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Abstract

Remote photoplethysmography (rPPG), a family of tech-
niques for monitoring blood volume changes, may be es-
pecially useful for contactless health monitoring via face
videos from consumer-grade cameras. The COVID-19 pan-
demic caused widespread use of protective face masks,
which results in a domain shift from the typical region of
interest. In this paper we show that augmenting unmasked
face videos by adding patterned synthetic face masks forces
the deep learning-based rPPG model to attend to the pe-
riocular and forehead regions, improving performance and
closing the gap between masked and unmasked pulse es-
timation. This paper offers several novel contributions:
(a) deep learning-based method designed for remote pho-
toplethysmography in a presence of face masks, (b) new
dataset acquired from 54 masked subjects with recordings
of their face and ground-truth pulse waveforms, (c) data
augmentation method to add a synthetic mask to a face
video, and (d) evaluations of handcrafted algorithms and
two 3D convolutional neural network-based architectures
trained on videos of unmasked faces and with masks syn-
thetically added.

1. Introduction
Remote pulse estimation is especially useful in settings

where health diagnostics are desired, but using contact sen-
sors is expensive, presents some risk, or professional sen-
sors (e.g. pulse oximeters) are not available. The COVID-
19 pandemic is one such scenario where extracting cardiac
diagnostics without surface contact mitigates the risk of vi-
ral transmission, and can potentially allow for ubiquitous
health monitoring at a critical time. Contactless kiosks
could be used to screen entrants to public spaces to min-
imize breakout events. Furthermore, camera sensors are
becoming increasingly common in personal devices, and
health monitoring could be performed easily from mobile
phones or laptops for telehealth applications.

The widespread adoption of face mask usage caused sig-
nificant problems for existing technologies that assume an

unobstructed view of the face [21]. People from certain re-
ligious denominations also occlude the face with coverings.
Nearly all recent rPPG algorithms extract the signal from
the face [5,7,11,16,19,29,36,44,47], sometimes even lim-
iting the analyzed region to the cheeks [17, 40], which is a
region generally occluded by a mask. While early contact-
less pulse estimation algorithms used hand-crafted features
in both the temporal and spatial domains, more recent works
have shown that convolutional neural networks (CNN) fed
with spatiotemporal representations may outperform hand-
crafted approaches [5,23,28,36,39,47]. We thus select two
3DCNN-based architectures for the models evaluated in this
work, as shown in Fig. 1.

To accommodate the research community’s need for
large-scale realistic physiological datasets, we present a
new Masked Physiological Monitoring (MPM) dataset
of face recordings with masked subjects. High resolu-
tion videos at 90 frames per second were simultaneously
recorded with oximeter pulse waveforms from 54 subjects.
In this paper, we use the MPM dataset to analyze the ef-
fects of realistic face occlusions on rPPG algorithms, and
we answer the following three research questions:

(Q1) Is the accurate pulse rate estimation possible on sub-
jects wearing masks?

(Q2) If the answer to (Q1) is affirmative, does inclusion of
face videos with synthetic masks result in better per-
formance on videos of subjects wearing actual masks?

(Q3) What adaptations to the existing rPPG methods are
useful to fine-tune them to COVID-19 and future
health crises?

To the authors’ knowledge, this is the first paper to ex-
plore the effects of face occlusions on the accuracy of re-
mote pulse estimation algorithms. Along with the MPM
dataset, we also offer source codes of the method adding
synthetic face masks to existing (unmasked) face videos.

2. Background and Related Work
Remote photoplethysmography is the process of estimat-

ing the blood volume pulse from changes in reflected light
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Figure 1. Training and inference pipeline for the spatiotemporal modeling task of remote pulse estimation. Raw RGB frames are land-
marked and cropped, and then either fed directly into the model or a synthetic mask is added. Multiple frame sequences are overlap-
added [7] to produce the full pulse waveform.

from the skin. Microvasculature beneath the skin’s surface
fills with blood, which changes reflected color due to the
optical absorption of hemoglobin. Estimation from visi-
ble light is especially desirable due to low-cost sensors, but
thermal [10,27,33,38] and near-infrared [25,26,41] sensors
are also effective. In practice, the color changes in visible-
light are subtle and may be obscured by noise factors such
as illumination changes and body movements. The problem
is further compounded by face coverings, which decreases
surface area available to detect the pulse, and consequently,
the signal-to-noise ratio.

Early studies began with stationary subjects and man-
ually selected skin regions [42, 46]. Poh et al. [29, 30]
applied blind source separation through independent com-
ponent analysis (ICA) to the color channels. Several ad-
vancements combined color channels to locate the pulse
signal [7, 8, 43–45]. The first approach considered the
chrominance signal (CHROM), which was agnostic to il-
lumination and robust to movement [7]. Later improve-
ments relaxed assumptions on the distortion signals from
movement [8], examined rotation of the skin pixels’ sub-
space [45], and dynamically selected projections based on
signal strength [43]. Wang et al. [44] introduced plane-
orthogonal-to-skin (POS), which defines a projection plane
for separating the specular and pulse components.

Until Li et al. [17] designed an effective pulse detec-
tor on the MAHNOB-HCI database [35], many approaches
had been designed and tested on relatively small private
datasets. After using the public MAHNOB-HCI dataset
many groups were able to compare their estimators [5, 17,
40, 47], and it spurred the creation of more public datasets
such as AFRL [9], MMSE-HR [40], VIPL-HR [22], and
UBFC-RPPG [2]. The increased size of datasets made it
possible to train deep neural networks. The first deep learn-

ing approach [15] trained a regression model on ICA and
chrominance features.

Later, deep learning models for rPPG were trained on the
spatial [5,14] and spatiotemporal [23,28,36,39,47] dimen-
sions of the video rather than extracted temporal features
alone. Hsu et al. [14] trained VGG-15 on the frequency
representation of averaged color signals. Chen et al. [5]
used two-stream networks [34] frame differences and raw
frames to a two-stream architecture, predicting the wave-
form derivative. A recent approach fed spatial-temporal
maps from a grid of facial regions into ResNet-18 followed
by a gated recurrent unit (GRU) to predict heart rate [23].

Yu et al. [47] constructed a 3DCNN that takes video clips
as input and minimizes the negative Pearson correlation be-
tween waveforms. An advantage is the network’s capabil-
ity of producing a waveform, rather than a single heart rate
value. Speth et al. [36] created the RPNet architecture by
adding temporal dilations based on empirical results from
frame rate experiments. We use both the 3DCNN and RP-
Net in our experiments. We improve the 3DCNN architec-
ture by increasing the width of temporal kernels, such that
longer-range time dependencies can be captured.

A later extension added enhancement and attention net-
works to help with compressed video [48]. Lee et al. [16]
presented a transductive learner to adapt quickly to new
samples. Disentangled representations were used to sepa-
rate non-physiological signals from the pulse signal [24].
Liu et al. [19] further improved a DeepPhys-like architec-
ture to form their MTTS-CAN model. Gideon et al. [11]
recently performed unsupervised learning for rPPG.

While rPPG has been used for many applications such as
presentation attack detection [13,18] to distinguish between
no pulse detected (presentation attack) and pulse detection
(live), our goal is to determine how accurately the pulse rate
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can be estimated from a known live face wearing a mask.
Face occlusions have never been explored in rPPG.

3. Datasets
We utilized three remote physiological monitoring

datasets. The first is a large-scale publicly available
dataset [37] recorded with unmasked subjects. The second
is an augmentated version of the DDPM dataset with syn-
thetic face masks. The third is a newly-collected dataset to
assess remote pulse estimation algorithms in the presence
of face masks.

DDPM Dataset [37] We used the publicly available De-
ception Detection and Physiological Monitoring (DDPM)
dataset, which consists of 86 simultaneous video and pulse
recordings of nearly 11 minutes per subject. During the
recording, a paid actress conducted an interview consisting
of 24 questions. Each subject was instructed beforehand to
answer particular questions truthfully or deceptively. Sub-
jects were free to complete the interview without constraints
on motion, facial expressions, and talking, which accurately
represents scenarios for pulse estimation in the wild. The
interview setting also introduced variability in the pulse
rate, as shown in Fig. 2. Such variability is rarely observed
in rPPG datasets, and thus overall, the DDPM dataset’s size
and setting make it useful for our analyses.

DDPM-Mask Dataset. We augment the DDPM dataset
with synthetic face masks by occluding the lower face re-
gion to create the DDPM-Mask corpus. We use the same
landmarks selected in [21] to define a wide, medium cov-
erage mask. We use two landmarkers: the OpenFace (OF)
toolkit [1] and Bulat et al.’s 2D landmarker [4]. Along with
black masks, we also added patterned masks by randomly
selecting images from the Describable Textures Dataset
(DSD) [6] and overlaying the image onto the 2D mask. The
pattern was transformed with head rotation and translation
to cover the same portions of the masked region. We first
resized the pattern to 64 × 64 pixels. Then we randomly
translated the pattern image such that the face landmarks
for the first frame of the sequence were still within the pat-
tern. Using these landmark points as anchors on the pattern
image, we estimated the similarity transformation (rotation,
translation, and scaling) from the anchor landmarks to the
face landmarks in every following frame of the sequence,
then applied the transformations on the pattern image be-
fore adding the masked region to the face frames. The sec-
ond column of Fig. 1 illustrates a patterned synthetic mask
added to the DDPM dataset over a sequence of frames.

MPM Dataset. We collected a new Masked Physiolog-
ical Monitoring (MPM) dataset for remote physiological
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Figure 2. Distribution of heart rates over the MPM and
DDPM [37] datasets. The deception interview setting for the
DDPM results in a higher variance in heart rates. Note that the
y-axis is log-scale.

monitoring of masked subjects. A plexiglass screen was
placed between acquisition personnel and the subject to re-
duce COVID-19 transmission risk. Subjects were asked to
bring 3 different face masks to increase variability in color,
texture, and shape. Subjects sat approximately 1 to 2 meters
from the RGB camera. The ground truth heart rate, blood
oxygenation, and blood volume pulse waveforms were col-
lected by a Contec CMS50EA finger oximeter recording at
60 Hz. RGB videos were recorded with 1920× 1080 pixels
at 90 frames per second (fps) by TheImagingSource DFK
33UX290 camera. Videos were losslessly compressed with
H.264 encoding using a constant rate factor of 0 to avoid
damaging the optical pulse signal and allow for future com-
pression studies. The MPM dataset was collected from con-
senting subjects under a human subjects research protocol
approved by the authors’ Human Subjects Institutional Re-
view Board.

We captured videos for 54 subjects over 3 different ses-
sions, where the participant wore a different mask in each
recording. We divided each session into three different
tasks: (a) natural conversation with free head movement,
(b) directed head movement, and (c) frontal view with-
out head movement. The natural conversational task con-
sisted of sustained interaction with an acquisition worker
for 2 minutes. The directed head movement task aimed
to stress the pulse estimation algorithms by adding non-
frontal gaze and head motion. Subjects were directed to
look at a total of 6 different targets for approximately 5
seconds each, resulting in a 30 second interval. The final
task consisted of the subject maintaining frontal gaze and
avoiding movement or talking for 30 seconds. Three sub-
jects were only recorded for 2 sessions, resulting in a total
of 159 recordings, over 3 minutes in length per video, giv-
ing us around 8 hours of recorded data. The reliability of
the ground truth physiological signals was improved by us-
ing two Contec CMS50EA oximeters placed on both index
fingers. A copy of the MPM dataset can be requested at
https://cvrl.nd.edu/projects/data/.
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Figure 3. Frames from all pulse databases used throughout this paper are shown for the unmasked, synthetically masked, and masked
videos. Patterns for the synthetic masks are randomly sampled from the Describable Textures Dataset [6].

4. Approach
We model the pulse prediction task as a regression prob-

lem with the blood volume waveform from the oximeter as
the target. This task generates a real value for every im-
age in a sequence. We deploy two 3DCNN architectures on
cropped frame sequences from the original video to contain
the face only, as shown by Fig. 1. The following sections
describe the model architectures and pipeline used to pre-
pare the videos and target waveforms.

4.1. Spatiotemporal Architectures

We select two 3DCNN architectures to learn the pulse
waveform from frame sequences. The 3DCNN was selected
for three reasons. Firstly, it is capable of producing a high-
resolution pulse waveform, not only selected statistics such
as heart rate. Second, the 3DCNN is capable of learning
from the raw image sequences. Lastly, the rPPG task bene-
fits from joint learning of spatiotemporal features.

The first architecture is similar to the PhysNet-
3DCNN [47], but with modified temporal dimensions of the
kernels from a width of 3 to a width of 9 to capture longer
time dependencies and help filter out high-frequency noise.
The second is the RPNet architecture [36], which increases
the temporal receptive field with dilated convolutions. We
selected RPNet due to its good performance compared to
the aforementioned 3DCNN with a kernel width of only 5,
resulting in fewer parameters.

4.2. Preprocessing

To make the rPPG task easier for the model, we cropped
the face region from all frames. We used both the Open-
Face (OF) toolkit [1] and the 2D landmarker of Bulat et al.
(AB) [4]) to detect 68 facial landmarks as a basis for defin-
ing the bounding box. Using two landmarkers allows us to

investigate reliance of the results on the landmarker. Defin-
ing a bounding box from landmarks results in less jitter over
time than simpler face detection methods. Additionally, the
face landmarks gave us keypoints to approximate the shape
and location of a synthetic mask.

From the minimum and maximum (x, y) landmark lo-
cations we extended the sides and bottom by 5% and the
top by 30% to include the forehead. We then extended the
shorter of the two axes to the length of the other to form a
square. The cropped region was then downsized to 64× 64
pixels with bicubic interpolation. The model is given clips
of the video consisting of 135 frames (1.5 seconds). We
selected this as the minimum length of time an entire heart-
beat would occur, considering 40 beats per minute (bpm) as
the lowest frequency for healthy subjects.

For the DDPM dataset, we used the upsampled oxime-
ter waveforms which had been phase shifted to match
CHROM’s waveforms [36]. For MPM, the oximeters
recorded ground truth waveform values at 60 Hz, which dif-
fered from the native 90 fps of the videos. We upsampled
the ground truth waveforms with cubic interpolation to the
video timestamps. During training, we apply min-max nor-
malization to the waveform labels for each clip to keep the
values in [0,1].

4.3. Video Augmentation

We augment the input data by horizontal flipping with
50% probability, adding random illumination changes with
mean of zero and standard deviation of 10 when operating
on 8-bit grayscale images, and adding pixel-wise Gaussian
noise ∼ N (0, 4). The image values are subsequently scaled
to floating point values between 0 and 1. We augment every
frame within each video clip in the same manner.
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Figure 4. Ground truth and predicted waveforms for a short time
segment on the unmasked (top) and masked (bottom) datasets us-
ing the same 3DCNN trained on subjects without face occlusions.

4.4. Optimization and Training

We optimize the 3DCNN for the temporal regression
problem by minimizing the negative Pearson correlation be-
tween waveforms [36, 39, 47], each of the length of 135
frames. We apply the Adam optimizer without weight de-
cay, with a learning rate of α = 0.0001, and parameter val-
ues of β1 = 0.99 and β2 = 0.999. We apply dropout during
training with 75% probability, since 3DCNNs are prone to
overfitting. Example ground-truth and predicted waveforms
are shown in Fig. 4. Visual inspection suggests that the
trained 3DCNN models perform well on both masked and
unmasked faces.

4.5. Overlap Adding

The model is given short video clips and predicts a wave-
form value for every frame. For videos longer than the
clip length, it is necessary to perform predictions in slid-
ing window fashion over the full video. Similar to [7], we
use a stride of half the clip length to slide across the full
video. For validation and testing we use a clip length of
136 frames to accommodate the half overlaps. The win-
dowed outputs are first standardized, then a Hann function
is applied to mitigate edge effects. Finally all overlapped
outputs are summed to give a final waveform, as shown in
Fig. 1 (right).

5. Experiments
Our experiments attempt to understand how face masks

adversely affect remote pulse estimation performance,
and whether adding synthetically-generated masks to face
videos during training helps improve performance in the

presence of real face masks. To give a complete evaluation,
we evaluate all models on both the masked (MPM) and un-
masked (DDPM) datasets, and with two different face land-
markers, in the following four scenarios:

(s1) training / tuning all methods on unmasked face videos
(train/validation partition of DDPM), and testing also
on unmasked face videos (test partition of DDPM),

(s2) training / tuning all methods on face videos with syn-
thetically added masks (DDPM-Mask dataset), and
testing on unmasked subject-disjoint face videos (test
partition of DDPM),

(s3) training / tuning all methods on unmasked face videos
(train/validation partition of DDPM), and testing on
masked face videos (MPM dataset),

(s4) training / tuning all methods on face videos with syn-
thetically added masks (DDPM-Mask dataset), and
testing on masked face videos (MPM dataset).

5.1. Dataset Partitions

We used the provided training, validation, and testing
partitions provided with the unmasked DDPM dataset. In
total, there were 64 subjects used for training, another 11
subjects for validation, and the remaining 11 for testing.
Splits were crafted with stratified random sampling across
race, gender, and age, in order of importance in the cases
that equal splits were not possible. By setting a portion of
the unmasked data (DDPM) aside for testing, we can effec-
tively examine the change in performance when evaluating
on the entire masked (MPM) dataset of 54 subjects.

5.2. Compared Methods

We selected several previous state-of-the-art algorithms
to evaluate the efficacy of our approach. All hand-crafted
methods evaluated in the paper, including chrominance-
based (CHROM) [7] and plane-orthogonal-to-skin (POS)
[44], were reimplemented by us with minor help from com-
ponents of Heusch et al. [12].

Two algorithms employing blind-source separation of
the color channels through independent component analysis
(ICA) [29, 30] were also tested, due to their initial popular-
ity in the field. For simplicity, we refer to the ICA approach
presented in [30] as POH10, and refer to the improved ICA
approach with detrending [29] as POH11. Both of the ICA
approaches perform spatial averaging on the cropped facial
region after applying a face detector. We apply OpenFace
and use the landmarks to define the region of interest in the
same protocol presented in section 4.2.

We use the previously described 3DCNN architectures as
examplars for deep learning approaches. Given the output
waveforms from the 4 handcrafted approaches, in addition
to the 3DCNN and RPNet trained on DDPM with OpenFace
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(OF) and Bulat (AB) landmarking approaches (denoted in
the results as 3DCNN OF and 3DCNN AB), DDPM-Mask
with black synthetic masks from both landmarkers (3DCNN
OF+B and 3DCNN AB+B), and DDPM-Mask with pat-
terned synthetic masks from both landmarkers (3DCNN
OF+P and 3DCNN AB+P), we evaluate each method in the
same manner for a fair comparison. The efforts described
above related to acquisition, re-implementation of various
rPPG methods, and their evaluation may be regarded as a
strong comparison for modern rPPG methods.

5.3. Evaluation Metrics

We evaluated the performance in the frequency domain
(associated with the pulse rate). The errors are calculated
between the oximeter and predicted heart rates, defined by
the dominant frequency in the waveform for short time pe-
riods. The window size for estimating the dominant fre-
quency can significantly affect the evaluation [20]. Since
the time window used to predict heart rate within the oxime-
ter is unknown, we calculate the ground truth heart rate fre-
quencies from the oximeter’s waveforms. We use a 30 sec-
ond sliding window and apply a Hamming window prior
to converting the signal to the frequency domain with the
Fast Fourier Transform (FFT). The frequency with the max-
imum spectral peak between 0.66 Hz and 3 Hz (40 bpm
to 180 bpm) is selected as the heart rate. A five-second
moving average filter is applied to the resultant heart rate to
smooth noisy regions containing finger movement. To com-
pare the heart rate estimates, we used standard metrics from
the rPPG literature, such as mean error (ME), mean absolute
error (MAE), root mean squared error (RMSE), and Pearson
correlation coefficient (rf ).

Since two oximeters are present in the masked dataset,
we perform the same procedure over both waveforms and
average the heart rate value at each time step. In a very
small number of cases, the noise from hand movement gave
different heart rate values from the oximeters. To remove
these portions, if the heart rates differed by more than 10
beats per minute, the calculated heart rate closest to the av-
erage of the original heart rate estimates from the oximeters
was selected. The resultant signals were smoothed with a
three-second moving average filter to avoid spurious jumps
in the heart rate. A subset of the samples were manually
verified by calculating peak-to-peak distances.

6. Results
Scenario s1 (baseline): training and testing on un-

masked face videos. Performance for unmasked partici-
pants (DDPM) is shown in the top portion of Table 1. The
two chrominance-based methods achieve lower mean error
rates, showing that they are well calibrated for predicting
heart rate and don’t exhibit bias. Both ICA-based methods
give worse performance than the chrominance and neural

Table 1. Pulse rate estimation comparison when the methods are
tested on videos without face masks (scenarios s1 and s2). “OF”
and “AB” denote two different face landmarkes: OpenFace and
Bulat et al.’s, respectively. “+B” and “+P” denote black mask and
patterned synthetic masks added to the training data, respectively.

Method
ME

(bpm)
MAE
(bpm)

RMSE
(bpm)

rf
(bpm)

CHROM [7] -0.26 3.48 10.37 0.93
POS [44] 0.11 3.16 11.19 0.92

POH10 [30] 18.54 20.56 33.10 0.56
POH11 [29] 10.47 14.30 28.86 0.54

3DCNN OF [47] -1.18 1.96 6.99 0.97
3DCNN AB [47] -1.25 1.96 7.17 0.97
RPNet OF [36] -1.18 2.09 7.30 0.97
RPNet AB [36] -1.21 2.05 7.22 0.97
3DCNN OF+B -1.18 2.06 7.29 0.97
3DCNN OF+P -1.27 2.00 7.29 0.97
3DCNN AB+B -1.16 2.03 7.28 0.97
3DCNN AB+P -0.81 2.30 7.76 0.96
RPNet OF+B -0.93 2.23 7.61 0.96
RPNet OF+P -1.16 2.07 7.31 0.97
RPNet AB+B -1.06 2.17 7.48 0.97
RPNet AB+P -1.07 2.20 7.35 0.97

Table 2. Same as in Tab. 1 except that the methods are tested on
videos with face masks (scenarios s3 and s4).

Method
ME

(bpm)
MAE
(bpm)

RMSE
(bpm)

rf
(bpm)

CHROM [7] 3.52 12.59 16.34 0.03
POS [44] 16.24 19.27 26.79 0.14

POH10 [30] 25.83 27.26 33.08 -0.01
POH11 [29] 38.74 38.76 41.16 -0.05

3DCNN OF [47] -1.59 3.73 9.65 0.77
3DCNN AB [47] -2.40 3.99 10.60 0.75
RPNet OF [36] -2.00 4.60 10.85 0.73
RPNet AB [36] -2.98 4.74 11.76 0.71
3DCNN OF+B -1.80 3.94 9.90 0.77
3DCNN OF+P -2.00 3.91 9.69 0.78
3DCNN AB+B -2.00 3.84 9.82 0.77
3DCNN AB+P -0.72 3.55 8.75 0.80
RPNet OF+B -1.80 3.93 9.55 0.78
RPNet OF+P -1.83 3.91 9.54 0.78
RPNet AB+B -2.48 4.14 10.84 0.74
RPNet AB+P -2.13 3.89 10.08 0.76

network approaches on every metric. The 3DCNN and RP-
Net models contain slightly higher mean error rates from
bias than the chrominance models, but perform remarkably
well in terms of MAE and RMSE. The choice of landmarker
does not appear to significantly affect performance.

Scenario s2: training on face videos with synthetic
masks, testing on unmasked face videos. The results
for models trained on synthetically masked participants
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(DDPM-Mask) are shown in the bottom portion of Ta-
ble 1. Error discrepancies between the black and patterned
masks are negligible, considering they perform better on
different metrics. We find that models trained with syn-
thetic masks perform slightly worse than the models trained
to use the entire facial region, but they still give very strong
positive correlations with ground truth heart rates. We find
that synthetic masks slightly decrease performance on un-
masked subjects, since the models do not learn to use the
cheeks and lower face during training.

Scenario s3: training on unmasked face videos, test-
ing on videos of faces wearing real masks. Performance
of the handcrafted methods, 3DCNN model, and RPNet
model trained on DDPM and evaluated on masked subjects
(MPM) are shown in the upper portion Table 2. As ex-
pected, performance degrades compared to maskless sub-
jects, since the number of available skin pixels is decreased.
The best MAE among the handcrafted methods is given by
CHROM, with over 12 bpm – more than 3 times worse than
on DDPM. Both RPNet and the 3DCNN model give signif-
icantly better performance than the chrominance and ICA
approaches. Fortunately, correlation between heart rate pre-
dictions and ground truth remains strong with positive cor-
relations rf > 0.7 for all spatiotemporal models. For gen-
eral purposes, the increase in error is likely not large enough
to change an assessment of one’s state of health, but im-
proving performance to the unmasked baseline is desirable.
The performance decrease indicates that face occlusions
cause difficulties for all analysed approaches. Strangely, the
spatiotemporal models exhibit a bias towards predicting a
higher pulse rate, as shown by the mean error.

Scenario s4: training on face videos with synthetic
masks, testing on videos of faces wearing real masks. The
lower portion of Table 2 shows the performance of the
models trained on black (3DCNN OF+B, 3DCNN AB+B,
RPNet OF+B, and RPNet AB+B) and patterned (3DCNN
OF+P, 3DCNN AB+P, RPNet OF+P, and RPNet AB+P)
synthetic masks. For the 3DCNN we don’t find a consis-
tent improvement with black synthetic masks, however, we
see the best-performing approach is trained with patterned
synthetic masks and Bulat et al.’s landmarker, giving the
lowest ME, MAE, and RMSE, along with the highest corre-
lation between heart rates. Interestingly, the patterned syn-
thetic masks with the OpenFace landmarker do not help the
model, showing that the choice of landmarker is important.

For the RPNet model we find that for both landmark-
ers the performance is improved when training with syn-
thetic face masks. We find that the patterned masks give the
greates improvement during training and reduce the RMSE
by more than 1 bpm for both landmarkers. For both land-
markers the correlation is also increased by 0.05. Adding
textured patterns to the masks seems to act as a useful aug-
mentation strategy for the model, and helps refine the pre-

dictions to the periocular and forehead regions. Note that
the 3DCNN has nearly twice as many parameters as RPNet,
due to the wider temporal kernel width, but performance is
comparable between the RPNet and 3DCNN models.

7. Discussion

Visual and Anatomical Explanations. We apply Grad-
CAM [32] to visually explain the performance differences
between the 3DCNNs. Since Grad-CAM is traditionally
used for single images, we collected the pixel-wise sum
over all images in a clip followed by normalization for im-
age viewing. We then overlay the heatmap over the middle
frame of the sequence. Figure 5 shows the attended spa-
tial regions in the eighth convolutional layer for 3DCNN
OF and 3DCNN AB+P, the best performing models for un-
masked and masked subjects, respectively. The heatmaps
clearly show that 3DCNN OF attends to the center of the
face region, even when partially occluded by a face mask,
while 3DCNN AB+P has learned to attend to the periocu-
lar region and forehead, since the synthetic masks during
training occluded the lower face.

The anatomical reason for attention on the periocular re-
gion is likely the ophthalmic arteries, present in the canthi.
Remote blood flow monitoring literature showed that this
was visible in the infrared spectrum [33], but Fig. 5d indi-
cates that it emits further across the spectrum. Such find-
ings could be especially promising for ocular pulse detec-
tion from devices that are traditionally examining the iris,
gaze, or pupil. Further, this is also promising for estimating
the pulse from subjects whose religious denominations pre-
scribe face coverings. Similarly, for the forehead, the likely
culprits are the supraorbital vessels, which have also been
documented in thermal imagery [49]. While we present a
promising approach for restricting model attention to the
periocular and forehead regions by synthetic occlusion dur-
ing training, there is still room for improvement in guiding
learning-based models to particular regions of the skin.

Importance of Landmarker. Our experimental results
show the importance of selecting an accurate landmarker
when generating the synthetically masked videos. Figure
6 shows erroneous face landmarks produced by the OF
method when the subject gazed away from the cameras,
which occurs frequently in the DDPM dataset due to the in-
terview scenario. Interestingly, training on synthetic masks
defined by the AB landmarker improves performance for
the 3DCNN, but generally gives worse performance for RP-
Net. While the performance differences are minor, it could
still indicate that learning-based rPPG estimators could ben-
efit from jointly learning to predict the region of interest, as
is done in a region proposal network [31].
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(a) 3DCNN OF (b) 3DCNN AB+P

(c) 3DCNN OF (d) 3DCNN AB+P

Figure 5. Grad-CAM heatmaps for the top performing networks
on DDPM (3DCNN OF) and MPM (3DCNN AB). The top and
bottom rows show samples from the DDPM and MPM datasets,
respectively. The attended regions for the model trained on DDPM
covers a larger portion of the face than the the model trained on
DDPM-Mask, which was guided to focus on the periocular and
forehead regions. Images are scaled for viewing purposes.

Figure 6. Face masks present difficulties to face detection and
landmarking algorithms, as shown by the errors when using Open-
Face on heavily occluded faces.

Future Directions. Training the proposed models with
images of faces partially covered by synthetically-generated
masks improved the performance of these models. Such
data augmentation approach “removes” information antic-
ipated to be missing in future face videos, and thus dis-
courages the model from using these areas in inference.
We hypothesise that instead of handcrafted “removal” of
input information, an approach that guides the model to-
wards salient regions by appropriate loss function formu-
lation may be a promising future research direction. The
salient regions can be sourced from automatic face image
segmentation, or from human annotations. Independently
of the source, this extra knowledge “where to look” can be
used to penalize model’s spatial attention to regions not as-
sociated with the task at hand [3].

8. Conclusions
In this paper, we present a new physiological monitoring

dataset of high resolution RGB videos and oximeter record-
ings of subjects wearing masks to evaluate remote pulse
estimators on masked people. In answering the research
questions posed in the introduction, we find: (re: Q1) accu-
rate pulse estimation is possible when subjects are wearing
face masks, but the performance is slightly worse, (re: Q2)
training with synthetically generated mask videos improves
performance when using robust face landmarkers, and (re:
Q3) face landmarkers and skin detectors robust to heavy
face occlusion should be deployed in the early phases of the
pulse detection algorithms to define reliable regions of inter-
est. Several previous state-of-the-art pulse estimators built
for unoccluded face video are found to perform worse on
masked subjects, while the 3DCNN and RPNet spatiotem-
poral models exhibit only a moderate drop in performance.
We find training the model with patterned synthetic masks
created with accurate face landmarkers is sufficient to in-
crease the robustness of pulse detection in the presence of
masks and close the gap in performance.
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