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Abstract

Video-based non-contact monitoring of cardiac condi-
tions offers an attractive alternative to contact-based mon-
itoring using sensors attached to the skin. Specifically,
video monitoring can significantly improve the monitoring
of atrial fibrillation; a prevalent and growing cardiac dis-
ease affecting millions around the world. We propose and
investigate the performance of a deep learning classifier for
the detection of atrial fibrillation. We compare the perfor-
mance of the proposed classifier with a benchmark of five
existing classifiers based on traditional signal processing
and machine learning. In addition, we compare perfor-
mance across various sensing modalities, including a high-
end camera, a webcam, an earlobe oximeter, and an elec-
trocardiogram holter. To this end, we conduct a clinical
study with 55 atrial fibrillation patients in a hospital set-
ting. Results show that the proposed classifier outperforms
the benchmark, especially when using a low-cost webcam,
and provides consistently accurate detection when applied
to an electrocardiogram, a photo plethysmography sensor,
and two video camera sensors, thereby placing video mon-
itoring on par with its contract-based counterparts.

1. Introduction
Atrial Fibrillation (AF) is a prevalent and spreading

heart rhythm disorder, characterized by rapid and irregu-
lar atrial activation [12, 17]. Structural heart diseases such
as rheumatic heart disease, hypertension, and heart failure
are important risk factors for the development of AF. Fur-
thermore, AF can cause systemic embolism, hemodynamic
disorder, tachycardia-related myopathy as well as symp-
toms such as heart palpitations, lightheadedness, extreme
fatigue, shortness of breath, and chest pain that reduce the
patient’s quality of life [1,5,41]. The Global Burden of Dis-
ease Study 2017 showed that 37.57 million prevalent cases
and 3.05 million incident cases were caused by AF globally
followed by 287,241 death cases in 2017 [10].

Sensors capturing cardiac signals present the most im-

portant tools for medical diagnosis and detection of AF. The
gold standard in cardiac sensing is the Electrocardiogram
(ECG). ECG is widely used to analyze heart functionality
and detect heart disease [19]. It captures electrical signals
coming from the heart that provide information on cardiac
activity, but requires accurate placement of multiple elec-
trodes on the skin [3].

An alternative to ECG sensing is Photoplethysmography
(PPG) [25]. PPG is based on an optical sensor that cap-
tures the pulsatile flow of blood propagating through the
body [7,27,33,38].It provides coarse information on cardiac
activity compared to ECG [35]. However, a PPG sensor can
be easily placed on the patient’s finger or earlobe [25].

Over the past decade, Video plethysmography (VPG)
[13, 18, 21, 39, 40], aka remote-PPG (rPPG), was developed
to measure cardiac activity using a camera. VPG is similar
to PPG, since it captures the pulsatile signal to and from the
subject’s face. It typically provides a weaker signal com-
pared to PPG but doesn’t require contact with the patient’s
skin and can be implemented using commercially available
cameras.

In recent years, we experience an accelerating prolifera-
tion of cameras in our daily life, e.g., security cameras, front
facing cameras on smartphones, embedded cameras in lap-
tops and webcams. VPG offers the potential to significantly
improve the treatment of AF patients, by turning every cam-
era we encounter to a cardiac monitoring device, thereby
providing more frequent measurements and extending mon-
itoring beyond healthcare facilities and into our homes.

Traditional automated detection of AF is typically based
on assessing Heart Rate Variability (HRV) measures [6,32].
Commonly used HRV features include Root Mean Square
of Successive Differences (RMSSD), Standard Deviation of
NN-intervals (SDNN) and The proportion of the number of
pairs of successive beat to beat intervals that differ by more
than 50 milliseconds (pNN50) [4, 8, 9, 36]. A transitional
binary classifier uses a thresholding approach to infer AF.
For example, if RMSSD is higher than 100 milliseconds,
the subject could be in AF. We collectively refer to such
classifiers as Binary Threshold Classifiers (BTC). More re-
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cently, classifiers were developed based on machine learn-
ing techniques, where data is used to train a classification
structure to infer the presence of AF. See [13,20] and refer-
ences therein for examples.

In the past, classification performance depended heav-
ily on the sensing modality being used, where ECG-based
classifiers provided the best performance [20, 23, 26, 29],
followed by PPG and VPG based classifiers. This resulted
in sensor-dependent performance and a justified tendency to
rely solely on ECG for AF detection. However, monitoring
patients using ECG is limiting, since it requires a profes-
sional to place the electrodes and the patient to carry the
device on the body [20]. For these reasons, ECG monitor-
ing is typically performed infrequently in a healthcare facil-
ity. Occasionally, a patient would be given a holter or ECG
patch to be carried for a period of 1 day to 2 weeks at the
most. There are ECG sensors providing reliable monitor-
ing when performed by the patient, such as the KardiaMo-
bile ECG sensor (AliveCorr, Mountain View, CA), but they
are expensive and require maintenance. It is clear that it
would be beneficial to have a classifier that provides accu-
rate AF detection across the ECG, PPG and VPG sensing
modalities. Such a classifier would enable extended mon-
itoring beyond ECG in healthcare facilities. For example,
one could supplement infrequent ECG monitoring at a hos-
pital with less cumbersome PPG monitoring during routine
checkups and augment them much further using effortless
noncontact VPG monitoring using cameras at home.

In this contribution, we propose, train and test a deep
learning classifier designed to provide sensor-agnostic and
consistently reliable AF detection for ECG, PPG and VPG
sensors. We compare performance of the classifier to a set
of 5 benchmark classifiers: 3 traditional classifiers and 2
machine learning classifiers. To this end, we use data col-
lected in a large clinical study performed in a hospital with
55 patients diagnosed with AF before and after undergo-
ing a cardioversion procedure. The collected data consist
of synchronized capture from ECG electrodes, PPG earlobe
sensor, VPG using a simple webcam and VPG using a high-
end camera. Our results show that the proposed classifier
outperforms the benchmark classifiers, especially when us-
ing a low cost webcam, and also provides consistently ac-
curate detection across all sensors. This work could help
advance the acceptance of video monitoring as an alterna-
tive to contact based ECG and PPG monitoring.

2. Proposed Deep Learning Classifier
Fig. 1 presents a flow diagram of the proposed Deep

Learning Approach based on a Convolutional Neural Net-
work (CNN). The raw data consists of one of the follow-
ing sensors’ 25 seconds output: ECG, PPG, VPG 180Hz
and VPG 30Hz signals. The raw data is split to overlap-
ping 25 sec intervals. The number of samples per sensor

Figure 1. Proposed classifier’s structure

per interval depends on that sensor’s sampling frequency.
Namely, 4500, 7500, 4500 and 750 data points for ECG,
PPG, VPG 180Hz and VPG 30Hz respectively. Therefore,
we apply different signal preprocessing per sensor as is ex-
plained next. The preprocessing output is used as input to
the network. This can be seen as a passive “Input Layer” re-
ceiving 1D data. following, a CNN-1D layer creates a con-
volution kernel that is convolved with the layer input over
a single spatial (or temporal) dimension to produce a tensor
of outputs as was described in [19]. A Dropout layer is then
used to avoid overfitting, and a Max-Pooling layer is used
to calculate the maximum value for each CNN-1D layer’s
output to create new input for the next layer. This CNN-1D
with Dropout and Max-Pooling structure is repeated once
more. The result is flattened from 2D data to 1D data by us-
ing a Flatten Layer [34] [19]. One last dropout layer is then
applied to avoid overfitting. The flattened output is pro-
cessed by a Fully Connected Layer (FCL) with a dropout
layer whose output is the binary AF classification decision
following binary cross entropy loss function. See Table 1
for the detailed structure description.

2.1. Preprocessing and Feature Extraction

To improve performance of the proposed classifier, we
initially filter the signals captured by each sensor to the
range of frequencies where cardiac activity is expressed.
Namely, [0.67 4] Hz representing a pulse rate range of [40
240] beats per minute. To this end, we filter the sensor’s
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Table 1. Summary of configuration parameters.

Component Description

25 seconds input data block Consists of 4500(ECG), 7500(PPG), 4500(VPG 180Hz),
or 750(VPG 30Hz) data points

Preprocessing

Moving average with window size(fs/2) applied
to the data for PPG, VPG 180Hz, VPG 30 Hz followed by
a 4th order Butterworth filter with bandpass of [0.67,4]Hz
and normalization to 0-1 range.

Input Layer
Dimension of the input layer is 125x36, 125x60, 125x36,
or 125x6 depending on data type, ECG, PPG,
VPG 180Hz, VPG 30Hz respectively.

CNN-1D
The filters size is 45, kernel Size is 10, kernel initializer
is ‘random normal’, padding is ‘same’, and
the activation function is ‘relu’

CNN-1D The Filters size is 45, kernel Size is 10, padding is ‘same’,
and activation function is ‘relu’.

Dropout The dropout rate is 0.5
MaxPooling The pool size is 5

CNN-1D The filters size is 45, kernel Size is 7, padding is ‘same’,
and activation function is ‘relu’

CNN-1D The filters size is 45, kernel Size is 7, padding is ‘same’
, and activation function is ‘relu’

Dropout Dropout rate is 0.5
MaxPooling Pool size is 10
Flatten Flatten is a function used to transform 2D data to 1D.
Fully Connected Layer 45 units with activation function ‘relu’
Dropout Dropout rate is 0.25

Output

The Adam algorithm is used for optimization with parameters
’learning learning rate=0.0001’, ‘beta 1=0.9’,
‘beta 2=0.999’, ‘amsgrad=False’.
‘binary crossentropy’ loss function is used
to binarize the probability to 0 or 1.
Metrics are found by using accuracy

Training Batch size set to 30 and 300 epochs are
used for training with cross-validation data.

output signal using a 4th order Butterworth bandpass filter
designed to match each sensor’s sampling rate. As is com-
monly done, the filtered signals are all normalized to have
no units and reside within a range of [0 1].

For ECG, no further preprocessing is performed. For
PPG, VPG-30Hz and VPG-180Hz, prior to bandpass filter-
ing, a moving average filter with length of the sampling fre-
quency divided by 2 is applied to smooth the signal.

Table 2. Parameters of 2-D conversion for all sensors.

Signal Type Sec. fs Length CNN Tensor (2D)

ECG 25 180 4500 (sec) x (fs/5) = 125 x 36
PPG 25 300 7500 (sec) x (fs/5) = 125 x 60

VPG (180 hz.) 25 180 4500 (sec) x (fs/5) = 125 x 36
VPG (30 hz.) 25 30 750 (sec) x (fs/5) = 125 x 6

Each filtered signal is then converted to a 2-D tensor in-
put to the CNN as depicted in Fig. 1. Each processed signal
encompasses 25 seconds and each sensor has its own sam-
pling frequency (fs), the corresponding conversions to a 2-D
tensor are performed based on the parameters in Table 2.

2.2. Classification

Following training of the CNN classifier using the fea-
tures extracted from data, its output is a probability for the
measurement to be labelled as AF. This output is compared
to a predefined threshold. When the probability is above
the threshold, it implies irregular rhythm and the measure-

ment is classified as AF. Conversely, when the probability is
below the threshold, it implies Sinus Rhythm (SR) and the
measurement is classified as SR.

3. Benchmark Classifiers
Most common arrhythmia classifiers are based on ex-

tracting features from the VPG/PPG IBI’s or the ECG RR-
intervals. IBI/RR detection are based on peak detection al-
gorithms designed to identify local peaks of the the signal.
It is common practice to perform preprocessing to clean the
signals prior to peak detection in order to improve IBI/RR
estimation. Preprocessing depends on the signal at hand.

3.1. ECG Preprocessing

We start by applying zero-score normalization to the sig-
nal. We then equalize the filtered output by replacing ECG
samples that reside within 2-4 standard deviations from the
mean ECG signal with their square root values. This re-
duces the scaling difference across QRS complexes. Fol-
lowing equalization, we apply the Pan Tompkins algorithm
for filtering and identifying the ECG QRS complexes [31].
Extracting RR interval boils down to finding the time dif-
ference between consecutive QRS complexes.

3.2. PPG and VPG Preprocessing

We start by applying the same 4th order Butterworth
bandpass filter described above. We then apply a moving
average window with length of 50, 30, 5, to PPG, VPG-
180Hz and VPG-30Hz respectively to account for their dif-
ferent sampling frequencies. The outputs of the moving
average filter are further detrended by applying 15th order
polynomial detrending, as was commonly done in previous
work [18, 21, 24, 40]. The detrended signal is then normal-
ized using zero-score normalization. Peaks are identified in
the normalized signal using adaptive maxima identification
with threshold of 0.2 and distances of 75, 45 and 7.5 for
PPG, VPG-180Hz and VPG-30Hz respectively. The func-
tions used to implement processing can be found in [30].

Extracting IBIs is done by finding the time difference
between consecutive peaks. IBI’s that are lower than a time
corresponding to a heart beat of 240 beats per minute are
removed since a human heart cannot beat this fast making
such IBIs the likely result of erroneous peak detection [2,
15].

3.3. Feature Extraction

We use the IBI’s and RR’s to derive the RMSSD, SDNN
and PNN50 parameters to be used as features. We further
derive the parameters: mean, median (MD), standard devi-
ation (STD) and median absolute deviation (MAD). These
parameters are then grouped into categories summarized in
Table 3.
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Figure 2. ECG Sample of IBI’s Distribution

Table 3. The category of the RR and IBIs for future extraction.

Categories IBI range
Lower Limit Upper Limit

Median Center (MDC) MD - 2 * MAD MD+2*MAD
Median Left (MDL) MD - 2 * MAD MD+0.5*MAD
Median Right (MDR) MD - 0.5*MAD MD+2*MAD
Mean Center (MEC) MEAN - 2 * STD STD + 2 * MAD
Mean Left (MEL) MEAN-2*STD STD+ MAD/2
Mean Right (MER) MEAN – STD/2 STD + 2 * MAD

These categories are helpful in characterizing the heart
rate variability and by that arrhythmia while damping the
impact of outliers the result from erroneous peak detection.
An example of IBI distribution along with the aforemen-
tioned categories is depicted in Fig. 2.

Additional features defined from the IBIs and the above
categories: Standard Deviation (STD), Interquartile Range
(IQR), Singular Value Decomposition Entropy (SVD).

3.4. Classification

We define three benchmark classifiers based on a Binary
Threshold Classifier (BTC): BTC-RMSSD, BTC-SDNN
and BTC-PNN50, by using the corresponding parameters
RMSSD, SDNN and PNN50. Namely, we perform straight
forward thresholding of these parameters with a predefined
threshold. When the parameter is above the threshold, it
implies irregular rhythm and the measurement is classified
as AF. Conversely, when the parameter is below the thresh-
old, it implies Sinus Rhythm (SR) and the measurement is
classified as SR. Note that there other BTCs based on other
derivatives of RRs and IBIs, such as the one in [11], where
a thresholding approach was applied to a parameter defined
over the spectra, domain.

To represent the family of Machine Learning (ML) clas-
sifiers we define a fourth benchmark classifier based on a
Support Vector Machine (SVM) classifier: SVM-Classic,
by training an SVM classifier using the three parameters:
RMSSD, SDNN, and PNN50 as features. Classification is
then performed by comparing the probability output of a
measurement to a threshold as explained above. Note that

Figure 3. Schematic description of experimental setup.

other ML classifiers could have been used as well, such as
Random Forest.

We further define a fifth benchmark classifier based on
handcrafted features: SVM-Handcrafted, by training an
SVM classifier using RMSSD, SDNN, PNN50, STD, IQR
and SVD as features. Classification is then performed sim-
ilarly to SVM-Classic.

4. Clinical Study

Fifty-five patients diagnosed with AF and scheduled for
cardioversion procedure were enrolled in a clinical study
approved by the Internal Review Committees for Protecting
Human Subjects at both the University of Rochester Med-
ical Center (URMC, Rochester, NY) and the Rochester In-
stitute of Technology (RIT, Rochester, NY).

A sensors-synchronized measurement of 5 minutes and
30 seconds of ECG, PPG and VPG sensing data was per-
formed before and after cardioversion. The measurement
setup is depicted in Fig. 3. The experiment was performed
in one of the URMC hospital’s standard patient rooms illu-
minated by fluorescent ceiling lights. The ECG signals were
recorded using 10 ECG electrodes placed on the subject’s
body by a trained nurse. The PPG signals were recorded us-
ing an earlobe oximeter sensor placed on the left ear of the
subject. Two cameras (high-quality and low-quality) were
placed in front of the subject approximately 1 meter away
from the subject’s head.

An H12+ (Mortara Instruments, Milwaukee, MN) ECG
Holter was used to capture the ECG signals with a 180Hz
sampling rate. A HeartSensor HRS-07UE PPG sensor (Bi-
nar, Poulsbo, WA) was used to obtain the PPG signal with
a 300Hz sampling rate. A Logitech Quickcam Pro 9000
(simple webcam, relative low-quality) camera was used to
capture a video with a 30Hz sampling rate, and a Basler
ACE 1920-155uc camera (relative high-quality) was used
to capture a second video with a 180Hz sampling rate [16].
In a typical VPG application, face detection is used to de-
fine a Region of Interest (RoI) from which to extract the
cardiac signal. In our study, the subjects were still and in
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a supine position, so the RoI was manually defined and did
not change during the recoding.

All subjects were diagnosed with AF immediately prior
to cardioversion. This means that the first synchronized
measurement represents AF data. Except for 4 subjects, all
subjects reverted from AF to SR after cardioversion. This
means that the second synchronized measurement from
subjects that reverted to SR represents non-AF data. Data
from another 9 subjects was found to be corrupted (ECG
electrode missplacement, PPG sensor malfunction, etc.).
The data captured from those 9 subjects were discarded.

Note that subjects were asked to be still and were se-
dated before cardioversion, therefore the captured data was
largely not corrupted by motion and changing ambient
lighting conditions (shadowing, flickering, etc.). An exam-
ple of prepossessed data captured from a subject in the study
before and after cardioversion is presented in Fig. 4.

While AF data and SR data per subject are captured in
a continuous 5.5 minutes measurements, in practical appli-
cations it would be beneficial to detect AF on shorter time
intervals. This is because as the interval becomes longer, the
subject is more likely to move room and lighting conditions
are more likely to change, thereby corrupting signal cap-
ture. However, shortening the time interval too much would
prevent efficient AF detection because less beats would be
available for the classifier to make a decision. We exper-
imented with training data to resolve this tradeoff. We
found that a measurement of 25 sec is long enough to de-
tect rhythm irregularities associated with AF. This result is
in line with prior published studies, where an interval of 10
sec to 30 sec was used [28].

To generate a large enough dataset per subject in the
study and improve training, we converted each 5.5 minutes
measurement to approximately 31 measurements of 25 sec-
onds each with a 60% overlap between consecutive mea-
surements (in some cases the recording was slightly lower
than 5.5 minutes). This improves training and is common
practice in such applications [14]. It means that each mea-
surement is correlated to its immediately preceding and suc-
ceeding measurement. Note that overlapping is done per
subject and since a subject’s data is either exclusively in the
training dataset or in the testing dataset, training and testing
data are uncorrelated.

5. Comparative Analysis
The total data collected from the 46 subjects with non

corrupted data capture is comprised of 1425 25 seconds
measurements labelled as AF (before cardioversion) and
1280 25 seconds measurements labelled as SR (after car-
dioversion). We divided the data to training and testing
datasets. The training dataset comprised all data from 36
subjects; 1094 labelled as AF and 1001 labelled as SR. The
testing dataset comprised all data from the remaining 6 sub-

jects; 310 labelled as AF and 279 labelled as SR.
Training of the SVM-Classic, SVM-Handcrafted and

proposed CNN classifiers was done using the training
dataset. Testing of these classifiers was done by apply-
ing the trained classifiers to the testing dataset. The output
probability per measurement was then used to generate Re-
ceiver Operating Characteristics (ROC) curves by varying
the classifier’s threshold from 0 to 1 with 0.01 increments
and calculating the True Positive Rate (TPR) and False Pos-
itive Rate (FPR) per threshold. Note that TPR and FPR
are similar to Sensitivity and 1-Specificity. ROC curves
were also generated for the BTC-RMSSD, BTC-SDNN and
BTC-PNN50 benchmark classifier in a similar manner by
replacing the output probability with the classifier’s under-
lying parameter (RMSSD, SDNN and PNN50).

Using the ROC curves, we selected the threshold or pa-
rameter that maximizes the Accuracy (ACC) of the classi-
fier. We then calculated the following performance param-
eters for each classifier applied to each sensor: Precision
(PR), Recall (RE), F1 Score(F1) and Accuracy (ACC) [22].

6. Results
Fig. 5 presents ROC curves obtained from ECG data.

Each curve is drawn by varying the threshold associated
with the underlying classifier and evaluating the True Posi-
tive Rate (TPR) and the False Positive Rate (FPR), aka Sen-
sitivity and 1-Specificity respectively for each value of the
threshold. For all ROC curves, we mention the value of the
threshold (“th” on the figure legend) providing the maxi-
mum accuracy. This threshold is also marked by a vertical
line corresponding to its respective ROC curve.

For all ROC curves, we observe the typical knee-shaped
behavior, where the tradeoff between FPR and TPR can be
resolved by selecting the appropriate threshold for maxi-
mum accuracy. The poorest performance is obtained for
the BTC classifiers BTC-SDNN and BTC-RMSSD. How-
ever, BTC-PNN50 performs significantly better and is on
par with the SVM-Classic classifier. The SVM-Handcrafted
classifier offers the best performance within the benchmark
approaches, corresponding to a TPR of 1 and FPR of 0.014.
This means that all AF instances are detected, while falsely
reporting 1.4% of SR instances as AF. The proposed method
based on CNN provides the same perfect TPR of 1, but a
significantly lower FPR of 0.007. This means that the pro-
posed approach detects all AF instances, while falsely re-
porting 0.7% of sinus rhythm instances as AF. It follows
that the proposed approach provides a 2-fold reduction in
false positives compared to the best benchmark classifier.

Fig. 6 represents the ROC curves for the same classifica-
tion approaches shown in Fig.6 for PPG data. For all PPG
ROC curves, we observe typical knee-shaped behavior sim-
ilar to the ECG data for the threshold achieving maximum
accuracy. Similar to ECG data, the poorest performance
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Figure 4. Example of signals captured during study from a subject before cardioversion (left) and after cardioversion (right).
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Figure 5. BTC-SDNN, BTC-RMSSD, BTC-PNN50, SVM-
Classic, and SVM-Handcrafted ROC curves for ECG.

is obtained for the BTC classifiers based on thresholding
of SDNN and RMSSD. PNN50 and SVM-based classifiers
show significantly better results. In addition, as for ECG,
SVM-Classic performs poorer than the SVM-Handcrafted
classifier. Comparing Figs. 6 and 7, it is clear that all classi-
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Figure 6. BTC-SDNN, BTC-RMSSD, BTC-PNN50, SVM-
Classic, and SVM-Handcrafted ROC curves for PPG.

fiers except CNN perform better for ECG compared to PPG.
The proposed CNN approach and SVM-Handcrafted per-
forms better than all other classifiers and provides similar
high performance for both ECG and PPG. For example, the
SVM-Handcrafted classifier falsely reports SR instances as
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Figure 7. TC-SDNN, BTC-RMSSD, BTC-PNN50, SVM-Classic,
and SVM-Handcrafted ROC curves VPG 180Hz.

AF 1.4% and %2.9 of the time for ECG and PPG respec-
tively for the selected threshold. The proposed CNN ap-
proach provides the same results for PPG and a 2 fold im-
provement for ECG (0.7% of AF instances reported as SR).

Fig. 7 shows the ROC curves for the VPG (180 Hz) data.
We observe the same overall trends as in Figs. 6 and 7.
However, although BTC-PNN50 performs better than the
other BTC classifiers, it performs slightly poorer than the
SVM-Classic classifier. We conclude that for VPG (180 Hz)
data, the BTC classifiers should be avoided if more sophis-
ticated SVM or the proposed CNN classifier can be imple-
mented. Note that SVM-Handcrafted is the best benchmark
classifier. As for ECG and PPG, the proposed CNN ap-
proach performs the best. In this case it falsely reports 3.6%
of SR instances as AF. This means the proposed approach
provides a 2-fold reduction in false positives compared to
the best performing alternative in the benchmark.

Fig. 8 shows the ROC curves for VPG (30 Hz). In gen-
eral, we observe the same trends as in Figs. 6-8. Note that
the disparity in performance of the different classifiers is the
greatest in this case. BTC-SDNN falsely reports 28.3% of
SR instances as AF. BTC-RMSSD and BTC-PNN50 falsely
report 29.7% and 8.6% of SR instances as AF respectively.
Both provide poorer results than the SVM classifiers. SVM-
Handcrafted provides the better result in the benchmark
(FPR of 6.8%). Finally, the proposed CNN approach pro-
vides better result than benchmark classifiers with 5% clas-
sification of SR vs AF instances.

Table 4 presents PR, RE, F1 and ACC for ECG, PPG,
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Figure 8. BTC-SDNN, BTC-RMSSD, BTC-PNN50, SVM-
Classic, and SVM-Handcrafted ROC curves VPG 30Hz.

VPG (180 Hz) and VPG (30 Hz) for all the aforementioned
classifiers. At first glance, we can see that the PR, RE, F1,
and ACC are increasing from the top to bottom of Table
4. This shows that using more advanced classification tech-
niques improves performance. Note that using an advanced
technique like SVM-Classic has a negative impact on the
classification of AF. For example, using the BTC-PNN50
compared to SVM-Classic has a negative effect on the Re-
call which means that it causes to miss detect some of the
AF instances. Also note that Precision is reduced resulting
in miss-classification of SR measurements as AF. A possi-
ble explanation for this is that BTC-PNN50 performs much
better than its BTC counterparts that combining all three via
SVM-Classic deteriorates its superior performance.

As expected from the ROC curves, SVM-Handcrafted
performs the best out of all benchmark classifiers across all
parameters and sensing modalities. We attribute to the extra
features used in SVM-Handcrafted. Namely, SVD Entropy
and IQR. In addition, we find that CNN performs the same
or better in all cases compared to SVM-Handcrafted. Note
for example F1 score where Precision and Recall are com-
bined to show CNN is better.

The CNN classifier provides the most consistent and
highest performance across all sensors. For instance, the ac-
curacy of detecting AF by applying BTC based on SDNN,
RMSSD, and PNN50 is approximately 80%, 82%, and 90%
respectively across all sensors. Accuracy of SVM classifiers
varies greatly within 5%-10%. While RMSSD resulted in
84% percent accuracy for the ECG data, it resulted in 77%
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Table 4. Performance of classifiers

Methodology
ECG PPG VPG (180 hz) VPG (30 hz)

PR. RE. F1 ACC PR. RE. F1 ACC PR. RE. F1 ACC PR. RE. F1 ACC
BTC-SDNN 0.82 0.97 0.89 0.87 0.81 0.91 0.86 0.84 0.87 0.92 0.89 0.89 0.79 0.96 0.87 0.85
BTC-RMSSD 0.78 0.99 0.87 0.85 0.78 0.96 0.86 0.84 0.85 0.93 0.89 0.87 0.78 0.93 0.85 0.82
BTC-PNN50 0.95 1.00 0.97 0.97 0.93 0.99 0.96 0.95 0.94 0.97 0.95 0.95 0.92 0.94 0.93 0.93
SVM-Classic 0.93 0.99 0.96 0.96 0.96 0.97 0.97 0.96 0.95 0.95 0.95 0.95 0.93 0.94 0.94 0.93
SVM-Handcrafted 0.99 1.00 0.99 0.99 0.97 0.99 0.98 0.98 0.93 0.99 0.96 0.96 0.94 0.89 0.91 0.91
CNN 0.99 0.99 0.99 0.99 0.97 1.00 0.99 0.99 0.97 0.98 0.98 0.97 0.96 1.00 0.98 0.98

percent for VPG 180 Hz. We can see that the classical BTC
approach does not provide a stable and high accuracy for
all data types. For example, the difference in the accuracy
between ECG and VPG is around 8% percent. Similarly,
note that while SVM-Handcrafted significantly increase the
accuracy; 96%, 94%, 94%, and %93 respectively for ECG,
PPG, VPG (180 Hz), VPG (30 Hz), CNN yields a more sta-
ble result of 98-99% accuracy for all kinds of data.

7. Limitations and Future Research
While the presented results show great promise, it should

be noted that the clinical study was performed in a rather
controlled environment of a hospital room. For the most
part, subjects kept still and the lighting conditions were
static. This means that our results represent a real-world
scenario of monitoring AF patients admitted to healthcare
facilities. It is well known that video monitoring can be im-
paired when the subject is moving and when the lighting
conditions change due to shadowing and flickering lights.
These limitations are expected to reduce detection accuracy
when monitoring is performed in an uncontrolled environ-
ment such as residential areas, offices or while being left
unsupervised in a hospital room. Our ongoing research
include assessing the proposed classifier in such environ-
ments, where we develop algorithms for tracking motion
and lighting conditions to circumvent their effect. To this
end, we are currently finalizing the collection of data in a
second large clinical study involving 250 AF patients being
monitored in their homes using personal smart devices.

In our work, the classifier was trained across multiple
subjects, implying that one classifier fits all. However, it
is expected that training the classifier per subject would re-
sult in a more robust and accurate performance. This is true
for the benchmark classifiers as well. We were unable to
perform such analysis in this work due to the limited data
collected per subject. Future work where more data is col-
lected per subject could support such analysis.

Note that in our data collection setup the camera was 1
meter away from the subject. while this setup represents
use of personal devices (laptops, tablets, smartphones, of-
fice environment) as well as telemedicine applications, it
does not address scenarios where the camera is expected to
be farther from the subject such as emergency rooms, air-

ports, etc. Future research could address these scenarios.
Our work focused on feature extraction from time do-

main beat to beat parameters. Additional features can be
used to improve classification based on spectral domain. It
is also possible to add features relating to motion and light-
ing conditions when addressing an uncontrolled environ-
ment to add robustness to classification. In future research,
we plan to expand the feature space to address these issues.

In future work, we would expand the benchmark clas-
sifiers to include emerging techniques that extend beyond
classical signal processing and ML, such as those described
in [37]. In addition, classification generality can be im-
proved further, e.g., using k-fold CV or LOSO validation.

8. Conclusion

In this contribution, we proposed, designed and tested
a deep learning classifier for improving non-contact video-
based detection of AF. We compared performance of the
proposed classifier with a benchmark of 5 existing classi-
fiers using data collected in a clinical study encompassing
55 patients diagnosed with AF before and after receiving
cardioversion procedure. Results show that the proposed
classifier is equivalent or improves performance against all
benchmark classifiers when using any of the major sensors:
ECG, PPG and VPG. Most notable is a significant improve-
ment when using a low cost webcam sensor, thereby pro-
moting the use of video monitoring on widely distributed
low cost platforms (smartphones, tablets, laptops, etc.).
Most importantly, results show that the proposed classifier
provides consistently accurate classification across all sen-
sors, bringing VPG on par with ECG and PPG and thereby
promoting potential acceptance of video monitoring as a re-
liable alternative to contact based sensors.
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