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Abstract

We present a lightweight neural model for remote heart
rate estimation focused on the efficient spatio-temporal
learning of facial photoplethysmography (PPG) based on
i) modelling of PPG dynamics by combinations of multi-
ple convolutional derivatives, and ii) increased flexibility of
the model to learn possible offsets between the facial video
PPG and the ground truth. PPG dynamics are modelled by
a Temporal Derivative Module (TDM) constructed by the
incremental aggregation of multiple convolutional deriva-
tives, emulating a Taylor series expansion up to the desired
order. Robustness to ground truth offsets is handled by
the introduction of TALOS (Temporal Adaptive LOcation
Shift), a new temporal loss to train learning-based mod-
els. We verify the effectiveness of our model by reporting
accuracy and efficiency metrics on the public PURE and
UBFC-rPPG datasets. Compared to existing models, our
approach shows competitive heart rate estimation accuracy
with a much lower number of parameters and lower com-
putational cost.

1. Introduction
Camera-based measurement of human physiological sig-

nals has gained considerable interest in the research com-
munity in recent years. The monitoring of vital signals such
as heart rate (HR), heart rate variability (HRV), respiration
rate (RR), oxygen saturation (SpO2) or blood volume pulse
(BVP) is crucial in the assessment of the physical and men-
tal human state, and its potential applications [1, 13, 28].
Traditionally, physiological signals are acquired using con-
tinuous bio-signal monitoring devices, which typically re-
quire physical contact between the sensor and the skin.
However, such physical contact limits the mobility of the
subjects and may also be intrusive to users in many sce-

narios, causing some biases during the acquisition stage.
Different approaches have emerged to estimate vital sig-
nals without physical contact to minimize these limitations,
among which, video-based methods, especially remote pho-
toplethysmography (rPPG), have attracted much attention
due to their low cost, non-invasive nature, and wide appli-
cability [26].

The rPPG or imaging photoplethysmography (iPPG) is
the non-contact measurement of the PPG signal based on
videos. The first rPPG measurements were proposed by
Takano et al. [33] and Verkruysse et al. [36] in 2007 and
2008, respectively, who demonstrated the feasibility of
extracting the pulse signal using a conventional camera.
Since then, several handcrafted methods have been pro-
posed [5,37,38] mainly based on optical models of the skin.
These approaches are usually sensitive to non-controlled
scenarios, including head motion and illumination changes,
and require a multi-stage process where some of the steps
are difficult to adjust.

The fast growth of deep learning (DL) techniques has led
to more accurate and robust methods that have shown im-
pressive results outperforming traditional approaches [25,
34, 42]. A key aspect for such success relates to the en-
hanced ability of these approaches to adequately model the
spatial and, more importantly, temporal information (dy-
namics) present in the facial videos. Indeed, the most suc-
cessful approaches to date are based on the use of 3D Con-
volutional Neural Networks (3DCNNs) that offer great flex-
ibility to model any interaction between spatial and tempo-
ral patterns at once, though at the expense of considerably
increasing the number of trainable parameters and thus the
complexity and size of the model.

Alternatives to 3DCNNs have also been explored by
combining spatial blocks based on 2DCNNs with additional
modules or pre-processing operations that also take into ac-
count the temporal information of the signal. Notable ex-
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amples include the use of normalized frame differences at
the system’s input [3] or after a number of convolutional
layers [40], as well as Temporal Shift Modules (TSM) [15]
or combinations of 2D and 1D convolutions [14].

Even though the above alternatives avoid the use of the
expensive 3D convolutions, achieving competitive perfor-
mance in this way has proved challenging, requiring the
clever combination of multiple modules to compensate for
the noisy and unstable nature of rPPG dynamics, and result-
ing again in arguably large models. In this paper, we show
that it is possible to model rPPG dynamics by means of local
derivative filters, provided that they are applied to the appro-
priate spatial scale and to a sufficient order. This leads to a
comparatively simpler architecture in which rPPG dynam-
ics are captured by a chain of temporal derivative modules
equipped with skip connections that emulates a Taylor se-
ries expansion up to a pre-established order. As shown in
our experiments, our system is comparable to state-of-the-
art approaches in terms of performance, but it is computa-
tionally more efficient and requires one or even two orders
of magnitude less parameters.

In order to effectively exploit temporal information, an-
other important aspect in deep learning approaches is the re-
liability of the ground-truth signals. While traditional tech-
niques do not depend on the acquisition of the ground truth
PPG because they directly estimate the rPPG signal from
the skin pixels, data-driven methods need the ground-truth
signal (e.g. from a pulsimeter) as a reference and assume
that it is well synchronized with respect to the facial video.
Nevertheless, these two modalities are often not correctly
aligned, and there is an offset between the facial pulse sig-
nal and the ground truth signal, commonly caused by the
Pulse Transit Time (PTT), whose exact value is unknown.
A few recent works have highlighted the importance of such
offset in performance, either by demonstrating improved re-
sults when the offset can be estimated beforehand and cor-
rected [44] or by training models with modified loss func-
tions that are more robust to the amount of ground-truth off-
set, although they do not model or estimate its value [6].
In contrast, we propose a more intuitive temporal-invariant
loss by modifying the standard mean square error (MSE)
loss to account for the temporal offset of the ground truth
and automatically estimate its value for each training se-
quence.

1.1. Contribution

In this work, we present a lightweight architecture to ad-
dress both the efficient modelling of rPPG dynamics and
the impact of temporal desynchronization between video
and ground-truth physiological data. Firstly, we introduce a
novel architecture in which rPPG dynamics are captured by
a chain of temporal derivative modules equipped with skip
connections that emulates a Taylor series expansion up to

a pre-established order. Secondly, we present a new tem-
poral loss, which we denote TALOS (Temporal Adaptive
LOcation Shift), that allows training of deep learning meth-
ods invariantly to temporal offsets of the ground-truth sig-
nal. Compared to existing models, our approach shows
competitive heart rate estimation accuracy with a much
lower number of parameters and lower computational cost.

2. Related work
2.1. Camera-based Physiological measurement

Since Takano et al. [33] and Verkruysse et al. [36] eval-
uated the possibility of measuring HR remotely from facial
videos, many researchers have proposed different methods
to recover physiological data. Among them, some works
consider regions of interest using various techniques, in-
cluding Blind Source Separation [10, 26, 27], normalized
Least Mean Squares [11] or self-adaptive matrix comple-
tion [35]. In contrast, other works rely on the skin optical
reflection model by projecting all RGB skin pixels chan-
nels into a more refined subspace mitigating motion arti-
facts [5, 37, 38].

Recently, deep learning-based methods [9, 17, 23, 25, 31,
42] have outperformed conventional methods and achieved
state-of-the-art performance estimating vital signs from fa-
cial videos. Some of these methods leverage prior knowl-
edge learned from traditional methods and combine it with
CNNs to exploit more sophisticated features [20,22,29]. On
the other hand, some other researchers have aimed at fully
end-to-end approaches [3,25,41]. Unlike previous methods,
end-to-end models utilize facial videos as input to directly
predict the rPPG signal.

2.2. Deep Spatio-Temporal modelling

Spatio-temporal modelling plays a crucial role in rPPG
measurement. To learn better PPG features from facial
video, DL approaches have been explored under different
space-time schemes: sequential (e.g. CNN combined with
LSTM [8, 9]) , in parallel (e.g. two-branch CNN [3, 39]) or
simultaneous (e.g. 3DCNNs [25,41]). From these schemes,
the most explored one is based on 3DCNNs, which simul-
taneously capture spatial and temporal information, reach-
ing impressive results in heart rate (HR) estimation. How-
ever, they require high computational cost and a signifi-
cant increase of trainable parameters compared with con-
ventional 2DCNNs. Some alternatives appeared to over-
come the computational cost of 3DCNNs while preserving
the robustness of Spatio-temporal modelling. Firstly, Chen
et al. [3] proposed a convolutional attention network (CAN)
using normalized frame differences as input to emulate the
first-order derivative in the temporal domain. Other studies
attempted to boost 3DCNN temporal modelling by incorpo-
rating Temporal Shift Modules (TSM) [12, 15] and approx-
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imating temporal representation employing a combination
of 2D and 1D convolutions [14]. In contrast, Liu et al. [40]
designed a novel Temporal Difference Convolution (TDC)
to simulate the normalized frame difference from [3], but at
feature level. However, we argue that this approach is not
benefiting from higher orders dynamics that can contribute
to more refined features from PPG signal recovery. A recent
study proposed by Hill et al. [7] demonstrated the benefits
of incorporating multi-derivative convolutions to obtain bet-
ter PPG signal estimation. The problem of this method is
that it is applying first and second-order derivatives as an
input following the architecture presented by [3]. Unlike
these approaches, we propose exploring the contribution of
higher-order dynamics into feature level that is currently
still largely unexplored.

2.3. Modelling temporal offsets in Deep Learning
based approaches

One of the major drawbacks of Deep Learning (DL) ap-
proaches for rPPG compared to traditional ones such as
[5,37] is the need of a reliable ground truth of the BVP sig-
nal during the training process. More precisely, the rPPG
estimation from facial videos demands a very precise syn-
chronization between facial and physiological recordings.
Nevertheless, since most of the existing databases employed
finger pulse oximeter to record PPG signals [2, 21, 32, 46],
they did not consider the physiological offset or PTT be-
tween the facial and finger blood flow [19]. Another poten-
tial synchronization error that can occur is during the ac-
quisition procedure due to the rolling shutter effect. Miro-
nenko et al. [18] proved the existence of a slight phase shift
between both modalities caused by the progressive scan-
ning of some imaging devices. Consequently, we are forc-
ing DL models to learn inaccurate correspondences between
the spatial and physiological information during the training
stage.

Zhan et al. [44] were the first to determine the impact
of phase-shift regarding the HR error between default and
phase-corrected reference training labels. Since traditional
approaches depend directly on the facial skin pixels, they
used a POS approach to correct reference labels through the
Hilbert Transform. Despite recent studies [30] are adopting
the same strategy with different conventional approaches,
this rectification implies an extra preprocessing step relying
on the accurate PPG estimation of a traditional method. A
different alternative to address the reference offset was pre-
sented by Gideon et al. [6], who introduced a frequency loss
based on maximum cross-correlation (MCC) to be more ro-
bust to temporal offsets. However, they apply the cross-
correlation loss at sub-sequence level, which provides too
much flexibility to the model by ignoring the fact that tem-
poral offsets are only dependent on the video or subject.
In our ablation studies Sec. 4.3.2, we demonstrate that the

benefits of considering temporal offsets at the subject level
instead of using a sub-sequence level also imply a better HR
estimation.

In this paper, to overcome the phase-shift problem we
propose an alternative and simpler loss based directly on the
temporal domain, which provides very competitive results
compared with the common losses used in rPPG estimation.

3. Methodology
In this section, we firstly introduce the details of our pro-

posed rPPG end-to-end model. Subsequently, we focus on
the presented objective function to deal the temporal offset
between facial and physiological data.

3.1. Overview

The motivation of our proposed spatio-temporal model is
three-fold: 1) projecting the input RGB images into an opti-
mal latent space encoding the information of the rPPG sig-
nal while preserving the model’s computational complexity,
2) efficiently modelling temporal information using a cas-
caded temporal derivative module (TDM), to achieve the
equivalent to a high-order Taylor approximation, 3) reduce
the influence of PTT in the pulse estimation through TA-
LOS loss. Given an input facial RGB video sequence X
with size 3×T ×H ×W , the overall architecture is shown
in Fig. 1. Here, 3 refers to RGB channels and T,H,W are
the number of frames, height and width of each frame, re-
spectively.

3.2. Spatio-temporal Modelling

The presented network is divided into the spatial en-
coder and the temporal derivative module. The encoder
aims to learn relevant spatial filters that project the facial
data into a space relevant to extracting pulsatile informa-
tion. The encoder consists of two 2D convolutions with
a 3x3 kernel size. Each convolution is followed by the
hyperbolic tangent activation function, batch normalization
(BN) and average pooling operation. Then, the rough spa-
tial features of each frame are reshaped and zero-padded
before being fed to the TDM to aggregate the information
of all video frames. In our preliminary experiments, we ob-
served that adding more spatial convolutional layers leads to
a significantly higher computational complexity during in-
ference without providing a relevant performance improve-
ment. Our proposed TDM is composed of differential tem-
poral convolutions (DTC) that model the dynamics of the
spatial features by a chain of derivative filters up to the se-
lected order, with the aim to approximate local dynamics
as in a Taylor series expansion. Similar to [7], our archi-
tecture employs two consecutive DTC to model first and
second temporal order derivatives which represent veloc-
ity and acceleration dynamics of rPPG. In order to show
the benefits of modelling second-order temporal derivatives,
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Figure 1. Overall structure of our proposed model.

we perform an ablation study where our model is able
to extract more sophisticated features using second-order
than zero and first order, which are the most common or-
ders in prior work. To ensure this behavior, we implement
the DTC blocks as 1D-convolutions with fixed weights i.e.
non-trainable weights chosen to approximate a first-order
derivative operator. Therefore, the first order DTC can be
formulated as follows:

DTC1(t) =
∑
τ∈R

w∂t(τ) · x(t+ τ) (1)

where t denotes the current temporal location, x is the out-
put tensor from the 2DCNN corresponding to the extracted
spatial features, w∂t = [−2,−1, 0, 1, 2] is the derivative fil-
ter using 5× 1 kernel size and R is the receptive field. Our
preliminary experiments revealed that the use of longer tem-
poral windows did not lead to a significant performance im-
provement. Then, the n-th order DTC is defined recursively
as:

DTCn(t) =
∑
τ∈R

w∂t(τ) ·DTCn−1(t+ τ), ∀n > 1

(2)
where the temporal information is modeled using the output
tensor of previous DTC instead of the spatial features from
the 2D encoder. Later, we can define the TDM as the con-
catenation across the channel dimension of the tensor of all
the DTC derivatives :

TDM = Concat(DTC1,DTC2, . . . ,DTCn) (3)

Finally, the TDM output is projected into signal space us-
ing a channel-wise convolution operation with 1×1 kernel
to generate the predicted rPPG signal of size T .

3.3. Loss function

The impact of PTT during the training process of
learning-based methods has been previously discussed in

[44]. In particular, it has been shown that it is crucial to
design an appropriate objective function robust to the tem-
poral offset produced during the acquisition procedure or
caused by the PTT between facial and finger regions. For
this reason, we introduce the TALOS (Temporal Adaptive
LOcation Shift) Loss, a new temporal loss to train deep
learning models in the context of rPPG signal estimation.

To design our loss function, we consider two assump-
tions. Firstly, the time offset between facial data and the
finger-PPG signal is in the order of milliseconds, and thus it
is well bounded within ±Fs

2 frames, where Fs is the video
sampling frequency. Secondly, the PPG phase shift is the
same for all video instances of the same subject because the
time delay depends on each individual’s physiology and the
recording setting, which remains the same.

Considering the previous assumptions, we propose a loss
function designed to be robust against possible unknown
temporal offsets. In particular, we introduce a latent vari-
able for each subject s as Ks = {k | k

2 ∈ Z : −Fs

2 ≤ k ≤
Fs

2 }, representing all the possible temporal shifts for a given
subject. Given the previous definition, our goal is to learn a
parametric distribution:

pθ(k|s) =
exp(θsk)∑K
i=1 exp(θ

s
k)

, (4)

where parameters θs ∈ RK encode the logits of a multi-
nomial distribution for all the possible temporal offsets k
given a subject s. Using the previously defined distribu-
tions, our proposed TALOS loss function is computed dur-
ing optimization as described bellow.

Let ŷ(t) be the predicted signal from our model, and y(t)
the ground-truth signal, both with the same length T . We
zero-pad the ground truth signal with respect to all possible
offsets k:

ypad =

{
pad(k, y), if k ≤ 0

pad(y, k), if k > 0
(5)
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Then, the padded ground-truth signal ypad is shifted for
all possible delays within K and each yk is used to compute
the Mean Squared Error (MSE) with respect to the predicted
signal y:

yk = ypad(t− k) ∀k ∈ K (6)

MSE(ŷ, yk) =
1

T

T∑
t=1

(ŷ(t)− yk(t))
2 (7)

Finally, we express our proposed TALOS loss function
as:

LTALOS =
∑
k∈K

MSE(ŷ, yk) · pθ(k|s), (8)

where the MSE for each possible offset k is weighted ac-
cording to the learned temporal-shift probability pθ(k|s).
Note that this probability is dependent on the the subject s
corresponding to the specific ground-truth video.

The rational of the above formulation is that, when the
value of k is approximately the offset between the ground
truth and the pulsatile variation captured by the input video,
then the MSE is expected to reach its minimum value.
However, k is not known beforehand and thus, we learn a
distribution over a latent variable representing all the pos-
sible temporal shifts. Note that the parameters θs for this
distributions are optimized during training and, as a conse-
quence, we expect to assign a higher probability to offsets
k leading to a lower MSE error.

4. Experiments
In this section, we first introduce the two benchmark

datasets used in the experiments and describe the imple-
mentation details. Then, we compare the impact of dif-
ferent modules explained in Section 3 on the test results.
Finally, we present a relative comparison with the existing
rPPG methods.

4.1. Datasets

We evaluated our approach on the following two RGB
video datasets.

PURE [32]: The Pulse Rate Detection Dataset con-
tains 60 videos from 10 subjects (eight male, two female)
performing six different head motion tasks: steady, talk-
ing, slow translation, fast translation, small rotation, and
medium rotation. The facial videos were recorded using an
ECO274CVGE camera with a resolution of 640 x 480 pix-
els and 30 frames per second (FPS). Each video is about
1 minute long and stored in uncompressed PNG format.
The gold-standard measures of BVP and SpO2 were col-
lected using a finger pulse oximeter (pulox CMS50E) with
a sampling rate of 60 Hz. PURE contains predefined splits

for training and test (7 subjects for training, 3 subjects for
testing), which we use to compare with the current related
work.

UBFC-RPPG [2]: The UBFC-RPPG dataset includes
42 RGB videos from 42 subjects. The subjects were asked
to play a time-sensitive mathematical game, emulating a
standard human-computer interaction scenario, to obtain
varied HR during the experiment. The recorded facial
videos were acquired indoors with varying sunlight and in-
door illumination at 30 FPS with a webcam (Logitech C920
HD Pro) at a resolution of 640x480 in uncompressed 8-bit
RGB format. The bio-signals ground-truth were acquired
using a CMS50E transmissive pulse oximeter to record PPG
signal and heart rate with a 60 Hz sampling rate. To validate
UBFC, we use the first 28 subjects for training and the last
14 subjects for testing following [16].

4.2. Implementation details

4.2.1 Preprocessing and training procedure

We adopt the same preprocessing stage for each dataset in
all our experiments. Firstly, we estimate facial regions for
each frame using the MTCNN [45] algorithm adding a 50%
scale size of the detected box and resizing each frame to
128 × 128 pixels. The ground-truth bio-signal is prepro-
cessed following [4] to denoise the raw PPG signal, which
facilitates a better model convergence during the training
procedure. The resulting bio-signal is then downsampled to
30 Hz so that it matches the sampling rate of the videos.

We implemented our model using Pytorch 1.8.0 [24] and
trained it on a single NVIDIA GTX1080Ti. We utilized
sequences of 256 frames without overlap and Adadelta op-
timizer during training [43]. In addition, when using our
TALOS loss, we incorporated an extra SGD optimizer with
a 0.01 learning rate to optimize the parameters θs of the
temporal-shifts distributions for each subject. Finally, the
estimated HR was computed from the predicted rPPG sig-
nal using the power spectral density (PSD). Before calculat-
ing the HR value, we applied a band-pass filter with cutoff
frequencies of 0.75Hz and 2.5 Hz, similarly to [3].

4.2.2 Metrics and evaluation

To evaluate the HR estimation performance of the proposed
model, we adopted the same metrics used in the literature,
such as the mean absolute HR error (MAE), the root mean
squared HR error (RMSE) and Pearson’s correlation co-
efficients R [11], [35]. Besides, we computed the com-
putational performance in terms of the number of param-
eters and Multiple-Accumulate (MACs) 1 to compare the
efficiency of our model with respect to the major existing

1https : / / github . com / sovrasov / flops - counter .
pytorch
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methods. Ablation experiments were performed using 256-
frame sequences (8.5 seconds approx) with no overlap to
compute HR estimation and all reported metrics, which is
more challenging and informative than HR estimation based
on the whole video sequence at once. Nevertheless, we
also computed whole-video performance to fairly compare
our method to the state-of-the-art, because most prior work
adopts whole-video evaluation. Thus, we compare our ap-
proach with different traditional and deep learning meth-
ods. Since not all learning-based methods report HR re-
sults on the same dataset, we re-implemented the PhysNet
model [41] using the code provided by the author 2 and the
hyper-parameters in the paper. For DeepPhys [3] and Zhan
et al. [44] model, the source code is not publicly available,
so we also re-implemented them according to the details
provided in the respective papers.

4.3. Ablation studies

4.3.1 Evaluation of Spatio-temporal modelling

Our first experiment to configure our model analyses the in-
fluence of aggregating DTCs. For this reason, we evaluate
our model into three different schemes. Firstly, we consider
our model using only spatial information without modelling
temporal dynamics. The 2DCNN spatial encoder forms this
first configuration, also called TDM0, since it represents
a zero-order derivative. Later, to create high-order models,
we introduce sequential DTCs creating TDM1 and TDM2,
representing the first and second-order derivatives. Tab. 1
summarized the sequence HR estimation for each tempo-
ral derivative order, which indicates that the aggregation of
high-order derivatives is producing a more robust spatio-
temporal representation for rPPG.

Table 1. Evaluation of TDC aggregation

Derivative
order

Sequence evaluation
MAE↓ RMSE↓ R↑

TDM0 4.34 8.05 0.80
TDM1 2.84 6.01 0.88
TDM2 2.68 5.55 0.90

As mentioned in Sec. 2.2, there are different approaches
to model spatio-temporal information. Then, in this sec-
ond experiment, we fix the first layers of our model (spatial-
only), used as a baseline model, and we evaluate different
choices for the temporal modelling stage. To this end, we
implement two modified versions of our proposed model.
In the first version, we adopt the best configuration found
in the first experiment, which consists of TDM2, shown
in Fig. 1, while in the second version, we combine spa-
tial and temporal information simultaneously, substituting

2https://github.com/ZitongYu/PhysNet

the TDM by two 3D convolutional layers. To validate
the capability of the different configurations, we evaluate
each architecture in terms of sequence HR estimation, but
also the performance of each architecture, summarized in
Tab. 2. In terms of HR estimation, our proposed TDM
and the modified 3D architecture obtained similar results,
while the 2DCNN model produces higher HR error than the
other configurations. On the other hand, regarding the com-
putational cost, we observe a significant difference in the
number of parameters and MACs between 2DCNN and our
TDM approach compared with the 3DCNN configuration.
This suggests that constrained temporal modelling based on
dynamic properties can capture temporal information as ac-
curately as 3DCNNs but with far less parameters and re-
duced computational cost, similar to 2DCNN performance.

Table 2. Evaluation of spatio-temporal modelling.

Model Heart Rate Performance
MAE↓ RMSE↓ R↑ Params(K) MACs(G)

2DCNN 4.34 8.05 0.80 5.17 6.95
3DCNN 2.69 5.66 0.89 15.51 9.70
TDM 2.68 5.55 0.90 5.26 7.08

4.3.2 Evaluation of the objective function

To evaluate the effectiveness of TALOS loss, we compare
it to other loss functions under the same network configu-
ration explained in the previous section. To this end, we
choose the MSE, and Negative Pearson Correlation (NPC)
losses [41], which are widely used in the prior work for
remote heart rate estimation. Furthermore, to assess the ro-
bustness of temporal offsets on the ground-truth signal, we
also evaluate a frequency domain loss function, the maxi-
mum cross-correlation (MCC) loss proposed in [6].

Table 3. Comparison of different loss functions.

Loss Sequence evaluation
MAE↓ RMSE↓ R↑

MSE 2.68 5.55 0.90
NPC [41] 2.67 5.62 0.89
MCC [6] 2.44 3.73 0.96
TALOS 2.33 3.41 0.96

Tab. 3 summarizes the results, which show a similar
trend between MSE and NPC losses. This can be explained
because NPC is only focused on the similarity between sig-
nals without considering the morphology and range of the
signals, which can lead to some estimation error. Usually,
the majority of methods that adopt NPC apply some pre-
vious normalization before propagating the loss, which we
do not consider to compare all the loss functions in a more
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(a) Proposed method trained with LMSE loss (b) Proposed method trained with LTALOS (c) Latent probability matrix Pθ

Figure 2. PPG sequence estimation on individual’s PURE test data using the standard MSE loss, Fig. 2a, and the proposed TALOS loss,
Fig. 2b. In Fig. 2b we observe how the model is able to predict the PPG signal in the temporal instance where the regression error is
minimum, regardless of the ground-truth phase. On Fig. 2c is shown the learned frame offset for each subject during the training process
using TALOS loss. The offset range is limited between 0 and 300 ms for better visualization.

direct and fair manner. In contrast, we can appreciate a
significant difference between these previous temporal loss
functions and temporal offset invariant losses such as TA-
LOS or MCC. These results show the impact on HR esti-
mation of the PTT delay between the ground truth and the
facial data, which makes it harder for the model to learn the
actual relation between the predicted signal from the skin
color changes and the label signal when using conventional
loss functions. Finally, comparing MCC with TALOS, we
observe that our proposed loss obtains better results in MAE
and RMSE. This difference can be explained because MCC
considers each sequence or video independently while TA-
LOS loss enforces to learn a consistent shift distribution for
each subject. In Fig. 2, we can note that the predicted signal
amplitude, shown in Fig. 2b, is substantially more accurate
than the estimates produced under standard losses (Fig. 2a),
while the offset between the ground truth and the prediction
is still clearly visible. This effect is due the built-in esti-
mate of the shift probabilities of TALOS, which we show
in Fig. 2c: notice how the estimated shift probabilities for
each subject always follow a similar pattern dominated by
a peak that spreads one or two frames that is surrounded by
near-zero values elsewhere. Further, these peaks are local-
ized between 3 to 5 frames, suggesting offsets that range
from 100 to 170 milliseconds, depending on the subject.

4.4. Comparison with existing methods

After the preliminary studies from the previous sec-
tions, we select our best model configuration to compare
against other reported results on the PURE and UBFC-
rPPG datasets. Besides, we compare the efficiency of our
model with respect to the reproduced methods explained on
Sec. 4.2. In contrast to the ablation studies of Sec. 4.3, we
estimate the average HR for each video as a whole, to al-
low for fair comparison to results from other researchers.
Results are summarized in Tab. 4.

1) Results on PURE dataset: We first conduct the video

HR evaluation on the PURE dataset. These results show
that DL methods like HR-CNN and DeepPhys perform
much better than the hand-crafted methods such as POS and
CHROM. This suggests that learning-based models can ex-
tract more representative features than hand-crafted meth-
ods for PPG signal and HR estimation. Indeed, the results
of the compared DL approaches vary between 2.29 and 2.90
BPM RMSE, which denotes the good performance in non-
compressed data and controlled scenarios such as the PURE
dataset. Regarding our proposed method, we can appreciate
that it outperforms some DL methods such as HR-CNN or
PhysNet, achieving at the same time similar results as Zhan
et al. [44] and DeepPhys, which obtains the best results.

2) Results on UBFC-rPPG dataset: We also evaluate
our model in the public UBFC dataset. Comparing these
results to those from the PURE dataset, we observe that
UBFC is more challenging since the RMSE from the differ-
ent methods varies between 3.08 and 6.61 BPM. It can be
seen that our proposed model achieves the best HR video re-
sults concerning both traditional and DL approaches. This
performance is possible through TALOS loss, which con-
siderably improves our baseline results by adopting a stan-
dard MSE regression. Comparing the impact of TALOS
loss in HR video estimation for PURE and UBFC datasets,
we note a significant error decrease in UBFC and a more
modest improvement in the PURE dataset. The limited
number of subjects can explain this difference in the PURE
dataset, which consists of several recordings from only ten
subjects, while UBFC datasets contain more subject diver-
sity and fewer recordings per user.

3) Results on computation cost: Finally, we analyze the
performance efficiency of our method compared with the
publicly available and re-implemented DL methods. Tab. 5
shows that our lightweight model is extremely efficient with
respect to the state-of-the-art models in terms of parame-
ters and MACs. Considering this reduced computational
cost, our model outperforms the PhysNet, consisting of a
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Table 4. : Performance of heart rate measurement for PURE and UBFC-rPPG datasets.

Method PURE UBFC
MAE↓ RMSE↓ R↑ MAE↓ RMSE↓ R↑

CHROM [5] 2.07 2.50 0.99 3.44 4.61 0.97
POS [37] 3.14 10.57 0.95 2.44 6.61 0.94

HR-CNN [31] 1.84 2.37 0.98 - - -
DeepPhys [3] 1.84 2.31 0.99 2.90 3.63 0.98
PhysNet [41] 2.16 2.70 0.99 2.95 3.67 0.98

Zhan et al. [44] 1.82 2.29 0.99 2.44 3.17 0.99
Gideon et al. [6] 2.30 2.90 0.99 - - -
AND-rPPG [16] - - - 2.67 4.07 0.96

Ours 1.89 2.33 0.99 2.54 3.31 0.99
Ours + TALOS 1.83 2.30 0.99 2.32 3.08 0.99

3DCNN Spatio-temporal auto-encoder. This means that a
reduced model with well-designed but constrained tempo-
ral modelling, and suitable PPG preprocessing can achieve
similar or better results than 3DCNNs, which usually re-
quire massive data to train all the model parameters.

Table 5. Efficiency performance on tested methods.

Methods Params(K) MACs(G)
DeepPhys [3] 1060 16.44
PhysNet [41] 768 112.33

Zhan et al. [44] 2620 59.40
Ours 5.26 7.080

5. Conclusions
In this paper, we propose a lightweight model for re-

mote heart rate measurement. The presented method ef-
fectively estimates rPPG spatio-temporal features by aggre-
gating multiple temporal derivative filters up to the desired
order. Moreover, to mitigate the effect of possible tempo-
ral offsets such as PTT, we introduce a new objective loss
function, which we call TALOS, designed to learn the la-
tent shift probabilities of the ground truth during the train-
ing process, which allows to minimize the error between the
predicted and label signals under the estimated relative off-
set. Through experiments on the PURE and UBFC-rPPG
datasets, our proposed framework demonstrates a compet-
itive HR performance with reduced computational require-
ments, which facilitates applicability to real/low-resource
scenarios. In our future work, we aim to explore the com-
bination of higher-order dynamics to further improve the
temporal modelling for rPPG estimation.
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