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Abstract

Deriving blood pressure in a non-invasive way via pho-
toplethysmography (PPG) signals has become a familiar
topic. With the knowledge of the relation between PPG
and blood pressure, we expect to further make the measure-
ment contactless for convenience reasons. An alternative
signal source is remote photoplethysmography (rPPG) sig-
nals. There are mainly two kinds of approaches for exploit-
ing blood pressure through PPG signals, one is by calcu-
lating the pulse transit time of the arterial pulse wave at
two consecutive sites and the other is based on waveform
feature analysis from a single signal. The calibration pro-
cedure is necessary for the former way, which leads to some
limitations in general use. On the other hand, the properties
of the rPPG waveform are far from PPG signals. Hence,
the known waveform features in PPG signals are hard to
be leveraged in the case of rPPG signals. Recently, con-
volutional neural networks are also applied for solving this
problem. However, the lack of data is an obstacle to the
training procedure and evaluation. In this study, a multi-
channel rPPG-based blood pressure estimator is proposed.
To ease the data scarcity issue, the generative adversarial
network is adopted to augment synthetic waveform data.
Besides, as we know that some physiological states like age
and BMI are dominant factors in blood pressure. InfoGAN
is chosen in this work to generate the synthetic data with
the blood pressure value fluctuating correspondingly to the
controlled age and BMI combination. The proposed model
outperforms the state-of-the-art methods on MIMIC III and
Cuffless datasets. With the synthetic data generation, the
mean absolute error (MAE) is reduced to 6.72 and 5.95
mmHg in MAP and DBP respectively. The standard devi-
ations of the MAEs are also reduced. In the rPPG case, the
MAE of SBP is 9.13 and 8.76 mmHg for DBP.

1. Introduction

Blood pressure is an important vital indicator. The com-
mon non-invasive measurement is through a blood pressure
cuff [1, 15, 26]. To further overcome the contact measuring
limitation, in some studies, the time or phase difference,
e.g., pulse transit time (PTT) extraction, is leveraged to es-
timate blood pressure value. The original definition of PTT
is the traveling time difference of the arterial pulse wave
between two consecutive sites. To capture the more sig-
nificant time interval, central aortic and peripheral vessels
are chosen as observed sites. Hence, electrocardiographic
(ECG) and photoplethysmography (PPG) signals of the fin-
gertip or the ear lobe are recorded respectively. The R or Q
wave of the ECG signal has been used as the starting point.
Conventionally the point on the PPG pulse waveform which
is approximately 50% of the height of the maximum value
indicates the arrival time [10, 22, 25]. In addition, the alter-
native signal sources can be multiple PPGs rather than ECG
and PPG signals [13, 14, 16, 18].

Furthermore, for contactless measuring, the rPPG sig-
nals are taken into account [23]. It is worth noticing that,
PTT-based approaches can only obtain the blood pressure
change but not a certain value. That is, the calibration pro-
cedure that is correlated to the distance between the two
observation sites is necessary for this kind of method [3].
To ease the measurement, the single signal source methods
are introduced.

For a single signal source, the blood pressure can be de-
rived from waveform features, like derivatives or morphol-
ogy of the blood volume waveform. Slapničar et al. [21]
use a deep neural network with the first and second deriva-
tives of the PPG signals as input signals to predict blood
pressure. Chakraborty et al. [4] analyze the PPG waveform
to extract the feature contained pulse wave velocity (PWV)
information and regress the blood pressure value. Haddad
et al. [7] predict blood pressure via a multi-linear regression
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Figure 1. The overall structure of blood pressure estimation.

approach with inputs consisted the first and second deriva-
tive of single PPG signals. Zhou et al. [27] extract valid
peaks and valleys of rPPG and adopt their averages and BMI
as features fitting BP by the linear regression model. Rong
et al. [19] adopt more features from rPPG, including area,
slope, energy, etc. as a neural network input to predict blood
pressure value.

However, the morphological properties of the rPPG sig-
nals may be far from the ones of the PPG signals because
arterial pulse waveform changes along the arterial tree. As
the vascular elasticity difference between central aortic and
peripheral vessels, some subtle features barely exist in rPPG
signals.

Besides the hand-crafted waveform features, convolu-
tional (CNN) or recurrent neural network (RNN) is applied
for high-leveled PPG feature extraction. As the model maps
the PPG signals into blood pressure values in one-stage,
these are called end-to-end approaches. Han et al. [8] train
a multi-tasks CNN model to extract PPG features. The fea-
tures are concatenated with BMI information to predict the
hypertension classification and blood pressure at the same
time. Schrumpf et al. [20] obtain PPG or rPPG signal with
better quality by filtering and calculating SNR, predicting
BP based on classical networks including AlexNet, ResNet,
and LSTM. In [24], the multi-channel rPPG signals, heart
rate value, and BMI are fed into a CNN model that is mod-
ified from ResNet18 [9]. Afterward, a training procedure
loop is applied to fine-tune the model fitting the signals
which are filtered in varying band-pass filters.

Since CNN-based or RNN-based models are data-driven,
there are the following limitations due to the characteristics.
The clean and abundant training data is hard to collect es-
pecially for rPPG. On the other hand, the model outputs are
easily bounded by the distribution of the training data. For
example, the model is prone to estimate the value that ap-
pears commonly. As the result, larger errors occur in the

group of hypertension, which is not feasible in practical us-
age.

To take both advantages from PTT-based and waveform-
based approaches, in this study, a multi-channel end-to-end
model is proposed. The rPPG signals from the upper and
lower half face are leveraged as the model input which con-
tains the information of phase difference and more wave-
form features. The encoder-decoder architecture with sym-
metric skip connection is applied as the backbone model
that is able to filter out the noise carried on signals effi-
ciently and maintain a slight model size simultaneously.

For easing the mentioned data-driven issues in model
training, the synthetic data generation with the generative
adversarial network (GAN) is integrated into the training
strategy. Additionally, with our knowledge of the relation
between age, BMI, and blood pressure, the augmented data
is expected to fluctuate correspondingly to the subject in-
formation. That is, as the age or BMI is higher, the blood
pressure is probably higher. Hence, the idea of InfoGAN [5]
is adopted here for generating training data with controlled
specifically age and BMI combination that is missing in the
collection. With the synthetic data, the model outputs can
be distributed in a wider range and handle the cases in the
hypertension group.

This paper is organized as follows. In Section 2, the
proposed method, including the backbone architecture, the
training strategy with InfoGAN [5] and the multi-model
structure are addressed. The assessment details, the dataset
description and the experimental results are shown in Sec-
tion 3. Finally, the conclusion is given in Section 4.

2. Proposed Method
2.1. Overall Structure

The overall structure of the proposed method is shown
in Figure 1. With the sequence input facial images, the
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face detection and the region of interest (ROI) alignment
are applied to get the upper and lower face first. After
chrominance-based (CHROM) [6] rPPG extraction, we ob-
tain two rPPG signals of the upper and lower face, yu and
yl, respectively. To filter out the noise and extract high-
level waveform feature simultaneously, an encoder-decoder
architecture backbone model with multi-channel rPPG in-
put is addressed in Section 2.2.

Besides, with the observation of the existing end-to-end
blood pressure estimators, an issue to be reckoned with
is the bounded distribution correspondingly to the lack of
training data. As the range of the systolic blood pressure
(SBP) of human beings covers about [90, 200] that is rela-
tively wide. Conventionally, the output of the CNN-based
model is prone to lie in the narrow band around the average
of the blood pressure range. As the results, the estimation
error increases for the group with boundary blood pressure
values, like hypertension.

For ease of training difficulties, the known relation be-
tween the physiological status and the blood pressure is
leveraged. The status of age and BMI, which is accessi-
ble commonly and easily for practical usage, is chosen as
the assistance of a multi-model blood pressure estimation
structure. The entire range of the blood pressure is first
sliced into 10 pieces equally and makes 10 models to be
heeded on certain smaller ranges. Based on the age and the
BMI, a rough range is recorded with the mapping table, that
is, the appropriate model is picked. The details of mapping
table construction are introduced in Section 2.3.

Finally, a synthetic data generation with InfoGAN [5]
is employed to further solve the mentioned issue of data
scarcity. During the augmentation procedure, age and BMI
are regarded as two controlled factors so that the synthetic
blood pressure fluctuates correspondingly. As the data dis-
tribution can be handled, the model training procedure is
enhanced still further. In Section 2.4, the training tricks for
synthetic data generation is addressed.

2.2. Backbone Architecture

An encoder-decoder architecture is designed as the back-
bone model. The symmetric skip connection ensures the
waveform feature not to vanish as the depth of the model
increases, which is capable to filter out the noise and inter-
ference carried on the rPPG signals. The diagram of the
backbone model is shown in Figure 2. There are both 5-
layered, 1D convolution for encoder and 1D transpose con-
volution (or de-convolution) for decoder respectively, and
the activation function is PReLu. In Table 1, the implemen-
tation, the corresponding output size and the number of the
parameters of each model are listed.

Figure 2. The model architecture of the backbone model, F .

Figure 3. The SBP mapping table for model selection, F .

2.3. Model Selection

According to our knowledge, BMI and age are two
main factors affecting blood pressure. Thus, we statistic
age, BMI, and systolic blood pressure for all of the sub-
jects in training dataset to create an SBP mapping table
M(Age,BMI). The age range is from 18 to 85 and the
BMI range is from 16 to 34. The value interval in the range
is 1. The interpolation is applied to fill the mapping table
for specified age and BMI combinations that are missing in
the collection. Finally, the obtained mapping table which is
used for BP model selection is shown in Figure 3. The hor-
izontal axis is BMI, the vertical axis is Age, and different
SBP values are represented by color.

The SBP range considered in this study is from 90 to
160, we partition it into 10 intervals evenly. Each interval
corresponds to different BP models. We can obtain the se-
lected model ID ModelID through the following formula:

ModelID = ⌊(M(Age,BMI)− 90)/7⌋ (1)

where M(·) ∈ [90, 160] is denoted as the mapping table.
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Figure 4. The training structure of synthetic data generation.

Table 1. The implementation detail of the models.

Model Layer Output Size Parameters

F

BN [1, 2, 512]

86.93K

Conv1D 1 [1, 8, 449]
Conv1D 2 [1, 16, 396]
Conv1D 3 [1, 24, 349]
Conv1D 4 [1, 32, 338]
Conv1D 5 [1, 40, 333]

ConvTranspose1D 1 [1, 32, 338]
ConvTranspose1D 1 [1, 24, 349]
ConvTranspose1D 1 [1, 16, 396]
ConvTranspose1D 1 [1, 8, 449]
ConvTranspose1D 1 [1, 2, 512]

G

Conv1D 1 [1, 1024, 1]

3.95M
Conv1D 2 [1, 128, 25]
Conv1D 3 [1, 128, 116]
Conv1D 4 [1, 64, 248]
Conv1D 5 [1, 2, 512]

Q
Linear 1 [1, 256]

262.66KLinear mean [1, 1]
Linear var [1, 1]

D Linear [1, 1] 1.03K

B Linear [1, 2] 2.05K

The activation function leveraged here is PReLu.

2.4. Synthetic Data Generation

For generating more data to assist the model training, we
adapt the InfoGAN [5] which is able to generate certain data
by learning the mutual information between latent noise and
the observation. As shown in Figure 4, F is the feature

extractor and B is the regression model. The inputs are 2-
channel rPPG signals of the upper and the lower face yu, yl.
The outputs are the estimated pulse pressure (PP) ePP and
diastolic blood pressure (DBP) eDBP . The estimated SBP
eSBP is calculated via the equation:

eSBP = eDBP + ePP (2)

The generator is G with the input noise z composed of the
incompressible and semantic part. And ỹu, ỹl is denoted
as the output which is fake rPPG data. The discriminator
is composed of F and D and p is the output prediction of
whether the input signal is fake or real. The F and Q is
the auxiliary discriminator to extract the mutual information
between latent code and generated signal. The output c of
F and Q, which is discrete noise here, is expected to learn
the characteristic of age and BMI. That helps to generate the
lacking data in the collected dataset and elevate the model’s
ability with rare data.

With definition D̃ = D · F , Q̃ = Q · F and B̃ = B · F ,
the objective function for original GAN is define as:

min
G

max
D̃

LGAN(D̃,G) (3)

And in the case of InfoGAN, the objective function is:

min
G,Q̃

max
D̃

LGAN(D̃,G)− λ1LInfo(G, Q̃) (4)

Hence, the final objective function of the overall training is

min
G,Q̃,B̃

max
D̃

LGAN(D̃,G)− λ1LInfo(G, Q̃)− λ2LBP (5)

with two hyper parameters λ1 and λ2.
The LGAN(D̃,G) is given by the following equation

LGAN(D̃,G) =

Ey∼Preal [log(D̃(y))] + Ez∼Pz [log(1− D̃(G(z)))]
(6)
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where Preal is the real data distribution and Pz the noise
distribution.

The LInfo(G, Q̃) is given by

LInfo(G, Q̃) = Ec∼P (c),y∼G(z,c)[log Q̃(c | y)] +H(c) (7)

where c denotes latent code, Q̃(c | y) denotes the approx-
imation of P (c | y), and H(c) is the entropy of the latent
code which can treated as a constant by fixing the latent
code distribution.

The LBP is defined as

LBP =
∥∥ePP − t̂PP

∥∥2
2
+
∥∥eDBP − t̂DBP

∥∥2
2

(8)

where t̂PP is the target value of pulse pressure and t̂DBP

denotes the target value of diastolic pressure.
In the implementation, the model F , B and G are pre-

trained with the training structure shown in the subfigure
(b) and (c) in Figure 4. This pretrained step is aim to ob-
tain a generator with prerequisite capacities to generate fake
rPPG signals and a series of F and B with the prior ability
of blood pressure estimation. The models finetuned with
the pretrained weights tend to converge to better result.

3. Experimental Results
3.1. Training Details

The proposed method is implemented with the deep
learning framework PyTorch [17]. The optimizer is Adam
and the learning rate is 2× 10−3 for all of the models. Both
of the hyper-parameters λ1 and λ2 are set to 1 in the follow-
ing experiments.

3.2. Dataset Description

3.2.1 MIMIC III Dataset

MIMIC III Dataset [11] comprises thousands of signal
records collected by various hospitals between 2001 and
2008. Each signal were sampled at 125Hz with at least
8-bit accuracy. We extracted PPG and arterial blood pres-
sure (ABP) signals from the database and remove the sig-
nals having many flat parts or invalid values due to different
distortions and artifacts in signals.

3.2.2 Cuffless Dataset

Cuffless Dataset is a small fraction of the MIMIC II, con-
taining 12, 000 preprocessed and cleaned records, provided
by Kachuee et al. [12]. Each record is consist of ECG, PPG,
and ABP signals sampled at 125Hz.

We apply both datasets for attesting the baseline perfor-
mance of the proposed encoder-decoder architecture on BP
prediction based on PPG waveform and the capability of the
proposed training strategy to alleviate the data-driven issue.

3.2.3 rPPG Dataset

To conduct the assessment on the rPPG case, we cooperate
on an institutional review board with Chang Gung Medi-
cal Foundation, Taiwan to collect the data for camera-based
blood pressure estimation. Figure 5 shows age, BMI, SBP,
and DBP distribution in the rPPG dataset. There are 1, 138
participants in the dataset which contains 860 males and 278
females ages from 18 to 92. Each subject is recorded for 80
seconds and the camera is set in the distance of about 60
cm. The camera is Logitech C920 and the facial images are
recorded in the size of 640× 480 with 30FPS 8-bit lossless
format. The ground truth of the blood pressure is measured
by a mercury sphygmomanometer. It is worth noticing that,
the participants within this rPPG dataset are composed of
patients with hypertension, diabetes, cardiac disease, etc.

3.3. Assessment Details

Since the MIMIC III dataset and Cuffless dataset do
not provide age and BMI information, the proposed multi-
model structure cannot be applied. Furthermore, there is no
one to evaluate the performance of the blood pressure pre-
diction for these two datasets using multi-model structure in
related work. Thus, we adopt a single-model structure with-
out model selection based on BMI and age information to
verify the performance of our backbone model and training
strategy in predicting blood pressure with only PPG signals.

The training procedure is shown in Figure 6. As same as
the training process of multi-model structure, we first train
the single-model structure consisting of feature extractor F
and regression module B. Instead of 2 rPPG signals ob-
tained from the upper and lower part of faces, the single
PPG signal y is as model input. The pre-train model in the
first stage will be our baseline performance of BP predic-
tion. Second, we utilize InfoGAN train a generator G for
synthetic PPG signal generation. The pre-trained models
are finetuned in the third stage.

Protocol of each dataset are shown in Table 2. For
the fair competition, we have randomly drawn 250, 000
samples for testing from 625 subjects, 1, 000, 000 samples
for training from the rest subjects in the MIMIC dataset
[20]. Each subject contributed the same number of sam-
ples. In the Cuffless dataset [12], we randomly sample
4, 254 records as our dataset under ensuring the same distri-
bution, and we use the identical proportion 6 : 2 : 2 to split
the dataset into training, validation, and testing. For the
rPPG dataset, we randomly smaple same number of sub-
jects from normal, prehypertension, hypertension states as
testing data, total are 177, the rest are used for training.

3.4. Results

The experiments on PPG and rPPG datasets are both
conducted, the former ones are leveraged to verify the ef-
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Table 2. The overall dataset description.

Dataset Signal Type Protocol Multi-Model
w/ Age & BMI Reference

Trainging Data Testing Data

MIMIC III [11] PPG 1,000,000 samples 250,000 samples X Schrumpf et al. [20]
Cuffless [12] PPG 2,552 samples 851 samples X Kachuee et al. [12]
rPPG Dataset rPPG 961 subjects 177 subjects V self-constructed

(a) Age (b) BMI

(c) SBP (d) DBP

Figure 5. Distribution of rPPG Dataset

Table 3. Comparison results of MAE (mmHg) on MIMIC III
dataset.

Approach SBP DBP

Schrumpf et al. [20]

Mean-Regressor 19.60 9.80
AlexNet 16.60 8.70
ResNet 16.40 8.50
LSTM 16.40 8.60

Slapničar et al. [21] 16.80 8.80
Ours

(Baseline) 14.82 7.31

Ours
(w/ InfoGAN) 14.26 7.11

ficiency of the backbone model, and the latter shows the
overall performance of the proposed method.

There are two public PPG datasets are considered in the
assessment, including MIMIC III [11] and Cuffless [12]
dataset. The results on MIMIC III dataset are shown in Ta-
ble 3, it shows that our backbone model outperforms other
PPG-based approaches as the MAE reduces about 2 mmHg.
Furthermore, the MAE of SBP achieves lower at 14.26
mmHg with the assistance of the synthetic data with Info-
GAN.

The experimental results on Cuffless dataset [12] demon-
strate the same trend with the ones on MIMIC III. As pre-
sented in Table 4, the proposed method reaches the small-
est MAE at 5.95 mmHg for DBP, 10.59 mmHg for SBP
and 6.72 mmHg for the mean arterial pressure (MAP) re-
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Table 4. Comparison results on Cuffless dataset.

Approach DBP(mmHg) MAP(mmHg) SBP(mmHg)

MAE Std MAE Std MAE Std

Kachuee et al. [12]

RLRLF 7.24 9.23 9.34 11.79 14.73 18.47
RLRPF 7.42 10.02 8.50 10.91 14.46 18.17

ANN 6.86 8.96 8.84 11.24 13.78 17.46
SVM 6.34 8.45 7.52 9.54 12.38 16.17

Ours
(Baseline) 6.23 5.93 7.06 6.02 11.32 9.10

Ours
(w/ InfoGAN) 5.95 5.76 6.72 5.88 10.59 9.07

Figure 6. The training procedure of synthetic data generation for
PPG signals.

spectively. Besides, the standard deviation of MAE is
decreased to about one-half with the proposed backbone
model. That is this model architecture efficiently eases the
issue of bounded output in a certain range around average.

On the other hand, the results of the assessment con-
ducted on the rPPG dataset are shown in Table 5. It is worth
noticing that, as the rPPG dataset is self-constructed, the
physiological states like age and BMI of the participants are
recorded as well. The proposed model without prior knowl-

Table 5. Comparison results on rPPG dataset.

Approach SBP(mmHg) DBP(mmHg)

MAE Std MAE Std

Baek et al. [2] 17.71 – 11.27 –
Rong et al. [19] 16.75 20.42 11.21 13.80
Zhou et al. [27] 16.31 19.79 11.17 13.97

AlexNet* 18.17 21.05 11.50 14.02
ResNet-50* 17.07 21.21 11.83 14.21

SVR* 17.30 21.13 10.93 13.50
S2-Net* 16.27 20.38 11.83 14.02

FS2-Net* 16.01 12.89 10.97 8.27

Ours
(Baseline) 15.59 10.63 10.77 7.41

Ours
(w/ M(·)) 10.15 8.75 8.84 6.52

Ours
(w/ InfoGAN) 9.13 8.18 8.76 6.13

* The results are referred to [24].

edge of age and BMI can also achieve the lowest MAE
among all existing approaches. Besides, our backbone
model architecture is relatively slighter. Take FS2-Net [24]
for example, due to its second-best performance, the num-
ber of the parameter in FS2-Net is 1130.24K, which is
much larger than the single backbone model which is with
the size of 87.96K. Furthermore, with model selection pro-
cedure, the MAE can be further reduced to 10.15 and 8.84
mmHg for SBP and DBP.

Finally, we conduct the experiment which includes
model selection and synthetic data generation procedures.
The MAE reduces significantly to 9.13 mmHg than the re-
sults of other end-to-end rPPG-based models.

Similarly, the standard deviation of the MAE diminishes
to less than one-half with the proposed method. Take FS2-
Net [24] for example again, the proposed method improves
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(a) SBP MAE (b) DBP MAE

Figure 7. The error comparison of three groups, including normal, prehypertension, and hypertension. between the proposed method and
FS2-Net [24]. (a) is the error of SBP and (b) is for DBP.

the results for the participants with normal or hypertension
blood pressure. With the diagram shown in Figure 7, it is
easily observed that the FS2-Net can only handle the blood
pressure values which lie in the middle range like the pre-
hypertension group. This observation is consistent with the
issue of bounded output which is solved significantly with
our approach.

4. Conclusion

A CNN-based contactless blood pressure estimation is
proposed in this study. Our backbone model achieves com-
parable results on the PPG datasets to the state-of-the-art
PPG-based methods. Besides, model selection mechanism
and synthetic data generation are addressed to deal with the
issues of bounded output and the lack of data, especially
in the rPPG case. With the experimental results, there is a
significant improvement both in MAE and the standard de-
viation of the error. That is, the proposed method elevates
the performance of the hypertension group efficiently.

In the future, this contactless measurement is expected to
extend to the nighttime blood pressure monitoring for ease
of interference. For eliminating the dependency of visible
light, the rPPG construction under infrared light conditions
should be considered so that the knowledge between the
rPPG signals and the blood pressure so far can be adopted.
Besides, the preprocessing to obtain better rPPG is indis-
pensable due to the interference from the head movement.
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