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Abstract

Photoplethysmographic (PPG) signals offer diagnostic
potential beyond heart rate analysis or blood oxygen level
monitoring. In the recent past, research focused extensively
on non-invasive PPG-based approaches to blood pressure
(BP) estimation. These approaches can be subdivided into
regression and classification methods. The latter assign
PPG signals to predefined BP intervals that represent clin-
ically relevant ranges. The former predict systolic (SBP)
and diastolic (DBP) BP as continuous variables and are of
particular interest to the research community. However, the
reported accuracies of BP regression methods vary widely
among publications with some authors even questioning
the feasibility of PPG-based BP regression altogether. In
our work, we compare BP regression and classification ap-
proaches. We argue that BP classification might provide
diagnostic value that is equivalent to regression in many
clinically relevant scenarios while being similar or even su-
perior in terms of performance. We compare several es-
tablished neural architectures using publicly available PPG
data for SBP regression and classification with and without
personalization using subject-specific data. We found that
classification and regression models perform similar before
personalization. However, after personalization, the accu-
racy of classification based methods outperformed regres-
sion approaches. We conclude that BP classification might
be preferable over BP regression in certain scenarios where
a coarser segmentation of the BP range is sufficient.

*This research was funded in part by the German Federal Ministry of
Economics and Technology (BMWi) (FKZ 49VF170043). The study at the
Leipzig University Medical Center was conducted according to the guide-
lines of the Declaration of Helsinki, and approved by the Ethics Committee
of the University of Leipzig (protocol code: 170/19-ek; date of approval:
6 July 2019).

1. Introduction

Predicting BP from single sensor signals such as PPG
has gained a lot of attraction in recent years [5, 23]. Us-
ing PPG is particularly interesting not only because sensors
are cheap and easy to apply but also because the technique
is related to remote PPG (rPPG; or imaging PPG / iPPG).
RPPG generally refers to camera/video based derivation of
PPG signals which allows to conduct remote measurements
without any physical contact. If a reliable prediction of BP
from PPG would be possible, there is reason to belief that
concepts could be transferred and expanded to rPPG based
BP prediction, which in fact has already been approached
in several studies [30, 34, 40].

From a machine learning perspective, current ap-
proaches that use PPG for BP prediction can broadly be cat-
egorized into approaches based on extracting hand-crafted
features [6, 10, 35] and approaches that employ the entire
signal and sometimes also its derivatives [25,29]. The latter
are usually based on a certain deep neural network (DNN)
architecture. In DNN, these signals or their spectral repre-
sentations are then usually either used directly in an end-
to-end learning scheme to predict BP from the shape in-
formation [25] or are transformed into a spectrogram be-
forehand [38]. Even hybrid approaches have already been
investigated [3, 29].

With respect to the target variable, approaches can be
categorized into BP classification and BP regression. Clas-
sification is usually restricted to scenarios where authors are
interested in predicting hypotension or hypertension versus
normal BP [4, 33]. Regression, on the other hand, predicts
BP as a continuous variable. With respect to the evalua-
tion, usually only a mean error for the whole dataset along
with a standard deviation or a some related metric is re-
ported [14, 20, 22]. Some of these results imply suitability
of the reported methods for medical applications since the
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errors reported are well below or at least close to the re-
quirements of medical standards [3, 14]. In fact, a recent
study has shown that much larger errors must be expected
for a wide range of DNN architectures if the true underlying
BP is not within the normotensive BP range [27].

Assessing the reported results is often not straightfor-
ward. A reliable conclusion is usually difficult mainly due
to issues with the underlying dataset. Main problems are
(1) the rather unbalanced nature of the underlying datasets
which might lead to overfitting towards the mean of the
distribution [27], (2) issues with personalization within the
datasets rendering the methods prone to overfitting to indi-
vidual subjects [17] and (3) the use of proprietary data col-
lected in an experimental setting where the BP usually lacks
the necessary variation within its range of interest. These
varying boundary conditions render comparisons among
different studies difficult especially if those studies try to
solve different problems (i.e. BP classification and BP re-
gression).

It stands to reason that well performing regression meth-
ods would be particularly interesting for medical applica-
tions. This would however require a robust performance
within the full range of physiologically meaningful BP val-
ues. On the other hand, some applications certainly do not
need highly accurately predicted BP values but rather a reli-
able mapping to a certain BP interval which we will refer to
as BP bin for the rest of this paper (e.g. [4,33]). The method
of dividing the BP range into suitable intervals (i.e. number
and widths of the intervals) to achieve adequate accuracy
for clinical purposes is still an open question.

It is conceivable that certain scenarios only require a bi-
nary classification (high vs. low BP). From a medical per-
spective a meaningful segmentation would be the subdivi-
sion into intervals representing hypotension (hypoT), nor-
motension (NT) and hypertension (HT) resulting in a multi
class classification approach. On the other end, a dense bin-
ning could consist of very narrow BP intervals (e.g. bins of
width 1 mmHg). It is obvious that the latter case is more
suited for a regression-based approach since the underly-
ing sorted nature of the BP values exhibits a larger impor-
tance with respect to the predicted target variable compared
to cases with only a small number of classes.

Given these very different perspectives on the underly-
ing problem, the following questions can be raised : (i) Is
there reason to believe that classification and regression ap-
proaches for BP prediction should be preferred one over an-
other in certain scenarios? (ii) Is there a trade-off between
approaching the problem using a classification approach or
a regression approach and the desired discretization of the
BP range of interest into bins? (iii) And more generally, are
classification approaches perhaps generally more suitable
for BP prediction with respect to realistic scenarios since
they might provide a better generalization to the available

datasets which come with the above mentioned issues?

In this study, we compare regression and classification
approaches based on several DNN architectures for BP pre-
diction. From an evaluation perspective and for comparison
reasons, we treat the whole problem as a classification task.
While we directly derive a predicted class in a classifica-
tion approach, we manually assign the target variable to a
predicted class in the regression approaches based on its lo-
cation in a certain BP interval. We applied this scheme to
several segmentations of the BP range (i.e. subdivision with
differently sized BP bins/intervals). Given each segmenta-
tion, we carefully prepared datasets based on the MIMIC-
III database which allowed us to prevent overfitting to in-
dividual subjects as well as to any of the incorporated BP
intervals. That means we ensured that our training sets are
balanced with respect to the particular range segmentation
into multiple intervals.

Other studies reported a positive effect of personalizing
the network prior to prediction with subject-specific data
[13,20,29]. This means that the pretrained network is partly
or completely retrained using some portion of data from the
subject used for prediction. Following this idea we also in-
vestigated in this study whether this personalization scheme
is more or less effective with respect to the segmentation of
the target variable (BP range) in the underlying BP predic-
tion task. There is reason to believe that personalization
is particularly effective for narrow bins, i.e. in problems
very much related to regression but becomes less important
if only a low number of BP classes with wide intervals are
used.

The original contributions of this paper are as follows.
First, we provide a systematic comparison of classification
and regression based approaches for the task of BP clas-
sification using several BP range segmentations. Second,
we evaluate the effect of personalization of DNNs using
subject-specific data with respect to the granularity of the
segmentation of the BP range for both the regression and
classification scenario. Moreover, we show that the findings
hold true for several DNN architectures.

The remainder of this paper is as follows: Section 2 gives
an overview over existing work in the field of BP prediction
and classification. Section 3 outlines the methods used for
creating the dataset, describes the relevant neural architec-
tures and how they were trained in each scenario as well as
the performance measures used for evaluating the results.
Section 4 presents the results and draws comparisons be-
tween regression-based and classification based approach
with and without personalization. Section 5 assesses the
results presented in the light of our initial hypotheses. We
also draw conclusions as to if and under what circumstances
a decision for or against regression or classification might
be justified.
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2. Related Works

2.1. BP regression

Existing literature regarding PPG-based BP prediction
can be divided into approaches that try to predict SBP as
well as DBP as continuous variables (i.e. regression) and
approaches that aim at classifying PPG signals into a set
of predefined classes (i.e. classification). The definition
of these classes is usually targeted towards the detection
of certain adverse medical conditions (e.g. hypotension
(HypoT), normortension (NT), hypertension (HT)). Since
training of very deep neural architectures became feasible
on consumer-grade hardware, the attention of the research
community has shifted mainly towards regression-based ap-
proaches.

Regression-based approaches can be further subdivided
into methods using parameterized models or PPG features
as well as end-to-end approaches. Parameterized methods
use the pulse transit time (PTT) or pulse arrival time (PAT)
to derive the pulse wave velocity (PWV). Several studies
used linear regression models to infer BP values from PWV
[7, 37, 39]

Feature-based approaches derive time and frequency do-
main features from PPG signals and use them as input to
neural networks (NNs). Recently, Mahmud et al. [22] de-
signed a U-Net architecture that was tasked with deriv-
ing informative features from PPG and electrocardiography
(ECG) signals. These features were then used to predict
SBP and DBP using several clustering algorithms (e.g. kNN
approaches and support vector machines). They achieved a
MAE of 2.33 mmHg for SBP and 0.713 mmHg for DBP,
respectively. Other authors designed recurrent NNs and
derived time- and frequency-based features from PPG and
ECG for predicting BP [6, 11, 26, 28].

In contrast to feature-based methods, end-to-end ap-
proaches leverage the PPG waveforms themselves and im-
plicitly derive informative features to predict BP. The ad-
vantage of this approach is that the selection and derivation
of specific features is not necessary leaving the task of de-
tecting patterns in the input data that are correlated to BP
entirely to the neural architecture. Aguet et al. [2] trained
a siamese NN. They averaged consecutive PPG time win-
dows to improve feature robustness to create the datasets
for training and testing. Together with a callibration mea-
surement the siamese network achieved an mean error of
0.31 mmHg for SBP and 0.4 mmHg for DBP, respectively.
However, the standard deviation of these errors was high
(10.27 mmHg for SBP and 5.62 mmHg for DBP). Leitner
et al. [20] designed a hybrid neural architecture consisting
of convolutional, recurrent and fully connected layers. Af-
ter training with PPG signals, the NN was fine tuned using
additional data from the test subjects. The authors achieved
an MAE of 3.52 mmHg (SBP) and 2.2 mmHg (DBP). Jeong

et al. [14] used a convolutional neural network (CNN) in
combination with a recurrent NN to predict BP. They pro-
cessed PPG end ECG from the MIMIC-III database to cre-
ate the dataset used for training and testing. Their architec-
ture achieved a mean error of 0.02 mmHg (SBP) and 0.16
mmHg (DBP).

2.2. BP classification

Many recent publications aiming at BP classification use
already established neural architectures that are success-
fully applied to image classification tasks. Cano et al. [4]
modified pretrained GoogleNet and ResNet architectures
and trained them using 50 subjects downloaded from the
MIMIC-III database. The target variable was a classifica-
tion into HT, pre-HT and NT. The highest F1-score on the
test dataset was achieved with the ResNet18 network. Sun
et al. [33] used the Hilbert-Huang Transform on PPG sig-
nals and their first and second derivatives to fine tune a pre-
trained AlexNet architecture. The classification of the in-
put signals into NT and HT achieved an accuracy score of
98.9 %. Liang et al. [21] computed the continuous wavelet
transform (CWT) from the PPG signals of 121 records
downloaded from the MIMIC-III database. A pretrained
GoogLeNet was used to classify the scalograms into NT,
pre-HT and HT. Multiple trainings were performed to in-
vesitgate the accuracy when classifying the scalograms into
pairwise combinations of the target classes. The highest F1-
score of 92.55 % was achieved when classifying NT and
pre-HT.

Other authors created custom neural architectures for BP
classification. Wu et al. [38] proposed a CNN designed
for NT /HT classification based on the CWT of PPG sig-
nals. They achieved a validation accuracy of 90 %. Mejı́a-
Mejı́a et al. [24] derived time and frequency domain fea-
tures from the PPG-based pulse variablity signal. A subset
among those features was selected based on a importance
analysis. The authors trained various classification methods
(e.g. k-NN, support vector machines and multilayer percep-
trons) for HypoT/NT/HT classification. The highest accu-
racy on the test set was 70 %.

3. Methods
3.1. Dataset

The dataset used in this work is based on the MIMIC-III
database [9,15,16] and was created as described in [27]. Es-
sential processing steps comprised downloading ABP and
PPG signals from 4000 subjects off the MIMIC-III database
using mining scripts provided by Slapničar et al. [29]. The
downloaded ABP and PPG data were divided into windows
with a length of 5 s and an overlap of 2.5 s (50 %) between
consecutive windows. To create a balanced dataset, the
samples had to be collected so that each subject contributed
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Figure 1. Histogram of the number of records downloaded from
the MIMIC-III database containing a certain amount of PPG win-
dows for training

equally to the dataset. Figure 1 shows a histogram of the
number of records in the MIMIC-III database that contain a
certain amount of samples. Since the majority of the records
contribute at least 1000 samples to the dataset, only those
records were selected for further processing. PPG signals
were filtered using a 4th order Butterworth bandpass filter
(fcut = 0.5Hz − 8Hz). Additionally, a quality check in
terms of signal-to-noise ratio (SNR) was performed for ev-
ery PPG window. Samples with an SNR below -7 dB were
discarded. All PPG windows were normalized to zero mean
and unit variance.

Ground truth SBP values were derived from the ABP
signals. We selected the SBP as the sole target since it
has proven to be a better indicator for cardiovascular risk
than DBP [32]. We employed a peak detection algorithm
to detect the systolic peaks in each ABP window. The ref-
erence SBP was then derived by calculating the median of
all SBP peaks in each signal window. To discard samples
with a BP value outside the physiologically plausible range,
we removed all samples with an SBP lower than 80 mmHg
or higher than 180 mmHg. Signal windows with a median
heart rate that exceeded the range of 50 to 140 bpm were
also rejected.

3.2. BP range segmentations

To investigate the influence of different segmentations
of the BP range on the classification accuracy, we divided
the SBP range into bins. Four different BP segmentation
schemes shown in Figure 2 were used. (1) hph: 3 bins,
their location and width reflects diagnostically meaningful
BP ranges (i.e. hypoT, NT and HT) according to the Ger-
man Cardiac Society (DGK) and the World Health Orga-

Figure 2. Overview over the BP range segmentation used for train-
ing the NNs. The SBP range was divided into variable numbers of
bins.

BP range segmentation No of subj, No of samples

hph 1214 3642000
even4 475 1900000
dgk 189 1134000

even10 94 940000

Table 1. Numbers of subjects and records included in the seg-
mentations of the BP range used to train NNs. For details on the
segmentations, see text.

nization (WHO) [1, 36]; (2) even4: four equally sized bins
covering the whole BP range; (3) dgk: a division of the
BP range into six physiologically meaningful intervals ac-
cording to the DGK [36]; (4) even10: 10 bins of width 10
mmHg, this approximates more regression-like approaches.
For each BP segmentation we selected only subjects from
the MIMIC-III database, whose BP value ranges spanned
across all BP bins. In order to create balanced datasets, the
contribution of each subject was limited to 1000 samples
per bin. This led to datasets containing a variable number
of subjects and samples depending on the number of bins in
the dataset. An overview of the total number of subjects and
samples for every BP segmentation can be found in Table 1.

3.3. Neural network architectures

Four different NN architectures were used for classifi-
cation and regression. We used a modified version of the
AlexNet architecture to classify BP into various bins [18].
Originally, AlexNet is a CNN that takes RGB images as
input and classifies them into one of 1000 categories. We
adopted the architecture for BP classification such that the
first layer takes PPG time series data as input. Similarly, the
number of output neurons of the final classification layer
was adjusted according to the respective BP segmentation
that was used for BP classification.

ResNets are very deep CNN consisting of blocks of con-
volutional layers with skip connections [12]. These skip
connections efficiently account for the vanishing gradient
problem that occurs in very deep neural architectures [31].
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We used three different versions of this architecture with
varying depth. Specifically, we used ResNet18, ResNet34
and ResNet50.

The input dimensions of all networks were Nsamp × 1
(1D PPG signal segment). Output dimensions of the fi-
nal classification layers were Nbin × 1 for the classifica-
tion problem, where Nbin is given by the number of bins in
the particular BP range segmentation. In case of regression
based-training the target variable corresponds to the SBP as
a single value. Network weights of all models were initial-
ized randomly using the Glorot method since it has proven
to lead to a quicker convergence of the NN during train-
ing [8].

3.4. NN training

3.4.1 Pretraining

The data was split into chunks of 70 %, 22.5 % and 7.5
% which were used for NN training, validation after each
epoch and final testing. The split was achieved by assign-
ing data from each subject to only one of these chunks. In
comparison to a data split based on raw data samples this
strategy prevents overfitting to subjects as data of particular
subjects are not split across training, validation and test sets.
Our approach to prevent an imbalance between the number
of samples in the BP bins of the particular BP range seg-
mentation is described in sec. 2.2.

Input and training pipelines as well as the neural ar-
chitectures were implemented using Tensorflow 2.3 and
Python 3.8. Training was performed using the Adam op-
timizer with an initial learning rate of 0.001 and a batch
size of 128. The training was stopped if the validation loss
stopped improving for 10 epochs and the best performing
model was used for testing.

3.4.2 Personalization

Previous studies have shown that there are substantial dif-
ferences in PPG morphology between different subjects
that prevent a successful generalization of NNs across var-
ious patients [29]. Consequently, the prediction accuracy
of NNs trained on data from an extensive subject popula-
tion might be inadequate for clinical applications. Using
subject-specific data to fine tune the pretrained NN has the
potential to increase the prediction accuracy for individ-
ual subjects. To investigate the effect of personalization on
the BP prediction accuracy for classification and regression
based approaches we selected 10 patients from the MIMIC-
III dataset that were previously used for testing the NNs.
Each chosen subject’s data was ordered by SBP value and
every 10th sample was selected as data for fine tuning the
NN. Since we ensured that the data of every subject spanned
the whole SBP range during dataset creation, the data used
for finetuning also fulfilled this criterion.

AlexNet ResNet18 ResNet34 ResNet50

Class.

hph 0.45 0.44 0.45 0.44
even4 0.36 0.36 0.37 0.36
dkg 0.24 0.24 0.25 0.23
even10 0.16 0.15 0.16 0.16

Reg.

hph 0.42 0.46 0.45 0.45
even4 0.36 0.36 0.37 0.38
dkg 0.25 0.25 0.25 0.25
even10 0.14 0.16 0.16 0.16

Table 2. Test accuracy of the prediction performance of the NNs
for the different BP range segmentations under test. Results are
presented separately for regression-based and classification-based
approaches. Predicted SBP values from the regression-based ap-
proach were assigned to their respective BP bin to allow for a di-
rect comparison to the classification-based approach in terms of
accuracy.

Our fine tuning strategy corresponds to a transfer learn-
ing approach [20] in which all weights of a pretrained net-
work are allowed to be updated. The remaining data of the
particular subject was split into equal parts and used for val-
idating and testing the fine tuned NNs. Training was per-
formed for a fixed number of 100 epochs. The model from
the best epoch in terms of validation accuracy was used for
testing.

3.5. Evaluation metric

We evaluated the performance of each NN in terms of
accuracy with which the models predicted the correct BP
bin. The accuracy metric is well suited since we ensured a
balanced number of samples across classes. In the case of
the BP regression, the predicted SBP value was assigned to
its respective BP bin. This allowed a direct comparison be-
tween classification and regression evaluation results using
classification-based metrics. Additionally, confusion ma-
trices were calculated for a better grasp of the prediction
characteristics.

4. Results
Table 2 shows the accuracy for every BP segmentation

and every neural architecture on the test set after training
the models from scratch. It can be seen that BP segmen-
tations with just a small number of classes (hph) achieve a
higher accuracy than BP segmentations that divide the BP
range into a bigger number of classes (dgk). Comparing
the different neural architectures, no significant difference
in accuracy could be observed. Likewise, there was no dif-
ference in accuracy between the regression-based and the
classification-based training.
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Figure 3. Confusion matrices for the pretraining of the neural architectures using the even10 segmentation. Ground truth BP classes
and predicted BP classes are shown along the x- and y-axis respectively. Results are presented separately for regression-based (a) and
classification-based (b) approaches. Number of samples in matrix element are normalized to the total number samples in the respective
matrix row (i.e. number of samples in the respective class).

Figure 3 shows the confusion matrices for the regression-
based and classification-based approaches using the even10
segmentation. The false detections indicated in the off-
diagonal elements underpin the findings from the accuracy
metrics in Table 2. However, resulting matrices from the
regression-based approaches show that most of the samples
are grouped near the main diagonal suggesting that the pre-
diction is in many cases only off by a few bins from the
correct bin. This effect is most pronounced in the results
from the even10 BP segmentation. The models seem to be
more capable of distinguishing BP bins that are farther apart
in the BP range than bins that are close to each other in com-
parison to classification models. This is not reflected in the
accuracy measure which penalizes misclassification regard-
less of the proximity of the misclassified bin to the correct
bin.

4.1. Personalization

Personalization was performed independently for each
of the 10 selected subjects using 10 % of the data. The
remaining data was used in equal parts for validation and
testing. We additionally verified the test performance on
the original test set without the subject used for fine-tuning.
This was done to ensure that the generalization capabili-

ties of the network are maintained. Although the results are
not shown here, we did not observe a significant drop of
the performance after personalization. Figure 4 shows the
mean test accuracy for every training scenario. The mod-
els were evaluated before (blue bars) and after fine-tuning
(orange bars). Test accuracy increased after fine tuning for
every training scenario proving the efficacy of personaliza-
tion for improving the performance on individual subjects.
Similar to the results presented in Table 2 as well as Fig-
ure 3 the test accuracy declined depending on the number
of intervals used for the segmentation of the BP range. BP
range segmentations with more bins resulted in a lower ac-
curacy on the test set both pre- and post-personalization in
comparison to segmentations with fewer bins. When com-
paring the various neural architectures, it can be seen that
personalization had a greater effect on the ResNet variants
as the increase in accuracy post-personalization seems to be
higher in comparison to the AlexNet architecture.

Furthermore, we analyzed the differences in test ac-
curacy between classification-based and regression based
approaches for every BP range segmentation. Results
are depicted in Figure 5. We observed only small dif-
ferences in pre-personalization accuracy when comparing
classification- and regression-based accuracy. However,
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Figure 4. Mean and standard deviation of th test accuracy before (blue) and after (orange) personalization using subject-specific data of
10 test subjects for all considered BP segmentations and every neural architecture. Presented results are divided into results from the
classification (a) and regression based (b) approaches.

Figure 5. Mean and standard deviation of the test accuracy be-
fore and after personalization for all considered BP segmentations.
Presented accuracies are averaged over all neural architectures.

post-personalization accuracy was higher when predicting
BP bins directly instead of performing a regression and
assigning the appropriate BP bin to every predicted SBP-
value. This effect seems to be mainly driven by the AlexNet
results which show the most pronounced difference in post-
personalization test accuracy between the regression and
classification based scenario. However, a consistent minor

effect can also be seen for all other network architectures.
As stated before, test accuracy decreased with increasing
numbers of BP bins.

5. Discussion

This paper aimed at a comprehensive comparison of
regression-based and classification-based non-invasive BP
prediction using deep learning methods. We did not in-
tend to derive a particularly accurate model to achieve state-
of-the-art performance. Instead, we adopted a pragmatic
approach to explore how the problem of PPG-based BP-
prediction might be reformulated to answer relevant ques-
tions and be useful in a clinical setting. We derived an ex-
tensive dataset from the MIMIC-III database and trained
well-established neural network architectures for both BP
regression and classification. We divided the SBP into bins
of varying number and width (BP range segmentations).
The width and number of bins in these segmentations were
designed to both cover physiologically relevant BP intervals
(e.g. hypo-, normo- and hypertension) as well as to mimic a
more regression-like approach (e.g. narrow bins of constant
width). NN were trained using loss functions for regres-
sion and classification, while the evaluations were carried
out with respect to classification scenarios.

Given this experimental setup, our objective was to an-
swer several questions. We investigated whether classifica-
tion or regression based approaches should be preferred one
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over another for BP class prediction in certain scenarios.
More precisely, it might be plausible to prefer a classifica-
tion loss during training for a coarse BP range segmentation
and a regression loss in case of a denser segmentation. As
our results indicate, this is not the case in general. It can
be seen that the performance of both approaches constantly
drops from coarser towards denser segmentations. This is
obvious from the regression loss perspective since the pre-
dicted target variable (continuous BP values) is independent
from the particular BP range segmentation. Therefore, the
expected mean absolute error is the same for all segmen-
tations which results in a higher chance of misclassifying
the target towards denser segmentations, thus leading to a
decrease of the performance.

Regarding the pre-personalization results there is no rea-
son to prefer any of the two approaches for any of the
given BP range segmentations, although regression meth-
ods seem to perform slightly better. This is different for
post-personalization results where the classification based
methods clearly outperform their regression counterparts.
However, there is no indication that classifications based
approaches might be less suited for denser BP segmenta-
tions compared to regression approaches. Given all of these
results, there is also no obvious tradeoff between the coarse-
ness of the BP range segmentation and the use of either re-
gression or classification losses for training.

Our results also emphasize the importance of personal-
ization, i.e. fine tuning the network weights with subject
specific data. This personalization procedure, which has
been proven effective in various studies before [19, 20, 29],
leads to a strong performance increase for any network ar-
chitectures and their training with both classification and
regression losses compared to pre-personalization results.
From the results in figure 4 it can be seen that the ResNet ar-
chitecture benefits the most from personalization. This may
be due to the skip connections incorporated in the architec-
ture that allow the network to converge to a better optimum
compared to the AlexNet architecture. It seems to be even
slightly more effective for classification based approaches
since they outperform regression approaches after person-
alization which is not consistently the case before person-
alization. However, we could not find indications that the
effectiveness of personalization depends on the particular
task, i.e. the BP range segmentation.

We acknowledge that the subject population we used for
personalization may not be sufficient to draw general con-
clusions. Additional selection criteria have to be employed
to ensure that the subjects are representative for a popula-
tion spanning a greater range of demographic and medical
characteristics. Furthermore, it has to be investigated which
properties and patterns enable the NN to improve its clas-
sification accuracy after training on subject-specific data.
However, our results suggest that classification instead of

regression has the potential to greatly improve the accuracy
of non-invasive BP prediction.

Classification and regression of BP is subject to ongo-
ing research and several relevant studies reported results
that partly fulfilled the criteria of the British Hypertension
Society and the Association of the Advancement of Med-
ical Instrumentation. However, special attention has to be
paid to the experimental setup and the design of the train-
ing pipeline in order to obtain unbiased results that allow
for a realistic assessment of the method’s clinical applica-
bility. In the light of these considerations, many authors
question the practical feasibility of a truly continuous BP
estimation [27]. One of the reasons may be external factors
(e.g. age, chronical illnesses, medication and differences in
measurement equipment) that introduce inter-subject vari-
ations into the PPG morphology which prevents the neural
networks from good generalization. Given our experimental
setup which ensured a balanced number of samples across
BP bins in each segmentation, our post-personalization re-
sults indicate that it can be possible to achieve a BP classi-
fication performance of practical relevance solely based on
PPG signals for some application scenarios.

Our results provide three insights: (i) training neural
networks from scratch does not lead to an advantage in
terms of test accuracy for either classification or regres-
sion approaches. Test accuracy drops as the number of
BP segments gets larger. (ii) Personalization is immensely
important for BP prediction as it enables machine learn-
ing methods to identify informative patterns in the subject-
specific feature space through training on subject-specific
data; (iii) classification-based approaches may be preferable
over regression-based approaches when the correct associa-
tion of BP to a small number of broad BP intervals is suffi-
cient.

The findings in this work are of great importance when
applying machine learning methods to camera-based PPG
measurements. Such methods experience great interest
from the scientific community and are investigated exten-
sively [30, 34, 40]. However, due to confounding factors
like movement, reflections or changing lighting conditions
that negatively impact the signal-to-noise ratio compared
to their sensor based counterpart, it can be expected that
the BP prediction error increases. Therefore, developing a
method that satisfies all the relevant clinical criteria is still
a work in progress. Simplifying the problem by classifying
a limited number of BP ranges might be a way forward to
arrive at a truly non-invasive BP prediction method that is
applicable in a clinical setting.
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