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Abstract

The acquisition of remote photoplethysmography
(rPPG) signals is important in multiple applications.
Recently, deep-learning-based approaches such as 3D
convolutional networks (3DCNNs) have outperformed
traditional hand-crafted methods. However, despite
their robust modeling ability, it is well known that large
3DCNN models have high computational costs and may
be unsuitable for real-time applications. In this paper, we
propose a study of the 3DCNN architecture, finding the best
compromise between heart rate measurement precision and
inference time. The fast inference is obtained decreasing
the input size while the precision performance is obtained
introducing a new time and frequency-based loss function
by adding the signal-to-noise-ratio component to the
regular Pearson’s correlation loss function. In addition,
changing the input color space from RGB to YUV also
improved heart rate measurement precision. Using the
VIPL-HR database, we retained the HR mean absolute
error at 3.99 bpm which is comparable to 3.87 bpm of the
state-of-the-art, while the GPU and CPU inference process
improved around 88% from 51.77 ms to 2.32 ms in GPU
and from 241.57 ms to 28.65 ms in CPU. The resulting
network is called Real-Time rPPG (RTrPPG). We release
the RTrPPG source code to encourage reproducibility1.

1. Introduction

Heart rate (HR) and pulse rate variability (PRV) are two
physiological parameters that allow the analysis of cardiac
behavior. Heart rate monitoring can be conducted by inva-
sive and non-invasive methods classified as contact-based
and non-contact-based. Two non-invasive techniques com-
monly used to measure HR and PRV are electrocardiogra-
phy (ECG) and photoplethysmography (PPG). ECG mea-
sures the electrical field caused by heart activity. On the
other hand, PPG measures variations in light absorption

1https://github.com/deividbotina-alv/rtrppg

in tissues due to the pulsatile nature of the cardiovascular
system and the variation in blood volume [14]. PPG and
ECG perform contact-based HR measurements, and they
may cause hygiene issues, discomfort, or even be unreal-
izable on fragile skins. Due to these possible drawbacks,
in [27], Verkruysse et al. proved that PPG signals could
be measured remotely from a standard video camera, us-
ing ambient light as an illumination source. This technique,
known as remote photoplethysmography, offers the advan-
tage of measuring the same parameters as PPG in an entirely
remote way. In fact, rPPG is the non-contact equivalent to
the reflective mode of PPG using a camera as a receptor and
ambient light as a source. Thus, blood volume changes are
estimated according to subtle skin color variations, which
are captured by the camera when lights are reflected by the
skin.

PPG and rPPG signals allow measuring several biomedi-
cal parameters, such as heart rate, pulse rate variability, vas-
cular occlusion, peripheral vasomotor activity, blood pres-
sure by pulse transit time, and breathing rate [1]. Therefore,
there are also multiple applications, including blood pres-
sure prediction [24], mixed reality [12], physiological mea-
surements of car drivers [37], living skin segmentation [30],
face anti-spoofing [35], and control of vital signs in new-
borns [6].

Like Verkruysse et al., early methods used the green
channel to estimate rPPG signals [27]. Then, approaches
based on a light tissue interaction model to determine
a projection vector were proposed, e.g. PbV, POS, and
Chrom [8, 9, 28], and others based on blind source sep-
aration techniques, e.g. PCA, ICA, EVM, PVM, WVM
[13, 15, 17–19, 31]. Recently, deep-learning models have
started to be used for physiological measurements from
video sequences [5, 10, 11, 16, 21, 22, 26, 34]. The main
advantages of these methods are that they allow achieving
good results without the need for the designer to analyze
the problem in-depth [36]. The hand-crafted-based pipeline
needs to detect and track the region of interest through the
frames, combine color channels, filter them and estimate the
physiological parameters such as respiration rate or heart
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rate. Alternatively, a pipeline-based framework is no longer
necessary in the deep-learning-based measurement. There-
fore, deep-learning-based approaches are less prone to error
propagation in their pipeline. Nevertheless, recent work has
focused on heart rate measurement performance rather than
understanding [36].

Ablation studies are helpful because they provide in-
sights into the relative contribution of different architec-
tural and regularization components to machine learning
and deep-learning performance [25, 36]. For example, in
[25], the authors propose a series of experiments that eval-
uate the importance of the frame rate. The time and fre-
quency domains evaluation suggests that decreasing the
frame rate may lead to better network performance due to
the increased length of time that a spatio-temporal kernel
covers. In [36], the importance of the spatial context is stud-
ied in two-dimensional neural networks (2DCNNs). Re-
sults suggest that different resolutions cause minor fluctu-
ations in network performance. However, whether this con-
clusion is valid in a 3D convolutional network is unclear.
Some authors have proposed to use channels other than
Red, Green, and Blue (RGB). We can find rPPG methods
where authors use color channels such as Lab [4], Luv [4],
or YCbCr [21]. Interestingly, in deep-learning-based rPPG
measurement, the YUV color space has shown promising
results [5, 21, 22].

2DCNNs are of great importance when measuring rPPG
signals. They have been used to measure rPPG, HR, BR,
and PRV [7, 21, 26, 31]. Nevertheless, it is necessary to
perform an additional procedure where the temporal con-
text is taken into account, increasing the computation time
and making it harder to implement in an end-to-end fashion.
Therefore, 2DCNN-based rPPG measurement approaches
may be unsuitable in a real-time context. Note that real-
time capability typically refers to when a model runs faster
than a webcam at 30 fps (33.3 ms).

Alternatively, three-dimensional convolutional neural
networks (3DCNNs) can analyze both spatial and temporal
characteristics of a video simultaneously. For this reason,
the use of 3DCNNs may be more convenient than 2DCNNs
for an end-to-end application. For instance, perhaps one of
the most iconic 3DCNN is PhysNet, proposed by Zitong
Yu et al. in [33], as it has been widely exploited in other
studies [10, 25, 32]. The authors make a performance com-
parison of spatio-temporal networks using 2DCNN+LSTM
and 3DCNN. The 3DCNN outperformed the combination
of 2DCNN and recurrent networks. With this method, it is
possible to acquire rPPG signals directly from video. Fig. 1
depicts the difference between a general rPPG framework
based on 2D and 3D CNNs.

In recent years, methods based on 3DCNNs have demon-
strated promising results measuring rPPG signals and HR
[32–34]. In this article, we build upon previously proposed

architectures while focusing on optimizing their inference
speed for real-time applications (potentially on low-end de-
vices). Optimizing the inference time can be approached
systematically through an ablation study, where various net-
work components such as the size and color space of the
input images, as well as the loss function are evaluated. To
the best of our knowledge, this is the first work where an
ablation study is performed on a 3DCNN in the rPPG task
to optimize network response time, signal quality, and heart
rate measurement precision.

The main contributions of this work, obtained using an
ablation study where we tuned network size, loss function
and color space, are :

• A new 3DCNN called Real-Time rPPG (RTrPPG). It
achieves results comparable to those found in the liter-
ature, acquiring rPPG signals from real-time videos.
The inference time is around 2.32 ms on GPU and
28.65 ms on CPU.

• A new temporal-frequency-based loss function that al-
lows the 3DCNN to learn the essential features of the
rPPG signal acquisition task. Our loss outperforms the
baseline temporal-based loss function.

The remainder of this article is organized as follows: In
Sec. 2, we show related works. Sec. 3 presents our spatio-
temporal neural network, a new temporal-frequency-based
loss function, and the proposed ablation study. In Sec. 4
the metrics used to measure network performance are intro-
duced. In Sec. 5, we present the parameters used to conduct
our experiments. Then, results are presented in Sec. 6. Fi-
nally, in Sec. 7, we conclude the work done in this article.

2. Related works
As explained previously, 2D and 3D CNNs have been

used in rPPG measurement and HR acquisition, in [26] for
example, the HR-CNN network is proposed. This 2DCNN
has Extractor and HR Estimator modules. First, a video is
taken to detect and resize the faces, and then, the cropped
video is passed through the Extractor to acquire its rPPG
component. Finally, the rPPG is the input in the HR Esti-
mator, and its HR is the output. Nevertheless, the model
does not include temporal reasoning within the network.

Other 2DCNN-based frameworks have proposed an ad-
ditional process on the input images to consider the tem-
poral context before using the 2DCNN, and this is the case
of DeepPhys [7] and EVM-CNN [31]. DeepPhys is a two-
branch model comprising the Motion model and Appear-
ance model. Since a 2DCNN lacks the ability to process
temporal cues, the authors propose to normalize the dif-
ference of two consecutive frames as input to the Motion
model. The Appearance model behaves as an attention mod-
ule. Using the two branches together makes acquiring rPPG
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Figure 1. 2DCNN vs 3DCNN rPPG frameworks. 2DCNN frameworks need an additional process to consider the temporal characteristics
of the videos. 3DCNNs, on the other hand, allow an end-to-end approach that is easier to implement.

and BR signals possible. In EVM-CNN, the authors take an
input video and detect the subject’s face on each frame. The
face-regions are further processed by spatial decomposition
and temporal filtering, generating a feature image. This fea-
ture image is the input to the EVM-CNN network, which
gives an output HR value.

To use 2DCNNs while considering the temporal context,
it is also possible to use a recurrent neural network at the
end of the framework. Bin Huang et al. [11], for example,
used a network composed of two parts. The first part uses
2D convolutional layers for spatial analysis, and the second
one contains a series of stacked long-short-term-memory
(LSTM) layers . The resulting LSTM block allows tem-
poral analysis. Thus, this framework can acquire HR from
videos.

Finally, it is also possible to combine a spatio-temporal
image with 2DCNNs and RNNs, as in the case of Rhythm-
Net [21], where the combined model can measure HR from
videos by three main parts. The first part detects the facial
landmarks to find the face and divides it into 25 Regions of
interest (ROIs). Then, the average value of each color chan-
nel in each ROI is calculated. Finally, a sequence is gen-
erated from each ROI. The same procedure is repeated for
all video frames, resulting in a spatio-temporal map. The
second part is a 2DCNN, and the third one is an RNN.

Interestingly, 3DCNNs have also been used to acquire
rPPG signals and HR [5,10,32–34]. In [5], a pilot model for
measuring pulse rate using 3D convolutional is presented.
The CNN acts as an extractor of spatial and temporal fea-
tures from the input video frames. More specifically, the
authors demonstrate the potential of training the network
on synthetic videos.

In [34], the authors used two 3DCNNs. The first CNN
is a spatio-temporal video enhancement network (STVEN),
and the second is called rPPGNet. STVEN is responsible
for increasing the resolution of an input video, which is es-
pecially useful for highly compressed videos. The rPPGNet
is composed of a skin-based attention module that helps to
adaptively select skin regions, a partition constraint module
that learns a better representation of the rPPG signal fea-
tures, and a spatio-temporal CNN. The input is the resized
face of the subject present in each frame, and the output is
an rPPG signal where HR and PRV are measured.

Gideon and Stent in [10] present a contrastive approach
where they acquire the cardiac activity of a person from
the video of his face. They use a modified version of
the 3DCNN-based PhysNet architecture to learn spatio-
temporal features over the input video. Interestingly, this
is the first approach that allows the acquisition of rPPG sig-
nals in a self-supervised way. Moreover, they propose a
saliency sampler to obtain an interpretable output to ensure
that the system behaves correctly.

3. Methodology
In this work we use an encoder-decoder neural network

based on 3DCNNs as a baseline. We propose an ablation
study to improve inference speed while maintaining accu-
racy. We tune image size and color space, and introduce a
new temporal-frequency-based loss function.

3.1. Spatio-temporal network

The system input is a series of T -frame images of any
three-dimensional color space ([i1, i2, ..., iT ]). To use only
the information related to the skin of the face, we use a neu-
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ral network (denoted as Φ) in charge of extracting the face
of the subjects found within each frame. Then, we use a
resizing procedure denoted as Ω in Eq. (1), in order to have
a square image of dimensions bxb. The overall procedure is
presented in Eq. (1):

[f1, f2, ..., fT ] = Ω(Φ([i1, i2, ..., iT ], φ), ω), (1)

where [f1, f2, ..., fT ] are the bxb T -frame face images af-
ter being resized, φ are the parameters of Φ, and ω is the
interpolation process used by Ω.

Inspired by the spatio-temporal network implemented in
[33], in this paper, we propose a 3DCNN-Encoder-Decoder
denoted as 3DED as a baseline to find the rPPG signals
associated with a video. This network is divided in two
main parts. The first one is the encoder E where the input
data is transformed in a latent-space with more significant
spatio-temporal information. The second part, receiving the
latent-space feature as an input, is the decoder D that gen-
erates the rPPG output y = [y1, y2, ..., yT ]. E and D are
feed-forward 3DCNNs. The rPPG estimation by the 3DED
neural network procedure is presented in Eq. (2):

[y1, y2, ..., yT ] = 3DED([f1, f2, ..., fT ]); θ), (2)

where θ represents the parameters of 3DED.

3.2. Time-frequency based loss function

Pearson’s correlation coefficient (ρ) can measure the
linear relationship between the temporal characteristics of
rPPG and the blood volume pulse ground truth (PPG sig-
nal), ignoring the frequency-based characteristics. On the
other hand, the frequency domain contains the components
related to heart rate and signal quality; therefore, the Signal-
to-Noise-Ratio (SNR) can enhance the frequency-based
components. Consequently, we use ρ and SNR to opti-
mize the most important characteristics of the rPPG signals.
In Eq. (3), we propose the new temporal-frequency-based
loss function Negative Pearson’s correlation and Signal-to-
Noise Ratio (NPSNR) that unites both metrics:

NPSNR = 1− (ρ+ λSNR), (3)

where λ is a constant that balances the frequency compo-
nent, ρ is the Pearson’s correlation between the rPPG signal
and its ground truth, y and g, respectively (Eq. (4)):

ρ =

∑T
j=1 (yj − y) (gj − g)√∑T

j=1 (yj − y)
2
√∑T

j=1 (gj − g)
2
. (4)

SNR is the ratio between the rPPG signal power P̄y,signal

and the rPPG signal background P̄y,noise, as described in

Eq. (5):

SNR =
P̄y,signal

P̄y,noise
, (5)

where the average power is given by P̄ [3].

3.3. Ablation study

In this section we propose several experiments to acquire
the best compromise between real-time, signal quality and
heart rate measurement precision.

In the first approach we gradually decrease the spatial di-
mensions of the input frames bxb into seven different input
sizes dc where dc = b

2c ; c ∈ [0, 1, ..., 6]. Then, we propose
to replace the temporal-based Negative Pearson’s Correla-
tion (NP) loss function with the temporal-frequency-based
NPSNR loss function. Finally, we evaluate the performance
by changing the RGB color space to Lab, Luv, YUV, and
YCbCr.

Fig. 2 depicts the experiments proposed in the ablation
study. To cope with decreasing input sizes, we changed
the pooling layers while applying the same convolutional
operations. These changes only happen in the E encoder.
We will refer to the network configurations as 3DEDdc-
ColorChannel-Loss, e.g. 3DED8-RGB-NP is the 3DED
network with input RGB 8x8 pixels and NP as loss func-
tion.

4. Metrics
Template Match Correlation (TMC) and Signal-to-

Noise-Ratio (SNR) are used to evaluate the rPPG signal
estimation quality. On the other hand, Mean Absolute Er-
ror (MAE) and Pearson’s correlation coefficient r are used
for the evaluation of the heart rate measurement precision.
SNR, MAE and r were computed using a 15-second sliding
window with a stepping of 0.5 seconds. SNR, TMC, and
r are to be maximized, while MAE has to be minimized.
MAE results are given in beats per minute (bpm), and deci-
bels (dB) for SNR.

TMC is a coefficient for ECG/PPG signal quality assess-
ment metric [23]. This metric is implemented by detecting
the signal peaks and the median beat-to-beat interval of the
full-length signals. Then, the pulses are extracted individu-
ally centered on their respective peak with a window width
equal to the median beat-to-beat interval. A template is cal-
culated as the average of all pulses. Finally, the TMC co-
efficient is computed as the average correlation of all the
pulses with the template. TMC = 0 means that the pulse
shape of the signal is non-uniform, while TMC = 1 indi-
cates a perfect uniformity.

The mean absolute error was calculated as the window-
wise mean of the heart rate calculated using the contact-
based ground truth waveform obtained by pulse oximeter
(hc), and the heart rate calculated using the rPPG signal
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Figure 2. Ablation study. We use a 3DCNN baseline to gradually decrease the input resolution. We also change the loss function and the
input color space.

(hr). The MAE of the two vectors hr and hc of size n is
presented in Eq. (6):

MAE =
1

n

n∑
j=1

|hrj − hcj| , (6)

where hrj and hcj are the value of hr and hc at position j,
respectively.

Pearson’s correlation coefficient measures the linear cor-
relation between vectors hc and hr. r = −1 implies a neg-
ative linear correlation, while r = 1 means a positive total
linear correlation, finally, r = 0 indicates that there is no
linear correlation between the estimations and the reference
values. r is given by Eq. (7):

r =

∑n
j=1

(
hrj − hr

) (
hcj − hc

)√∑n
j=1

(
hrj − hr

)2√∑n
j=1

(
hcj − hc

)2 , (7)

where hr and hc are the averages of hr and hc, respec-
tively.

5. Implementation details
VIPL-HR database: The research in this paper uses

the VIPL-HR database collected by the Institute of Com-
puting Technology Chinese Academy of Sciences [20, 21].
The database contains 107 subjects recorded by three dif-
ferent instruments in nine scenarios: stable, motion, talk-
ing, dark, bright, long distance, exercise, phone stable, and
phone motion. Although this database also contains 752

near-infrared videos, we only consider the 2378 visible light
videos. The resolutions of the videos are between 960x720
and 1920x1080, at 25 and 30 fps, respectively. The ground
truth photoplethysmography signals were recorded using
the CONTEC CMS60C BVP sensor at 60 Hz. Ground truth
signals were down-sampled to the respective video sam-
pling rate.

Ground truth adaptation: During the database acquisi-
tion, some ground truth signals present anomalies due to the
movement of the subjects or failures in the acquisition de-
vices. These inconsistencies (gaps and false peaks) usually
happen at the beginning and end of the acquisitions (rarely
during the acquisition). However, performing the network
training with non-reliable ground truth signals is not ideal.
Therefore, a ground truth selection step is necessary. For
this purpose, we checked the ground truth signals individ-
ually to take only the continuous segment with a reliable
ground truth morphology. To ensure reproducible results,
we provide one file as supplementary material containing
the information of these cropped signals.

The time lag between the blood volume pulse signal
measured at the finger and the rPPG signal measured at the
face can dramatically reduce heart rate measurement perfor-
mance during training [36]. To align both signals, we cal-
culated a reference rPPG signal with the POS method [28].
Subsequently, we aligned the ground truth signal to the ref-
erence rPPG signal. Finally, we normalized the ground truth
between -1 and 1 after using a five-second moving-window
average filter.
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Model GPU[ms] CPU[ms] MAE[b.p.m] r SNR[dB] TMC N.T.Param

PhysNet-RGB-NP 51.77 816.47 3.87 0.73 5 0.91 768,577
3DED128-RGB-NP 20.38 240.57 6.32 0.53 2.7 0.86 213,633
3DED64-RGB-NP 17.78 79.57 5.13 0.63 3 0.86 213,633
3DED32-RGB-NP 7.5 55.2 5.12 0.65 3 0.86 213,633
3DED16-RGB-NP 3.53 39.75 5.56 0.6 3 0.86 213,633
3DED8-RGB-NP 2.32 28.65 5.12 0.63 3.1 0.86 213,633
3DED4-RGB-NP 1.96 9.91 5.93 0.57 2.7 0.86 213,633
3DED2-RGB-NP 1.96 3.96 7.83 0.45 1.5 0.82 213,633

3DED8-RGB-NPSNR 2.32 28.65 4.37 0.68 4.2 0.88 213,633
3DED8-Lab-NPSNR 2.32 28.65 5.51 0.59 3.5 0.87 213,633
3DED8-Luv-NPSNR 2.32 28.65 4.04 0.73 4.4 0.88 213,633
3DED8-YCbCr-NPSNR 2.32 28.65 4.43 0.68 4.0 0.88 213,633
3DED8-YUV-NPSNR (RTrPPG) 2.32 28.65 3.99 0.73 4.6 0.89 213,633

Table 1. Ablation study results. 3DED8-YUV-NPSNR has the best overall configuration.

Figure 3. Correlation plot. A comparison between results given by the state-of-the-art network PhysNet and the Real-Time rPPG: RTrPPG.

Hardware and network configuration: For the face de-
tection network Φ we used the MediaPipe implementation2

based on BlazeFace [2]. The resizing process Ω was done
with the OpenCV INTER-AREA interpolation method (ω).

We used a personal computer with the following techni-
cal specifications: Intel Xeon 2.4 GHz CPU, 16 GB RAM,
and an NVIDIA GeForce RTX 2070 GPU. The 3DED net-
work was implemented with PyTorch libraries version 1.9.0.
We used batch normalization layers after every convolu-
tional layer. The activation functions used were Rectified
Linear Unit ReLU for E and Exponential Linear Unit ELU
for D. During the training process we adopted a subject-

2https://github.com/google/mediapipe

independent 5-fold cross validation evaluation protocol. We
used Adam optimizer with learning rate of 0.0001 for NP
loss function and 0.00044 for NPSNR. λ was set to 1.32.
We set the batch size as 8 and train every model for 15
epochs. The baseline input b was 128, and the number of
frames used as input was T = 128.

The decoder D used in all experiments has two up-
sampling layers followed by average pooling, and finally, a
channel-wise convolution operation with 1x1x1 kernel. The
output of the decoder is a 128-frame rPPG signal (right side
of Fig. 4).
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Figure 4. RTrPPG network architecture. Where K=kernel, S=stride, and P=padding.

6. Results and Discussion

In this section we present the results of the experiments
proposed in Sec. 3.3. The closest architecture to our refer-
ence 3DCNN is PhysNet [33], which we also compare with
all 3DED configurations. For each experiment we adopted a
subject-independent 5-fold cross validation evaluation pro-
tocol. The heart rate is measured from the Fourier transform
of the rPPG signal, and the HR value is the frequency cor-
responding to the peak of greatest magnitude.

Tab. 1 depicts the results of the proposed experiments.
The second and third column present the inference time
in ms on the GPU and CPU respectively. The next two
columns are the metrics related to the heart measurement
precision (MAE in b.pm. and r), followed by two more
columns with the metrics related to the signal quality (SNR
in dB and TMC). Finally, the last column is the number of
trainable parameters for each architecture (N.T.Param).

The inference time in 3DED decreases on GPU and CPU
when reducing the size of the input images; this is logical
since the number of convolutions is also reduced. When
the input size is minimum (3DED2-RGB-NP), the infer-
ence time is the smallest on CPU and GPU, Even though
the MAE increases slightly under this input setting, the low
values r=0.45, SNR=1.5, and TMC=0.82 indicate that the
signal quality is not reliable. On the other hand, 3DED8-
RGB-NP presents balanced metrics between inference time,
heart rate measurement precision, and signal quality. How-
ever, despite the fact that this network is faster than the
baseline and PhysNet, there is still room for improvement
in the performance of rPPG signal acquisition. By tak-
ing 3DED8-RGB-NP and replacing its temporal-based loss
function with the temporal-frequency-based loss function
proposed in this paper, it can be seen that all metrics are
improved, especially SNR.

By evaluating the RGB, Lab, Luv, YUV, and YCbCr
color channels, the best performance is acquired using
YUV, which is the empirical space for skin segmentation
[29]. Therefore, 3DED8-YUV-NPSNR has the best com-
promise between real-time, signal quality and heart rate
measurement performance, we refer to this architecture as
Real-Time rPPG (RTrPPG) and describe its complete archi-
tecture in Fig. 4. When comparing the best configuration
with the baseline model, all metrics and inference speed
are improved. More interestingly, when comparing RTrPPG
with the state-of-the-art PhysNet model, very similar met-
rics are obtained while the inference speed of RTrPPG im-
proves substantially about 88% from 51.77 ms to 2.32 ms in
GPU and from 241.57 ms to 28.65 ms in CPU. Fig. 3 shows
the HR correlation plots of the best configuration in our ab-
lation study and the PhysNet network. It can be seen that
the distribution of the measured HR values using RTrPPG
is comparable with PhysNet.

7. Conclusions

3DCNNs are excellent choices for extracting rPPG sig-
nals from videos with an end-to-end approach. However,
their complex structures may prevent them from real-time
applications. In this paper, we proposed a 3DCNN base-
line and a series of experiments to find a fast and accurate
network for acquiring reliable rPPG signals. The best con-
figuration is referred to as Real-Time rPPG: RTrPPG. We
showed that by decreasing the dimension of the input im-
ages, the inference speed is improved at the cost of accuracy
drop in measuring rPPG signals. We proposed a joint solu-
tion showing that a temporal-frequency-based loss function
is necessary for the network to learn the fundamental fea-
tures of the input videos. Likewise, it was also shown that it
is better to use the empirical color channel for skin segmen-
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tation YUV instead of RGB. Interestingly, when comparing
RTrPPG with the state-of-the-art PhysNet, a comparable ac-
curacy to the rPPG signal acquisition is achieved while our
model improves the inference speed about 88%, from 51.77
ms to 2.32 ms in GPU and from 241.57 ms to 28.65 ms in
CPU. In future works, we will evaluate the performance of
the proposed network in near-infrared rPPG signal acquisi-
tion applications.
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[26] Radim Špetlı́k, Vojtech Franc, and Jirı́ Matas. Visual heart
rate estimation with convolutional neural network. In Pro-
ceedings of the british machine vision conference, Newcas-
tle, UK, pages 3–6, 2018. 1, 2

[27] Wim Verkruysse, Lars O Svaasand, and J Stuart Nelson. Re-
mote plethysmographic imaging using ambient light. Optics
express, 16(26):21434–21445, 2008. 1

[28] Wenjin Wang, Albertus C den Brinker, Sander Stuijk, and
Gerard de Haan. Algorithmic principles of remote ppg. IEEE
Transactions on Biomedical Engineering, 64(7):1479–1491,
2016. 1, 5

[29] Wenjin Wang, Sander Stuijk, and Gerard De Haan. Unsuper-
vised subject detection via remote ppg. IEEE Transactions
on Biomedical Engineering, 62(11):2629–2637, 2015. 7

[30] Wenjin Wang, Sander Stuijk, and Gerard de Haan. Living-
skin classification via remote-ppg. IEEE Transactions on
biomedical engineering, 64(12):2781–2792, 2017. 1

[31] Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag,
Fredo Durand, and William Freeman. Eulerian video mag-
nification for revealing subtle changes in the world. ACM
transactions on graphics (TOG), 31(4):1–8, 2012. 1, 2

[32] Zitong Yu, Xiaobai Li, Xuesong Niu, Jingang Shi, and Guoy-
ing Zhao. Autohr: A strong end-to-end baseline for remote
heart rate measurement with neural searching. IEEE Signal
Processing Letters, 27:1245–1249, 2020. 2, 3

[33] Zitong Yu, Xiaobai Li, and Guoying Zhao. Re-
mote photoplethysmograph signal measurement from fa-
cial videos using spatio-temporal networks. arXiv preprint
arXiv:1905.02419, 2019. 2, 3, 4, 7

[34] Zitong Yu, Wei Peng, Xiaobai Li, Xiaopeng Hong, and
Guoying Zhao. Remote heart rate measurement from highly
compressed facial videos: an end-to-end deep learning so-
lution with video enhancement. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 151–160, 2019. 1, 2, 3

[35] Pong Chi Yuen, Siqi Liu, Shengping Zhang, and Guoying
Zhao. 3d mask face anti-spoofing with remote photoplethys-
mography, Aug. 13 2019. US Patent 10,380,444. 1

[36] Qi Zhan, Wenjin Wang, and Gerard de Haan. Analysis of
cnn-based remote-ppg to understand limitations and sensi-
tivities. Biomedical Optics Express, 11(3):1268–1283, 2020.
1, 2, 5

[37] Qi Zhang, Yimin Zhou, Shuang Song, Guoyuan Liang, and
Haiyang Ni. Heart rate extraction based on near-infrared
camera: Towards driver state monitoring. IEEE Access,
6:33076–33087, 2018. 1

2154


