, center of gravity in the x axis and y axis, estimated respiration, and respiration of the grand truth. 

Horizontal axis of each signals shows time. 
 

 

 
(a) 

 

 
(b) 

Figure 3: (a) experiment setup and (b) pressure sensor value 

(2-dimensional surface of one shot and 1 cell of time series 

data). 
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addition to removing noisy features, it is possible to select 

effective features for classification. 

Table 1 shows the features selected by Boruta. In total, 

nine, eight, seven, and four features are selected from the 

mean weight, center of gravity in x-axis, center of gravity 

in y-axis, and respiration signal, respectively. 

3.5. Motion recognition 

To recognize the motions, the random forest technique 

was used. Eighty percent of the data from all subjects was 

used for training and the other 20 percent was used as test 

data, and evaluation was 50-time epochs.  

4. Experimental 

4.1. Experimental setup 

Figure 3(a) illustrates the experimental setup. Assuming 

a smart toilet, a commercially available force sensor was 

embedded on the seat surface, that is, a prototype of a 

western -style toilet bowl with a height of 43 cm. Figure 

3(b) is an example of the sitting state data by a color heat 

map. The heavier weight is red; the lighter is blue. The 

number of cells on the seat is 144, and the size per cell is 

24 mm x 24 mm. Since there is no area in the center of the 

toilet seat, the center of the image is also shown in blue, 

which means there is no change of weight in the area. In 

contrast, the area of the back and foot are shown as red. 

The dynamic range is about 0.1–4 kgf / cm2. 

To obtain the grand truth of the breath signal, a 

respiratory sensor (BANDO, Chemical Industries, LTD., 

Japan) was attached around the chest of the subjects. A 

conventional microwave sensor [28] was set behind the 

subject as a comparison method. 

4.2. Protocol of experiment 

 The experiment was conducted on 19 subjects (ages: 

25–59 years; gender: 17 males, 2 female). They were 

instructed to act five motions; staying, winding paper, 

wiping, strain strongly, and strain moderately [22]. Each 

action was performed in order. Approximately a 30 s pause 

was imposed in each action. Subjects performed the strain 

motion during bowel movement. Subjects were also 

instructed to perform the strain in two ways: strong and 

weak. The strong strain was instructed as normal strength, 

and the weak one was the half of the normal strength. After 

the strain motion, subjects were ordered to stay normal and 

perform the winding paper and wiping actions sequentially. 

The subjects were also instructed to do these motions 

naturally. The experiment was conducted with the approval 

of the in-house Ethical Review Committee and with the 

informed consent of the subjects. 

5. Result and discussion 

5.1. Result of motion recognition 

The data set was cut every 10 s. Total data set 

accumulated to 708 for staying data, 600 for wipe operation, 

590 for strong and weak strains, 574 for winding operation, 

and 630 for wiping operation. Classification of these five 

motions was performed.  The average accuracy of 50 trials 

is shown in Figure 4. The vertical axis shows the accuracy, 

and each model were aligned in the horizontal axis by 

features. From left to right, the microwave signal 

(described as Radar), the average signal of the entire cell 

of the pressure sensitive sheet sensor, the center of gravity 

signal, the estimated respiratory waveform, and the 

proposed method that combined the mean, the center of 

gravity, and the respiratory feature, were described in 

horizontal axis. Error bars indicate standard deviation. 

 

Table 1: Features selected by the Boruta method 

 

 
Figure 4: Accuracy of five classes (normal posture, strong 

strain, weak strain, winding paper and wiping bottom) by the 

proposed method. 
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The accuracy of the proposed method was 80.2%, 

showing improvement on that of a conventional method 

(microwave sensor) whose accuracy was 61.6% with a 

significant difference (significant test: T = 12.7, P < 0.01).  

The accuracy of each feature by the pressure sensor, 

which was breath, mean, and gravity center, was 52.8%, 

69.7%, and 76.3%, respectively. The microwave sensor 

was superior to the pressure sensor when only using the 

respiration feature, indicating its advantage in detecting 

breathing features. However, the strain motion generated 

tiny motion and a change in gravity. Thus, the pressure 

sensor, which detected combinations of these features, 

detected the motions better in this study. 

5.2. Comparison of methods for strain detection 

Figures 5(a) and (b) show the confusion matrix of the 

five motions with the proposed method and microwave 

sensor, respectively. Rows and columns denote the true and 

estimated labels in each sensor, respectively. As shown in 

Figure 5(a), every motion was estimated with high 

accuracy. 

In the microwave sensor, which is a conventional 

method, the accuracy of staying, rolling paper, and wiping, 

were 76.3%, 60.2%, 82.8%, respectively. In the proposed 

method, all motions except for strain were approximately 

90%, which were higher than those of the conventional 

method. Focusing on the strain motion, in the conventional 

method, strong and weak strains were 45.2% and 37.2%, 

respectively. In the proposed method, they were 61.5% and 

58.6%, respectively. Owing to the variety of strength 

caused by individual differences, distinguishing between 

weak and strong was more difficult than the other motions. 

However, without distinguish from weak and strong, the 

accuracy of the strain recognition was also approximately 

92.0%, which was also higher than that of the convectional 

method. 

In this study, the proposed method extracted the 

respiratory component and added it as a feature for 

classification since the body movement tended to be small 

and in contrast. However, the breath feature change was 

huge, such as stop, slowness, or disturbance when the 

subject were under strain. Among conventional methods, 

the microwave sensor is a prevalent method that captures 

the respiratory component well [29]. Considering the 

respiratory component, the force sensor seemed to be 

inevitably inferior to the microwave since the force sensor 

was attached on toilet sheet. Therefore, the microwave 

sensor was also assumed to suit for strain detection. 

However, the results of Figure 4(a) in the matrix show that 

the accuracy of the classification of strain by the force 

sensor (= 92.0%) was superior to that of the microwave 

sensor (= 71.3%). 

When the subject strains, they generate motion features 

as well as respiratory features, and the force sensor could 

capture a combination of these features better than the 

microwave sensor. While the microwave sensor can obtain 

signals that are flat in left and right directions, the force 

sensor can acquire detailed movements of the body in the 

front, back, left, and right in the form of center of gravity 

signals, which may have contributed the accuracy. 

Owing to the ideal conditions of the experiment, we 

could classify the motions with relatively high accuracy. 

Thus, with these results we are still not able to conclude 

that this method and force sensor are superior to previous 

methods in actual usage. For example, motions in a real 

toilet might vary and is different from that were simulated 

by subjects as an experiment. 

Furthermore, even though we collected data from a 

wide range of ages (25–59 years), further analysis with 

more subjects is required for individual differences since 

the strength of strain might be different depending on ages. 

Physical conditions such as constipation also affect the 

motion. Further improvement and robustness with actual 

motion data with variable subjects are required for daily 

use. 

In this study, the random forest technique was used 

because this technique  relatively recognizes the motions 

well even with a small amount of data.  However, further 

investigation and comparison with other methods such as 

DNN-based modeling is also required with a large amount 

of the variable subjects. 

5.3. Resolution and setting place of force sensor 

For commercial usage, resolution and number of 

sensors are important issues. To confirm the effects of the 

resolution and the number and place of the sensors, we 

varied the number and position of the force sensor cells. 

Table 2 shows the number of cells and positions and 

Table 2: Cell position used to extract the center-of-gravity 

signal 

 

Cell Position

Accuracy 

of 

5class[%]

Accuracy

of

strain[%]

2×2cells 

block mean

The average value is 

calculated within a block of 
2×2 cells. 

8×8 blocks are used to extract 

the center of gravity signal.

80.1 92.4

6 cells

Extract the center of gravity 

signal using 3 cells on each 

side (near buttocks, middle 

and near knees).

76.1 91.0

4 cells

Extract the center of gravity 

signal using 2 cells on each 

side (near buttocks and near 

knees).

75.4 88.1

3 cells (only 

left side)

Extract the center of gravity 

signal using 3 cells on the 

left(near buttocks, middle and 

near knees).

73.5 85.4
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accuracy of all actions and only stain when using the cells. 

When the resolution was reduced to one block of 2 x 2 cells, 

the accuracy did not decrease much (= 80.2%). However, 

when the number of cells was reduced, the accuracy of the 

motions decreased by 4–7 %, and it was confirmed that the 

accuracy tended to decrease as number of cells decreased.  

The result indicates that measuring the entire surface of 

the seat pressure seems effective in detecting the detailed 

toilet motions by capturing the trend of the center of gravity. 

Even if in case of strain motion detection, we also 

confirmed decrease in 6 cells, 4 cells and 3 cells. In 

particular, 3 cells sensor means using only the left side 

sensor. Different from the winding paper action, the strain 

seemed to have less movement from the left to right side of 

the body. However, a decrease in accuracy was observed. 

This indicates that although there is no visible change in 

the center of gravity between the left and right side of the 

body when the subject is under strain, there is a 

characteristic change in the center of gravity, which is 

effective in measuring the entire surface. 

5.4. Times and duration of strain state 

In addition to the estimated motion label, the start and 

end points of the estimated motions were shown according 

their actual motions in Figure 6. Considering the usual 

usage, normal motion sequences, which were stay, several 

strains, winding paper, and wiping were performed. From 

top to bottom, instructed motion (as true value), estimated 

motion, and mean pressure signals are illustrated in Figure 

6. Furthermore, errors of the start/end points in each 

motion, and every motion and its duration were estimated 

well, as shown in Figure 6. The error of each motion were 

at most 0.5 s. Furthermore, the method was able to detect 

the duration and times of the strain. For healthcare 

application, the duration and times of the strains are 

informative for daily healthcare monitoring [10, 14]. 

Therefore, the result indicates the potential of this method 

for future applications as a smart toilet. 

6. Conclusion 

In this study, we proposed a strain detection method 

using a pressure distribution sensor for a smart toilet. By 

combining breathing and body movement features from the 

time-series data of pressure distribution, motions in the 

toilet room, such as sitting, wiping, paper winding, and 

wiping were estimated well with an accuracy of 80.2%. In 

 
Figure 5: Motion classification (top: true value, bottom: estimated value) and mean pressure value in time series data. SS means strong 

strain, WS is weak strain, P is winding paper and W is wiping bottom. 

 

 

 
(a) 

 

 
(b) 

Figure 6: The confusion matrix of five classes by (a) using the 

radar signal and (b) proposed method. 
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addition, it was confirmed that the accurate time for 

breathing could be estimated after the behavior 

classification, including the strength of breathing, was 

performed from the continuous time series data. 

Future works can model the estimated strength and 

weakness of breathing and the relationship between the 

time and the degree of risk caused by it, which can provide 

information that can be effectively used by the user. 
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