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Abstract 

We propose a remote method to estimate continuous 
blood pressure based on spatial information of a pulse 
wave at a single point in time. By setting regions of 
interest to cover a face in a mutually exclusive and 
collectively exhaustive manner, RGB facial video is 
converted into a spatial pulse wave signal. The spatial 
pulse wave signal is converted into spatial signals of 
contours of each segmented pulse beat and relationships 
of each segmented pulse beat. The spatial signal is 
represented as a time-continuous value based on a 
representation of a pulse contour in a time axis and a 
phase axis and an interpolation along with the time axis. 
A relationship between the spatial signals and blood 
pressure is modeled by a convolutional neural network. A 
dataset was built to demonstrate the effectiveness of the 
proposed method. The dataset consists of continuous 
blood pressure and facial RGB videos of ten healthy 
volunteers. A comparison of conventional methods with 
the proposed method shows superior error for the latter. 
The results show an adequate estimation of the 
performance of the proposed method, when compared to 
the ground truth in mean blood pressure, in both the 
correlation coefficient (0.85) and mean absolute error 
(5.4 mmHg). 

1. Introduction 

Blood pressure is an important biomarker that reflects 
health status. Health risks due to hypertension include 
heart and kidney failure, and health risks due to 
hypotension include a decline in metabolism and brain 
function. It is essential to measure blood pressure 
continuously for health management. Moreover, an 
instantaneous fluctuation of blood pressure contains 
critical information. For example, the reserve capacity 
can be observed by the resilience of blood pressure to a 
postural change. Thus, health care requires high temporal 
resolution in blood pressure measurement. Continuous 
blood pressure measurement requires the use of 
protrusive and expensive equipment, except for a few 
new ideas still under investigation, such as the use of 
finger oximeters for blood pressure evaluation [1,2]. It is 
desirable to read blood pressure using simple and non-
contact equipment. Recently, researchers have been 
intensively studying remote methods to estimate blood 
pressure using RGB cameras. Jeong et al., Fan et al., and 
Huang et al. [3,4,5] focused on a correlation relationship 
between pulse transit time (PTT) measured remotely and 
blood pressure based on the Moens-Korteweg equation 
[6]. There are two main limitations to these methods: a 
requirement for simultaneous capturing of a face and a 
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palm with an RGB camera, and a requirement for a very 
high temporal resolution of an RGB camera. Sugita et al. 
and Buxi et al. focused on the relationship between 
characteristics of pulse wave contours and blood pressure 
measured remotely [7,8]. These methods provide 
relaxation of the two requirements in PTT-based methods. 
First, the methods only require the capturing of a single 
part, which is a face or a palm. Second, the methods 
require the relatively low temporal resolution of an RGB 
camera. However, this method contains two limitations. 
First, the methods are based on a single pulse wave 
acquired from a face or a palm, which differs from our 
present study that presents a relationship between spatial 
differences in pulse waves and blood pressure. Second, 
the method response time to estimate blood pressure is 
slow compared to the heart rate time frames. This long 
response time prevents the tracking of instantaneous 
characteristics of pulse waves and pulse-by-pulse blood 
pressure measurements [9]. 

In this study, we propose a remote method that 
overcomes the two limitations mentioned above. We 
estimate continuous blood pressure by continually 
tracking spatial information of facial pulse waves. We 
model a relationship between spatial information of facial 
pulse waves and blood pressure, based on a convolutional 
neural network (CNN). Estimations of continuous blood 
pressure at a given time are based on a representation of 
a pulse wave on a time axis and a phase axis, and on a 
pseudo-continuous time variable built by an interpolation. 

2. Method 
The proposed method consists of two main steps. The 

first step is a spatial description of the facial pulse wave. 
The second step involves a CNN-based model of the 
relationship between the spatial information of facial 
pulse waves and blood pressure. 

2.1 Step 1: Spatial Description of the Facial Pulse 
Wave 

Fig.1 shows the data flow of the phase of a spatial 
description of a facial pulse wave.  

 

 
Fig 1. Dataflow of the spatial description of a facial 

pulse wave 
This phase consists of three main processes. The first 

process is the construction of spatial pulse waves from a 

facial RGB video. The second process is the construction 
of a spatial pulse contour descriptor from the spatial 
pulse wave. The third process is the construction of a 
spatial pulse beat descriptor from the spatial pulse wave. 

A conceptual diagram of the construction of spatial 
pulse waves is shown in Fig. 2. This process is based on 
a remote method to extract pulse waves from RGB facial 
video as proposed by Fukunishi et al. [10]. The method 
separates a facial RGB image into intensity maps of 
melanin, hemoglobin (Hem), and shading (residual 
information). In their method, a single pulse wave is 
extracted from the generated hemoglobin map, by 
choosing a region of interest in the RGB facial video. The 
extracted pulse wave is denoised by the detrending 
method and bandpass filtering. In our method, multiple 
regions of interest (40 px ×40 px) are set to cover a face 
in a mutually exclusive and collectively exhaustive 
manner. Then, pulse waves corresponding to each region 
of interest are extracted. The extracted pulse waves are 
spatially reconstructed in such a way as to preserve the 
spatial phase relationship of the original video, 
constructing a spatial pulse wave. 

 

 
Fig 2. Conceptual diagram of the construction of a 

spatial pulse wave 
 
A conceptual diagram of the construction of a pulse 

contour descriptor is shown in Fig. 3. Below, we will first 
describe a pulse contour descriptor and then describe a 
spatial pulse contour descriptor. A pulse contour 
descriptor is constructed from a pulse wave at a single 
coordinate of a spatial pulse wave so that it does not have 
spatial information. A spatial pulse contour descriptor is 
constructed from all pulse waves at all coordinates of a 
spatial pulse wave so that it has spatial information. 

A pulse contour descriptor is constructed in three 
steps. First, a pulse wave is decomposed into unit pulse 
contours based on peak detection. Second, setting the start 
point of a pulse contour at zero phase angle, each pulse 
contour is separated into a time axis and a phase axis. This 
process collapses each pulse contour into a single phase-
description at a single point of the time axis (Fig. 3). The 
phase resolution is set at 200 points per cycle. Third, an 
interpolation process is applied to the magnitudes of each 
phase along the time axis. This is to resample linearly 
pulse contours, which appear at unequal intervals. The 
interpolation process is performed by cubic spline 
interpolation at 200 Hz. 

A spatial pulse contour descriptor is constructed in 
two steps. First, a pulse contour descriptor is extracted 
for each spatial coordinate of the face. Second, a pulse 
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contour descriptor for each spatial coordinate of the face 
is spatially reconstructed, preserving the spatial 
relationship of the facial pulse wave. This process results 
in a spatial pulse contour descriptor with 200 channels 
(phase resolution). 

 

 
Fig 3. Conceptual diagram of a construction of a pulse 
contour descriptor. The start point of a pulse contour is 

set at zero phase angle. 
 
For the construction of a spatial pulse beat descriptor, 

we will first describe a pulse beat descriptor, and then we 
will describe a spatial pulse beat descriptor. 

 The pulse beat descriptor is constructed via three 
processes. First, three pieces of information are extracted 
from the hemoglobin video component: a pulse phase, a 
pulse volume, and a pulse interval.  

The pulse phase is defined as the difference between 
the pulse peak time of each region of interest and the 
average pulse peak time of all regions of interest.  

The pulse volume is defined as the ratio between the 

AC and DC components of the pulse wave.  
The pulse intervals are defined as the time differences 

between the peak times of consecutive pulses.  
Second, pulse phase, pulse volume, and pulse interval 

are resampled along the time axis. Resampling is 
performed by a cubic spline interpolation with a  
sampling rate of 200 Hz. 

The spatial pulse beat descriptor is constructed via 
two processes. First, a pulse beat descriptor is extracted 
for each spatial coordinate of a spatial pulse wave. Second, 
a pulse beat descriptor for each spatial coordinate of the 
image is reconstructed to preserve the spatial relationship 
of spatial pulse waves. These processes result in the 
construction of a spatial pulse beat descriptor, which 
holds three channels corresponding to a pulse phase, a 
pulse volume, and a pulse interval. 

2.2 Step 2: CNN for blood pressure training 

We use a deep-learning CNN architecture based on 
ResNet [11] and CBAM [12], The spatial pulse contour 
descriptor and the spatial pulse beat descriptor, 
previously defined, are the inputs. Systolic blood pressure 
(SBP), mean blood pressure (MBP), and diastolic blood 
pressure (DBP) are the outputs of the CNN (Fig. 4).  
Each module in the deep learning architecture is shown in 
Figure 5.

 
Fig 4. Deep learning architecture. Abbreviation’s guide: Conv (convolutional layer), P-Conv (point-wise convolutional 
layer), BN (batch normalization), Concat (concatenate), GAP (global average pooling), and FC (fully connected layer). 

The spatial pulse contour descriptor and the spatial pulse beat descriptor are independently encoded. Then, they are 
concatenated and encoded. The spatial pulse descriptor contains a pulse phase, a pulse volume, and a pulse interval.  

 

 
 

(a) (b) (c) 
Fig. 5. Architecture of each block in the architecture of deep learning. Abbreviations guide:  Conv (convolutional 

layer), P-Conv (point-wise convolutional layer), BN (batch normalization), Concat (concatenate), GAP (global average 
pooling), GMP (global max pooling), and FC (fully connected layer). (a) ResBlock (b) Channel attention block (C-

Attention) (c) Spatial attention block (S-Attention) 
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3. Experiment 
In what follows, first, we describe an experiment we 

conducted with volunteers to construct a dataset. Second, 
we describe a benchmarking design. Third, we describe 
the training of the CNN. Finally, study the accuracy of our 
proposed method by comparing predictions with the 
ground truth 

3.1 Dataset Construction 

An experiment with volunteers was conducted to 
build a dataset to evaluate the effectiveness of the 
proposed method. The number of subjects was 10 (9 
males and 1 female), aged 23.3 ± 1.4 years old. The 
experimental environment is shown in Fig. 6. The 
protocol used to modify the blood pressure of the 
volunteers during the data acquisition process was a cycle 
consisting of 30 seconds of resting state, up to 60 seconds 
of breath-holding state, and 60 seconds of resting state. 
This protocol was performed 3.0 ± 0.5 times for each 
volunteer, which produced a total of 30 measurements for 
all volunteers. The variation in the number of times was 
due to data corruption caused by an equipment 
malfunction.  We acquired blood pressure data with a 
continuous monitor (Finometer MIDI, Finapres Medical 
Systems) attached to the left middle finger of the 
volunteers, and acquired face video with an RGB camera 
(DFK33UX174, The Imaging Source). The camera 
sampling rate was set at 160 Hz, and its resolution was set 
at 960 px × 740 px. Boxplots of the blood pressure of 
all measurements are shown in Fig.7. 

 

 
Fig 6. Experimental environment 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Boxplots of blood pressure of constructed 
dataset. (a) Systolic blood pressure (b) Mean blood 
pressure (c) Diastolic blood pressure. The green 

vertical bars show test data. 

3.2 Benchmarks Design 

To use as a benchmark, we designed a multilayer 
perceptron that estimates blood pressure from a set of 
conventional features extracted from facial pulse waves. 
The multilayer perceptron is a standard model for a neural 
network that does not deal with spatial information. This 
multilayer perceptron has five intermediate layers. The 
number of channels of the input layer is the number of 
features. The number of channels at the end of the 
intermediate layer is half of the number of channels in the 
input layer. The number of channels of the intermediate 
layers linearly decrease from the number of channels in 
the input layer to the number at the end of the intermediate 
layer, and so on. The channels of the output layer are 
systolic, mean, and diastolic blood pressure. As inputs, we 
chose pulse wave features known to pertain to blood 
pressure: pulse wave contour, its second derivative, and 
pulse beat [2,13,14,15]. Table 1 shows the full list of 
features. 

3.3 Training the Neural Networks 

This section describes the training of the deep learning 
architecture for the evaluation of the proposed method. 
The total number of data points is 9000, [30 experiments 
× each experiment’s duration (150 s) × sampling rate (200 
s-1). This sampling rate is the one from the spatial pulse 
contour descriptor and spatial pulse beat descriptor. The 
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dataset is divided into training and testing data in units of 
one experiment. We use 80% of the dataset (24 
experiments) for training data and the remaining 20% of 
the dataset (6 experiments) for testing. Test data has 
different experimental data from the same individuals as 
training data. In test data, there is no duplication of the 
individuals. In training, the number of epochs is 50. The 
batch size is 256. The loss function is defined as the sum 
of the mean squared error (MSE) of systolic, mean, and 
diastolic blood pressure. The optimization method is the 
Adam Optimizer. The learning rate starts at 0.01 and it is 
divided by 5 every 10 epochs. 

3.4 Results and Discussion 
To compare the proposed method with the 

benchmarks, the correlation coefficient and the mean 
absolute error are shown in Table 2. The proposed method 
shows significantly superior results, with a correlation 
coefficient of over 50% better, and with a mean absolute 
error of 35% lower than the benchmark we used. In 
addition, the proposed method tracks ground truth blood 
pressure waveforms qualitatively much better than the 
benchmark (Fig. 8). Overall, the proposed method, under 

the conditions tested, is adequate on its own merits:  the 
correlation coefficient between predicted and ground 
truth MBP is 85%, with a mean absolute error of 5.4 
mmHg, which is about 5% of the MBP. 

Here, we discuss the limitations of the proposed 
method. There are two main limitations. First, the 
influence of individual differences on the proposed 
method is not sufficiently demonstrated in this study. 
Because in this study, the training and testing data 
contained information from the same individuals. Second, 
the data were acquired under idealized conditions. 
Requirements for the quality of pulse waves obtained 
remotely require further studies. It is well known that the 
quality of pulse waves obtained remotely depends on the 
characteristics of the camera, light source, skin, and body 
motion of the subjects [9,10,16,17,18]. In addition, we 
need to investigate the precision and robustness of each 
part of the proposed process, such as peak detections. 
Third, we heuristically hypothesized that information 
about blood pressure could be obtained from the pulse 
wave propagation on the face. A theoretical explanation 
of the physiological connection between the analyzed 
pulse waves and blood pressure is beyond the scope of the 
current study. 

Table 1. Features for benchmark 
Concept Feature 
Contour Overall area of pulse contour 
 Systolic area of pulse contour 
 Diastolic area of pulse contour 
 Phase of peak of pulse contour 
 Diastolic area / Systolic area of pulse contour 
 Width of pulse contour (10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%) 
Derivative Phase of a-peak of 2nd derivative of pulse contour  
 Magnitude of a-peak of 2nd derivative of pulse contour (a) 
 Phase of b-peak of 2nd derivative of pulse contour 
 Magnitude of b-peak of 2nd derivative of pulse contour (b) 
 Phase of c-peak of 2nd derivative of pulse contour 
 Magnitude of c-peak of 2nd derivative of pulse contour (c) 
 Phase of d-peak of 2nd derivative of pulse contour 
 Magnitude of d-peak of 2nd derivative of pulse contour (d) 
 Phase of e-peak of 2nd derivative of pulse contour 
 Magnitude of e-peak of 2nd derivative of pulse contour (e) 
 b / a 
 c / a 
 d / a 
 e / a 
 (c - b) / a 
 (d - b) / a 
 (b – c – d – e) / a 
Pulse beat Interbeat interval of pulse wave 
  AC/DC ratio of pulse wave 
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Table 2. Estimation error between the proposed method and benchmarks 
 Correlation coefficient 

 
Mean absolute error [mmHg] 

SBP MBP DBP SBP MBP DBP 
Benchmark (Pulse beat) 0.10 0.12 0.09  87 59 33 
Benchmark (Derivative) 0.23 0.23 0.25  12 9.9 9.4 
Benchmark (Contour) 0.37 0.36 0.38  11 10 9.6 
Benchmark (All) 0.52 0.55 0.54  9.8 8.3 8.2 
Proposed method 0.81 0.85 0.84  6.7 5.4 5.4 

 
(a) 

 
(b) 

Fig 8. Accuracy: blood pressure ground truth vs. estimated value. (a) Proposed method (b) Benchmark (using all 
features). 

4 Conclusion and future work 
We proposed a remote method to estimate continuous 

blood pressure based on time-space information of pulse 
waves as observed on the face of a subject by an RGB 
camera. We modeled a relationship between the time-
space signals and blood pressure by a convolutional 
neural network. A dataset was constructed to demonstrate 
the effectiveness of the proposed method, consisting of 
continuous blood pressure data and facial RGB video of 
ten healthy volunteers. The demonstration was performed 
by comparing the error and the accuracy of the proposed 
method with benchmarks representing conventional 
methods. The demonstration showed the superior 
performance of the proposed method compared to 
benchmarks, contributing to ubiquitous blood pressure 
monitoring 

There are three major issues to be addressed in the 
future. The first is to increase the reliability of the 
demonstration by having a larger and more diverse 

dataset, the second is to evaluate the robustness of the 
proposed method for non-restrictive environments, and 
the third is to generalize the proposed concept to measure 
other physiological quantities. 

Regarding the enhancement of the reliability of the 
demonstration, there is a concern about the reliability of 
the demonstration of the proposed method in this study 
due to biases such as the number of subjects and the age 
of the subjects. To resolve this concern, it is necessary to 
construct a more reliable data set and demonstrate the 
proposed method based on it. 

Regarding robustness, the method should be able to 
withstand a noisy, non-restrictive, or non-controlled 
environment. If the proposed method is not sufficiently 
robust in non-restrictive environments, it is necessary to 
consider adding features to it. 

Regarding the generalization of the proposed concept 
for other physiological quantities, the proposed method is 
expected to be effective not only for the continuous blood 
pressure estimation task but also for other tasks such as 
emotion recognition. This hypothesis is based on the 
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plurality of pulse-wave information. The plurality of 
information in a pulse wave is supported by the existence 
of studies that estimate quantities such as stress, emotion, 
advertising effects, and oxygen saturation, based on pulse 
waves [16,17,18,19]. 
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