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Abstract

The importance of online education has been brought
to the forefront due to COVID. Understanding students’
attentional states are crucial for lecturers, but this could
be more difficult in online settings than in physical class-
rooms. Existing methods that gauge online students’ at-
tention status typically require specialized sensors such as
eye-trackers and thus are not easily deployable to every stu-
dent in real-world settings. To tackle this problem, we uti-
lize facial video from student webcams for attention state
prediction in online lectures. We conduct an experiment in
the wild with 37 participants, resulting in a dataset consist-
ing of 15 hours of lecture-taking students’ facial recordings
with corresponding 1,100 attentional state probings. We
present PAFE (Predicting Attention with Facial Expression),
a facial-video-based framework for attentional state pre-
diction that focuses on the vision-based representation of
traditional physiological mind-wandering features related
to partial drowsiness, emotion, and gaze. Our model only
requires a single camera and outperforms gaze-only base-
lines.

1. Introduction

Paying attention to the lecture has a significant impact
on students’ learning performance [38, 49]. Measuring
and maintaining the student’s attention is crucial and thus
many lecturers monitor the students’ attentional state dur-
ing the lecture. Depending on the attentional state, they
could adapt contents during the lecture, intervene with the
students to refresh their attention, or provide positive re-
inforcements [3]. Since many offline classes have been
shifted to online due to COVID, grabbing the students’ at-
tention has become more important. However, students
are more easily distracted during online lectures [21, 25]
and catching their attentional status is harder for the lec-
turers [22].

Recent work has shown that attentional states are
predictable with sensors such as eye trackers, elec-

troencephalography (EEG) sensors, electrodermal activ-
ity (EDA) sensors, and functional magnetic resonance
imaging (fMRI) machines. Therefore, we could use the
predicted attention to help students improve learning per-
formance. For example, GazeTutor [15] detects students’
attentional states with gaze tracking and provides a dia-
logue to reengage the students and improve the learning
gains. Attention-Aware Learning Technology (AALT) [24]
provides student interventions (e.g., asking questions, revis-
iting contents, and calling the name) based on their mind-
wandering predictor with eye trackers [23].

Existing work on machine-predicted attentional states
has three limitations when applied to video streaming lec-
tures. First, they require each student to be equipped with
special hardware (e.g., eye trackers, EEG sensors, EDA
sensors, and fMRI machines). Second, they provide low
attentional state prediction accuracy. For example, eye-
tracking-based AALT [24] could not provide any interven-
tions to half of the total sessions with a low accuracy model
of 0.51 F1 score. Third, they are evaluated only in con-
trolled environments and their performance in realistic en-
vironments is unknown. For example, camera-based atten-
tional state prediction is explored over the controlled lab
environment for narrative film viewing scenario [46, 47];
and engagement-based approaches (e.g., Student Engage-
ment Analytics Technology (SEAT) [3] require education
experts to label the facial video [4].

We present PAFE (Predicting Attention with Facial
Expression), an automatic student attention prediction
framework for online video lectures. To collect the facial
video with corresponding attentional states, we conduct a
fully-online user study in the wild with 37 participants. Af-
ter removing low-quality data and untrustworthy probing
responses, we end up with the 15 hours dataset from 15 par-
ticipants. From this dataset, we build an attention prediction
model with diverse mind-wandering-related features of eye-
aspect-ratio, emotion, gaze, and head movement.

PAFE does not require any special hardware except web-
cams from a student computer used in viewing the lecture.
The camera is used for capturing the students’ facial ex-
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pressions. We utilize findings from mind-wandering with
specialized sensors (e.g., emotion [29], drowsiness [2, 44],
and eye gaze [5,7, 11, 17,23,45]) for feature extraction
and discover that our features, including eye-aspect-ratio
(that indirectly indicates partial drowsiness), are highly re-
lated to attentional states. Our experimental evaluation in-
dicates that our attention prediction model based on facial
features achieves AUROC=0.67, outperforming the gaze-
based models (AUROC=0.56). Furthermore, PAFE only uti-
lizes the camera recordings, which are easy to collect, thus
can be used for various real-world applications such as real-
time student interventions.
We make the following contributions:

e We design and present PAFE, a facial-video-based at-
tentional state prediction framework that focuses on
vision-based representation of traditional physiologi-
cal mind-wandering features.

* We collect and release the first public in-the-wild video
dataset for attentional state prediction in online educa-
tion, consisting of 15-hour facial recordings from 15
students with corresponding attentional state probings.

2. Related Work
Mind-wandering is defined as ‘thinking about some-
thing else rather than the current primary task’ [23, 43].

Mind-wandering occurs when students fail to utilize their
working memory resources, both intentionally and uninten-
tionally [38]. Shifts towards mind-wandering occur from
5- to 30-seconds intervals [30], where the general mind-
wandering ratio in a certain task is roughly known to be
between 20% and 50% [23,27,29,32,38,49].

With the increasing importance of the attentional state
in education and learning, recent works focus on develop-
ing attention-aware learning technology (AALT) to detect
and intervene mind-wandering. GazeTutor [15] is an in-
telligent tutoring system (ITS) that reengages students with
dialogues when their gaze is invalid for more than five sec-
onds. Hutt et al. [24] detects mind-wandering with eye-
tracker-based model [23] and provides student interventions
by asking questions, revisiting the learning material, and
calling students’ names. Evaluation in high schools showed
their intervention system reduced the predicted likelihood
of mind-wandering and improved the long-term perfor-
mance of students.

Predicting attentional states are crucial for education.
Most existing mind-wandering prediction schemes uti-
lize specific bio-markers with specialized and expensive
hardware: eye-tracker (e.g., gaze, fixation, saccade, and
blink) [5,7, 11, 17,23, 45], EEG [2, 5, 6, 10, 16, 26, 53],
EDA [8, 11,42], or fMRI [14, 50]. However, they suffer
from a significant performance drop when replaced with af-
fordable devices (e.g., eye-tracking [39,56]).

Facial video-based approaches have been used to de-
tect mind-wandering in online education. Hutt et al. [23]
built a multi-modal classifier with eye-tracking features and
facial action units. They employed an action unit to im-
prove the original eye-tracking model but still require eye-
trackers. Other camera-based approaches are all limited to
controlled in-lab environments, targeting narrow focus of
narrative film viewing [46, 47] or showing unreliable per-
formances [57].

3. Dataset

Our goal is to overcome the limitations of utilizing spe-
cialized devices or working only in controlled in-lab envi-
ronments. As a first step, we collect the facial video dataset
during online lectures in the wild. We carefully designed the
experiment (Section 3.1), proceeded with the experiment
(Section 3.2), and preprocessed the data to improve data
quality (Section 3.3). Finally, we summarize our dataset
content (Section 3.4).

3.1. Experiment Design

To obtain a dataset that resembles the real world, we
aimed to collect the data with minimum extra cognitive load
invoked by the experiment. Therefore, we designed the ex-
perience sampling method and selected a target lecture.

3.1.1 Experience Sampling

We use a probe-caught method that utilizes periodic prob-
ing to ask whether the participant is focused or mind-
wandered. The probe-caught method is known to capture
both intentional and unintentional focus shifts [43] and al-
lows us to collect data in fine-grained intervals. There-
fore, this method is widely utilized for collecting data
for attentional state analyses and predictions in various
fields [5,7,8,17,23,26,42,50].

Determining the probing interval is important: probing
too often might cause participants to be conscious of their
mental state [38]; while less probing leads to an insufficient
amount of data to build the prediction model. Therefore, we
first conducted an in-lab pilot study with seven participants
to evaluate the effect of probing intervals. Considering the
typical period of attentional state shifting [30], we used the
40 seconds probing interval and five of seven participants
felt comfortable with this interval.

When probed, participants could select among (i) Fo-
cused (thinking of anything related to the lecture), (ii) Notz-
Focused (mind-wandering; thinking or doing something un-
related to the lecture), and (iii) Skip (participants could not
immediately decide the response).
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Figure 1. Our experiment program written in Python includes four
background processes that asynchronously execute with the main
Ul process. Our tool is readily applicable to any computer-assisted
tasks requiring periodic probing by configuring the probing strat-
egy (e.g., probing options and corresponding keys), probing pe-
riod, and target activity (e.g., online education, gameplay, and text
reading).

3.1.2 Online Lecture

The lecture we use for the experiment should target begin-
ners that do not contain complicated concepts or complex
technical terms, which could over-utilize working memory
resources and affect the learning performance [52]. Con-
sidering our participants are mainly science and engineer-
ing majors, we chose “Al For Everyone” by Andrew Ng,
a top-rated instructor in Coursera. The lecture consists of
a beginner-level introduction to machine learning and deep
learning. We merged the first week’s lecture videos into one
short introductory video for the demo probing session and
an 1-hour long video for data collection.

3.2. Participants and Materials

We recruited 51 participants from 7 universities in Korea.
The study is approved by the University IRB (ID Number:
KH2020-140, KH2021-034) and all participants are over
18 years old. Each participant watched the lecture video
at their preferred date in their room alone as a typical on-
line lecture-taking scenario. We encouraged participants to
disable any possible distractions such as smartphone alerts,
desktop messenger apps, and OS-level notifications, which
could cause unexpected focus shifts from the lecture taking
to other tasks.

The experiment program was implemented in Python
and converted to the executable for Windows and Mac de-
vices. Figure 1 shows the structure of our experiment tool.
By running the program, participants are asked to follow
the steps in Figure 2: (1) read the experiment instructions,
(2) adjust the camera angle and distance, then perform gaze
calibration [20], (3) practice the probing process with an
8-min demo lecture, and (4) watch the 1-hour lecture with
probing.

During the main lecture session, participants periodically
reported the attentional states (i.e., Focused, Not-Focused,
or Skip) at the time just before the ding sound by pressing

(a) Overview

Instruction & Demo Session Main Session
Gaze Calibration (8 min) (1 hour)
(b) Periodic Probing
| 40 sec 40 sec 40 sec
Probe #1 Probe #2 Probe #3

Figure 2. (a) Overview of experiment our procedure. (b) Periodic
probing for a demo session and the main session. Note there is
a 5 seconds padding when the main lecture starts (omitted in the
figure).

the keyboard button. The probing sounds were played with
40-second intervals (starting from 45 seconds after the be-
ginning of the lecture), resulting in 88 probes for the main
session. During the experiment, our program automatically
recorded the facial video of each participant in 640p 30fps.
In addition, we collected the participants’ hardware specifi-
cations (e.g., monitor size and resolution) for further gaze-
based analysis.

In the end, 37 participants successfully finished the ex-
periment and were rewarded with approximately 25 USD.
However, 14 participants either failed to run the experiment
program, failed to achieve 640p 30fps, could not fit to ex-
periment schedule, or stopped the experiment at their own
will. Note that we clarified that the monetary reward would
be provided regardless of their attentional states during the
lecture, so they would not manipulate their state to earn the
reward.

3.3. Data Preprocessing

While our fully online in-the-wild data collection resem-
bles real world scenario, it has a limitation on data qual-
ity. For example, we could not observe face boundaries due
to low luminance, or eyes were not distinguishable from
the face. Therefore, we removed the video if the scene
is too bright or dark, or camera is unstable, which affects
the face/gaze detection performance. We then applied the
few-shot gaze calibration [33] to remove participants with
validation error > 5.0°. Gaze validation ensures our gaze-
tracking error is less than 0.1 cm in a typical lecture-viewing
scenario of under one-meter distance between the camera
and the eye.

We also resolved the probing quality issue. For exam-
ple, we observed that few participants were asleep while
pressing the Focused button. We removed two participants
with Focused response ratio < 40%, which represents the
participants were not paying attention to the lecture, possi-
bly sleeping. Two authors independently labeled the partici-
pants’ drowsiness state as Awake or Drowsed, following the
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Figure 3. Overview of attentional state prediction pipeline.

mechanism of drowsiness detection [51]. The drowsiness
labels agreed with Krippendorff’s alpha = 0.76, where Krip-
pendorft’s alpha represents the inter-coder reliability [31].
For the mismatched labels, the authors discussed converg-
ing to the same label.

To evaluate the participant’s probing responses, we built
anew metric: attentional state probing unreliability. As par-
ticipants were fully informed of the labeling strategy, they
should not respond with Focused when asleep or drowsing.
Therefore, we calculated the attentional state probing unre-
liability U, for participant p as:

N
1
Up= N tz:; (Focused,, ; \ Drowsed,, ;) )]

where Focused,, is a binary value representing partici-
pant’s Focused response and Drowsed,, ; is a binary value
from drowsiness coding. We removed the entire partici-
pants’ data with U, > 0.1, considering the human error
of probing and drowsiness coding. Otherwise, we only re-
moved Drowsed labels while preserving the remaining data.

3.4. Dataset Content

Our finalized dataset consists of 640p 30fps RGB fa-
cial video recordings with timestamps, gaze calibration
recordings with corresponding screen coordinates, atten-
tional state probings (Focused / Not-Focused / Skip), and
drowsiness coding. Our dataset includes 15 participants
and a total of 1,100 Focused / Not-Focused probes. For
the 15 participants, seven are male and eight female, with
age (Min=19, Max=28, Mean=22.6). Six participants wore
glasses.

We open-source our experiment tool built in Python. The
program is easily configurable of probing methods, probing
interval, and target activity.

4. Predicting the Attentional State

We present PAFE, a facial-video-based attentional state
prediction framework. We first select the feature extrac-
tion window and extract vision-based features (Section 4.1).
Based on statistical analysis on features, we then design the
prediction models (Section 4.2). We plot the overview of
our system in Figure 3.

Table 1. Vision-based features extracted from the raw facial video.
We have 49 features: 6 EAR features, 14 emotion features, 13 gaze
features, and 16 head movement features.

Feature Sub-Feature Statistic
Mean, SD,
EAR - 1q, 2q, 3q,
MAD
Neutral, Angry,
Emotion Disgust, Fear, Mean, SD
Happy, Sad, Surprise
Mean, SD,
Speed, Dispersion 1q, 2q, 3q,
Gaze MAD
Horizontal Movement Ratio -
Head Translation (X, y, z, RMS),
Movement Rotation (X, y, z, RMS) Mean, SD
2 ‘3233:::-3535 15 EAR — w
" h

Facial Landmarks

Figure 4. The eye aspect ratio (EAR) represents the ratio of eye
width over height, which reflects both short-term effects (e.g.,
blinks) and long-term consequences (e.g., drowsiness). Landmark
annotations are from the 300-W dataset [40].

4.1. Feature Extraction

We extracted physiological features instead of utilizing
raw video frames, to provide an interpretable system. Pre-
vious mind-wandering studies report that attentional states
are related to emotion [29], partial drowsiness [2, 44], and
eye gaze [5,7,11,17,23,45].

Therefore, we extracted features that indicate emotion,

partial drowsiness, or gaze. Precisely, from the raw frames,
we extracted facial emotions for predicting emotions, eye
aspect ratio, and head movement for partial movement, and
appearance-based gaze for eye gaze (see Table 1).
Eye Aspect Ratio: For each facial video frame, we ex-
tracted facial landmarks with HRNet [48]. From facial land-
mark positions, we extracted eye aspect ratio (EAR) [12]
representing the eye width with respect to height (Figure 4).
Even if the scale of the eye changes, the ratio remains scale-
invariant. Moreover, the face detection and landmark de-
tection system is translation-invariant, while the landmark
detection and Perspective-n-Point (PnP) algorithm provide
rotation-invariance. Therefore, EAR is robust to any possi-
ble variances unless the eye is detectable.
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Existing works utilized short-term EAR for blink-based
task difficulty assessment [ 1 3] and blink-based sleeping de-
tection [19]. Instead, we aim to extract partial drowsiness
from long-term EAR variations. We applied Kalman fil-
tering to smooth the face bounding box and facial land-
mark positions to reduce the short-term effects of blink-
ing. Furthermore, to remove the per-participant depen-
dency, we scaled the entire EAR values with median and
median-absolute-deviation (MAD) of the first 20 seconds of
the data collection, with an assumption that people are fully
engaged at the beginning of the experiment. This scaling
strategy is applicable to real-world application as we can
simultaneously apply the scaling method for any session.
Missing values due to face detection failures are linearly in-
terpolated. We extracted mean and standard deviation (SD)
to understand EAR containing outliers such as (partially)
closing eyes. We also extracted 1q, 2q, 3q, and MAD as
outlier-robust statistics to observe long-term effects.

Emotion: We extracted emotional features from the facial
analysis framework LightFace [41]. Emotion is classified as
a vector of length seven: neutral, angry, disgust, fear, happy,
sad, and surprise. Although few sub-features (e.g., disgust
and fear) are less likely to occur in lecture-taking scenar-
ios, such features might occur in mind-wandering episodes.
Utilizing the full emotion vector aligns with diverse emo-
tions at a workspace [28]. Every emotion vector is scaled
to be the sum of 1.0. We extracted the mean and SD from
each emotion sub-features.

Gaze: We extracted eye gaze features with a few-shot
vision-based gaze-estimation model FAZE [33]. We applied
few-shot learning and validation with the gaze calibration
data to adapt to an individual’s device and eye appearance.
As described in Section 3.3, all participants in attentional
state prediction have the gaze validation error under 5.0°.
Kalman filter is used for gaze extraction to reduce gaze es-
timation errors. Moreover, each participant’s gaze grid is
normalized with one’s monitor resolution to be compara-
ble in the exact resolution. Considering the low framerate
of webcam recordings compared with eye-trackers, we ex-
tracted gaze speed and gaze dispersion (distance from the
center of the bounding circle) with statistical values (e.g.,
mean, SD, 1q, 2q, 3q, MAD). We also extracted the hori-
zontal percentage of gaze movement, which is widely used
in gaze-based mind-wandering prediction [7,23].

Head Movement: With the PnP algorithm, we calculated
head movement vector rotation and translation based on
facial landmark positions of the nose (landmarks #28 ~
#36) and eye corners (landmarks #37, #40, #43, and #46).
Refer to Figure 4 for the landmarks. Note that all landmark
positions are Kalman filtered to reduce random noise. We
extract mean and SD from rotation and translation for
all axes (X, y, z) and root-mean-square (RMS) along all
axes. Calculating head movements require the camera

intrinsic parameter information. However, to simplify the
data collection procedure, we did not ask participants to
calibrate their cameras. We assumed that modern digital
cameras have square pixel sizes and the principal point is
close to the image center to overcome the lack of intrinsic
parameters [34].

To reduce the effect of probing in participants’ atten-
tional state, we utilized only the last 20 seconds of 40 sec-
ond intervals for feature extraction. This approach aligns
with the previous finding that thought shifts occur from 5-
to 30-second intervals [30]. On the other hand, we could
remove probing-related behavioral patterns with a window-
ing strategy. For example, some participants rotated their
heads to find the keyboard button, which is unrelated to the
lecture.

4.2. Prediction Model

We report important vision-based features by statistical
analysis to provide insights into mind-wandering predic-
tion. We compared the value of the facial features (eye as-
pect ratio, emotion, gaze, and head movement) of window
20 between the Focused and the Not-Focused groups. The
t-test revealed that five emotional features, one gaze feature,
one head movement feature, and six EAR features showed
a significant difference (p < 0.05) between the two groups.
Surprisingly, every EAR feature (mean, SD, 1q, 2q, 3q, and
MAD) showed strong significance with p < 0.01. Table 2
details statistically significant features.

The importance of EAR is interesting; since we removed
all drowsed data, the significance of EAR belongs to par-
tial drowsiness, not sleeping. The result aligns with previ-
ous findings that partial drowsiness is connected to mind-
wandering [2, 44]. Furthermore, we interpret the emo-
tional features confirm mind-wandering is related to neg-
ative emotions [29]. In our experiment, participants showed
more sadness and less happiness during mind-wandering.
Therefore, we conclude that our facial features are strong
indicators of mind-wandering.

For attentional state prediction, we utilized 13 statisti-
cally significant features of 5, 10, and 20 seconds window
sizes. First, we applied traditional machine learning tech-
niques: Support Vector Machine (SVM) with RBF kernel
and XGBoost. We also built a simple DNN model with
two layers: first DNN layer with 12 nodes and ReL.U acti-
vation; second DNN layer with a single node and Sigmoid
activation. We apply binary crossentropy loss with Adam
optimizer.

For the comparison, we generated three baseline models:
(1) always predicting the most frequent label, (2) stratified
random prediction (predicting with the probability of label
distribution of training dataset), and (3) random prediction
(predicting with the same probability of 0.5). Moreover, we
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Table 2. Statistically significant features (p < 0.05) in window 20. A total of 13 features showed significance, while all six features in
EAR showed strong significance. EAR is median-scaled for each participant. Emotion and gaze horizontal percentage represent the ratio
between 0 and 1. Head translation is represented in 3D real-world coordinates. Statistical results show that EAR is the key indicator of

mind-wandering.

e Focused Not-Focused
Feature Sub-Feature Statistic Mean  SD | Mean  SD p-value
Mean 2,13 2.37 334 274 | <0.001 ww*
SD 645 4.82 7.55 4.67 0.005 **
EAR i 1q -0.56 093 | -0.03 1.13 | <0.001 ***
2q 0.56 1.31 1.23  1.61 | <0.001 **=*
3q 217 224 341 296 | <0.001 ***
MAD 1.26 0.70 1.49 0.79 | <0.001 ***
Angry SD 0.12 0.10 0.10 0.10 0.033 *
. Happy Mean 0.07 0.12 0.05 0.12 0.012 *
Emotion SD 0.13 0.12 0.08 0.10 | <0.001 ***
Neutral SD 0.26 0.10 0.23  0.10 0.005 **
Sad Mean 0.12  0.10 0.14 0.12 0.006  **
Gaze Horizontal Percentage - 0.54 0.08 0.52 0.08 0.002 **
Head Translation (y) SD 4.04 427 3.17  3.77 0.011 *

generated the gaze-only baseline models as an alternative to
existing gaze-based approaches. We utilize XGBoost with
5, 10, and 20 seconds windows for gaze-only models.

We compare the stratified 5-fold classification results in
Table 3. Here, folds are divided between participants (Ieave-
several-users-out) to examine if the model could be applied
to unseen users. In addition, we used the random under-
sampling for training data (except the baseline) to reduce
the data imbalance since probing responses consist of ~5 x
labels of Focused than Not-Focused.

As a result, XGBoost models showed the highest AU-
ROC, representing the separation capability between two
labels. Our model achieves AUROC=0.67, which outper-
forms the random baseline (AUROC=0.50) and gaze-only
baseline (AUROC=0.56). Note that as our model only uti-
lizes a facial video from readily available webcams, our
model could be widely deployable than the eye-tracker-
based models that require expensive devices.

5. Discussion
5.1. Dataset

Size and Extension: Our dataset contains 15 hours of video
recordings of 15 participants, with corresponding 1,100 at-
tentional state probes. Our dataset size is large enough for
machine-learning and deep-learning-based methods as we
showed comparable accuracy between XGBoost and DNN
models. Furthermore, our dataset could be easily extended
to other non-real-time lectures by simply loading the video
URL (e.g., YouTube links, local video files) in our exper-
iment tool. Our dataset has limited demographic diversity
as the study was conducted in Korea and participants were

aged from 19 to 28. Therefore, our model and dataset might
under-represent groups with unexplored minority, ethnicity,
and age.

Primary Task: Primary task for mind-wandering detec-
tion must be fixed to the point of interest. Therefore, we
restricted participants from intentionally or unintentionally
moving the primary task from lecture taking to other tasks
(e.g., using smartphones or desktop messenger apps). We
asked participants to focus only on lecture taking and re-
quired participants to turn off distractions (e.g., smartphone
alerts, desktop notifications) and perform the experiment
alone in a quiet place.

However, in reality, students could be distracted by
events unrelated to the lecture. Some behavioral aspects of
distractions are detectable within face detection, head posi-
tion/rotation, and keyboard/mouse interaction [ 1, 39].
Effect of Probing: Although self-report probing is widely
used in mind-wandering label collection, the effect of prob-
ing on attentional states and physiological responses is un-
known. In our experiment, 14 of 15 participants (93%) re-
ported that practicing the probing before the main exper-
iment helped them understand the probing strategy (Likert
scale (1 ~ 5) > 3). In terms of the effect of probing on their
attentional state, three participants reported that probing af-
fected their attentional state: “I got distracted by beeping
sounds too often (P1)”, “I could actually focus more on the
lecture as I do not know when the beep would occur (P2)”,
“They truly disturbed me, but they refreshed my focus when
I was not focusing on the lecture (P8)”. Still, our prob-
ing method did not overwhelm the overall learning process;
participants’ post-experiment quiz scores were improved by
32% on average, compared with the pre-experiment quiz
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Table 3. Each model’s mean (+ SD) performance for 5, 10, and 20 seconds window data with 5-fold cross-validation.

. Focused Not-Focused Weighted
Method / Window (s) Accuracy F1 Accuracy F1 F1 AUROC
Random Most Frequent || 1.00£0.00 0.90+£0.06 | 0.00£0.00 0.00+£0.00 | 0.75+0.08 | 0.50+0.00
Baseline Random 0.48+0.02 0.62+0.03 | 0.47+0.01 0.25+0.07 | 0.56+£0.02 | 0.50£0.05
Stratified 0.80+0.01 0.81£0.03 | 0.22+0.05 0.19+0.02 | 0.70+£0.06 | 0.49+0.05
Gaze-Only XGBoost /5 0.49+0.04 0.60+0.06 | 0.56+0.04 0.28+0.07 | 0.55+0.05 | 0.54+0.05
Baseline XGBoost/ 10 || 0.48+0.02 0.65+0.04 | 0.57+0.03 0.27+0.04 | 0.54+£0.04 | 0.54+0.05
XGBoost /20 || 0.54+0.04 0.66£0.10 | 0.57+0.03 0.27+0.06 | 0.60+£0.08 | 0.56%0.03
SVM/5 0.53+0.11 0.62+0.25 | 0.51+0.21 0.25+0.11 | 0.57+0.19 | 0.53%0.08
SVM/ 10 0.61£0.09 0.66%£0.19 | 0.50+0.12 0.28+0.07 | 0.61+£0.15 | 0.56+0.04
SVM /20 0.50+£0.05 0.65+0.14 | 0.57+0.08 0.31+£0.08 | 0.60+£0.13 | 0.59+0.12
Proposed XGBoost /5 0.60+£0.05 0.68+0.09 | 0.54+0.09 0.31+0.10 | 0.62+0.08 | 0.59+0.06
Feature-Based XGBoost/ 10 || 0.58+0.06 0.59+0.16 | 0.65+0.05 0.36+0.06 | 0.64+0.12 | 0.63+£0.06
Method XGBoost /20 || 0.59+0.04 0.71+0.10 | 0.59+0.02 0.33+0.08 | 0.65+0.10 | 0.67+0.09
DNN/5 0.61£0.09 0.68+0.14 | 0.52+0.14 0.27+0.10 | 0.62+0.12 | 0.56%0.07
DNN/ 10 0.60+0.04 0.71£0.10 | 0.53+0.03 0.31+0.08 | 0.64+0.07 | 0.61%£0.03
DNN /20 0.60+£0.04 0.73£0.09 | 0.61+0.01 0.35+0.06 | 0.68+0.10 | 0.65%0.08

scores. Since such unpredictable effects of probing are in-
evitable with probe-caught methods, non-invasive methods
such as automatic detection are crucial for mind-wandering
assessment.

5.2. Prediction Model

Interpretation: Our proposed feature-based model outper-
forms both random baseline and gaze-only baseline. As
appearance-based gaze tracking carries heavy models, we
suggest utilizing various landmark-based features rather
than gazes for mind-wandering prediction in online educa-
tion.

Real-World Interference: Since our system is fully facial-
video-based, it shares the limitation of face detection, land-
mark detection, emotion detection, and few-shot gaze adap-
tation. For example, students should avoid direct light and
brighten the scene to detect their faces and eyes. On the
other hand, students’ movements might affect the model
performance. EAR is rotation-/translation/scale-invariant,
and so is emotion. Head movement features are designed to
detect rotation and translation variances. Since the few-shot
gaze-adaptation model [33] is fine-tuned with few shots of
a short period, head movements might affect the gaze pre-
diction accuracy with long-lasting lectures.

Utilizing More Vision Techniques: Action Units (AU) are
the movement on the face defined by the Facial Action Cod-
ing System [18]. A total of 44 AUs represent the differ-
ent movements of muscles related to face or eyes (30 face-
related; 14 eye- or orientation-related). Recent research has
investigated the relationship between AU and student en-
gagement during online lectures [54]. Also, there have been
approaches to utilize the AU to detect the mind-wandering

in the classroom [9]. We expect action units to contribute in
vision-based mind-wandering detection.

Heart rate is also known to be an indicator of mind-
wandering. AttentiveLearner [35, 36] utilizes heart rate to
detect mind-wandering in mobile MOOC learning, where
the heart rate is reconstructed with fingers on the smart-
phone camera. Remote photoplethysmography (rPPG) is a
vision-based technique to reconstruct one’s heart rate from
facial video recordings [37]. HREmo [55] provides student
rPPG to lecturers as an index of concentration. We expect
rPPG to be further utilized for mind-wandering detection in
online education.

6. Conclusion

We propose PAFE, a facial video-based attentional state
prediction framework. To build our model, we collected
one-of-a-kind vision dataset in real-world-like online lec-
ture scenarios. The dataset contains 15 hours of video
recordings of 15 students with corresponding 1,100 at-
tentional state probings. Our physiological feature-based
prediction model achieves the accuracy of AUROC=0.67,
which outperforms the gaze-only models. The result pro-
vides a new opportunity to deploy mind-wandering detec-
tion in real-world scenarios. We open-source our dataset
and corresponding data collection tool to foster follow-up
research.
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