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Abstract

Neural network pruning reduces network complexity and
storage by removing unimportant connections in the net-
work, enabling network miniaturization, fast training and
inference, easy deployment to portable devices, etc. The e-
merging lottery ticket hypotheses and sparse initialization
technique have shed new lights on the pruning research.
However, few research focuses on the pruning of the net-
works for remote photoplethysmography (rPPG) pulse sig-
nal extraction. Opposite to the existing pruning researches
that prune large network, rPPG networks are relatively s-
mall. It is interesting to see how it behaves when the prun-
ing is applied. In this paper, we investigate the behavior
of common pruning techniques when applied to an exist-
ing rPPG network. Experiments on PURE dataset show
that the pruning rate decay is beneficial to the performance
improvement, whereas the connection regeneration has a
detrimental effect. Given the same final sparsity, dense ini-
tialization generally performs better than sparse initializa-
tion. The network seems insensitive to initial sparsity. The
combination s;=1.0, sy=0.1, with decay, and without re-
generation is the best trade-off between SNR and FLOPs,
achieving average SNR 9.78 dB, increased by 0.48 dB in
comparison with the original PhysNet.

1. Introduction

The measurement of vital signs has revolutionized from
contact way to non-contact way, mitigating the inconve-
nience of physical contact to the human body and broaden-
ing the application range. The vital signs that, in previous
years, are measured in the hospital can be accessed easily
nowadays in daily life. This shift stems from a new technol-
ogy called remote photoplethysmography (rPPG). The dig-
ital camera can capture subtle skin color variations caused

by cardiac activities that cannot be perceived by naked eye-
s. By mean of computer vision technologies and opti-
cal/physiological principles, various vital signs can be re-
liably extracted such as heart rate [14], respiratory rate [6],
heart rate viability [10], blood pressure [15], oxygen satu-
ration, etc. The application has stepped out from hospitals
to everyday life, e.g., fitness exercise [51], sleep monitor-
ing [18], driver assistance, face anti-spoofing, etc. rPPG
has become an active research topic as it is attracting more
and more researchers worldwide.

In recent years when deep neural networks are refreshing
the record of many computer vision tasks, the measurement
accuracy of rPPG has been boosted significantly with the
introduction of neural networks in the rPPG pulse extrac-
tion model. Existing approaches can be roughly character-
ized into end-to-end approaches [3, 14, 17,36,49] and two-
step approaches [28,32,35,35] according to the network ar-
chitecture. The end-to-end approaches take raw video data
as input and output the pulse waveform or heart rate value
directly, while the two-step approaches first transform the
video into a hand-designed representation and then follow a
network. In comparison with conventional signal process-
ing or model based approaches, the performance of neural
network based approaches usually have a superior perfor-
mance.

However, neural networks bring tremendous computa-
tional load and storage consumption, making network train-
ing and inference a tedious work. It is well known that
the network performance is supported by a large amount
of data and strong hardware computational power. On the
one hand, the optimization of millions of network parame-
ters needs huge amount of training data to prevent overfit-
ting. The commonly used datasets for image classification
research are usually large-scale, e.g., ImageNet [37], CI-
FAR [19], and MNIST [21] consist of 14,197,122, 60,000,
and 70,000 images, respectively. It is difficult for rPPG to
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collect such huge datasets, which includes recruiting sub-
jects and financial resources. On the other hand, the training
and inference of a deep neural network need strong compu-
tational power. The training of AlexNet [20] or ResNet [12]
often take days or weeks based on multiple graphics pro-
cessing units (GPUs). This hinders the fast design of rPPG
networks. Huge training load brings tremendous energy
consumption, which is not a desirable solution in nowa-
days when carbon dioxide emission problem is becoming
increasingly serious [9,40]. In addition, the large model is
difficult to deploy on the application site, especially for the
scenarios of rPPG such as fitness equipment, hospital ward-
s, automobile on-board computers, etc., where the compu-
tational resource and band-width are very limited.

Neural network pruning is an effective way of reduc-
ing training load, inference time, and energy consumption
while keeping network performance comparable simulta-
neously. It miniaturizes the network by cutting irrelevan-
t connections in the model [23]. The main issue focus-
es on keeping or even outperforming the performance of
the dense counterpart after pruning. The connections can
be pruned according to gradient, weight magnitude, low-
rank decomposition, etc. Neural network pruning can be
roughly categorized into structured pruning and unstruc-
tured pruning [7]. Structured pruning treats a group of neu-
rons, filters, or channels as a whole, enabling fast accelera-
tion and deployment. Unstructured pruning has finer grains,
focusing on the individual weights. Unstructured pruning
shows more promising potential due to its outstanding per-
formance at extreme sparsities. The rapid development of
hardware with sparse operation also provides strong support
for the deployment of structured pruning [25].

In the early studies, researchers pointed out that there is a
lot of redundancy in the neural network. Deleting the unim-
portant weight in the network can obtain better generaliza-
tion ability, less training and inference time [31]. Pioneer-
ing works model the pruning task by adding a regularization
term, leveraging a second-order Taylor expansion to select
parameters for deletion [22]. A line of research prunes the
weight in an iterative manner, learning weights and prunes
the weights simultaneously [29, 38, 52]. The network ar-
chitecture is updated dynamically during training, enabling
better adapt to the training data. Lee et al. [23] proposed
single-shot network pruning scheme that prunes a given net-
work once at initialization prior to training, mitigating the
limitations of during-training-pruning approaches that em-
ploys either heuristically designed pruning schedules or ad-
ditional hyperparameters. More recently, the lottery ticket
hypotheses (LTH) is proposed [8] which highlights the im-
portance of the sparse initialization for a subnetwork with
comparative performance to the dense trained network.

Network pruning is a general network slimming ap-
proach. Theoretically, any field using neural network can

apply network pruning. Unfortunately, to the best of our
knowledge, we have not seen any research addressing prun-
ing for rPPG signal extraction networks. In this paper,
we conduct a series of experiments to investigate the per-
formance of common pruning techniques when applied on
rPPG network. Opposite to the existing pruning research-
es that the network is large-scale, rPPG network has a
relatively small scale. It is interesting to see how it be-
haves when pruning is applied. We choose one existing
good-performing rPPG network as backbone, apply com-
mon pruning techniques to the network and observe the per-
formance. This research serves as a first attempt that intro-
duces network pruning to rPPG networks, with an aim to
give insights to the design of pruning methods for small net-
works with limited number of training samples. Moreover,
this research can promote the deployment of rPPG networks
to portable devices.

2. Related work
2.1. Remote photoplethysmography

Remote photoplethysmography assumes that the cap-
tured raw trace from facial video is a combination of the
target pulse signal, motion artifacts, and other noises. The
main purpose is to extract the target pulse signal out from
the observations. In the early studies, researchers employ
signal separation techniques to realize noise suppression,
e.g., independent component analysis (ICA) [34], princi-
pal component analysis (PCA) [24], or ensemble empirical
mode decomposition (EEMD) [4]. These approaches treat
the raw traces as pure signal but do not consider the phys-
iological and optical principles of the imaging process. To
address this issue, the skin reflection model is established,
which quantitatively models the incident light, specular and
diffusion reflection of the skin, and the camera quantiza-
tion noise. Based on this model, several pulse extraction
algorithms are proposed, e.g., CHROM [5], PBV [11], and
POS [44].

In recent years, neural networks have been introduced
into the field of rPPG. Neural network based rPPG extrac-
tion approaches usually obtain superior performance than
signal processing based approaches due to the powerful a-
bility in spatial-temporal feature extraction and noise sup-
pression. Chen and McDuff [3] designed a convolutional
attention network DeepPhys, which is a two-path architec-
ture with one path characterizing motion information and
one path characterizing appearance information. Spetlik
et al. [36] proposed a two-stage network HR-CNN, which
consists of an Extractor for rPPG signal extraction from im-
age frames and an Estimator for heart rate prediction. These
two approaches are based on 2D or 1D convolution. In order
to extract spatial and temporal features simultaneously, Yu
et al. [49] designed an end-to-end spatio-temporal network
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PhysNet, based on which two kinds of spatio-temporal con-
volutions, i.e., 3D convolution and long short term memory
(LSTM), are embedded. Huang et al. [ 1 7] proposed PRNet,
which first employs 3D convolution modules for spatial and
local temporal feature extraction, followed by LSTM mod-
ules for global temporal feature extraction. Hu er al. [14]
proposed ETA-rPPGNet, in which a time-domain attention
mechanism is designed. In this mechanism, the 1-D convo-
lution is used to effectively model the information associa-
tion in the local time domain, so as to improve the anti-noise
ability of the model. In order to mitigate the noise inference
induced by motion and illumination changes, Wu et al. [45]
proposed a framework that includes an error compensation
neural network after conventional signal-based rPPG ex-
traction to improve the measuring results.

2.2. Neural network pruning

The most common way is to cut the unimportant weight-
s based on a pre-trained network, which is called post-
training pruning. Mozer et al. [31] proposed a method of
using the knowledge in a network to determine the rele-
vance of individual units. The least relevant units are then
be trimmed to construct a skeleton version of the network.
LeCun et al. [22] used information-theoretic ideas to de-
rive a class of practical and nearly optimal schemes for re-
moving unimportant weights from a network. Molchanov et
al. [30] prunes the neural networks using Taylor expansion-
based criterion that approximates the change in the cost
function. You et al. [50] considered a new block decompo-
sition algorithm that combines the effectiveness of combi-
natorial search methods and the efficiency of coordinate de-
scent methods for sparse optimization of a neural network.

During training pruning attempts to adjust network con-
nections in the process of network training instead of wait-
ing for the pre-trained model to be completed. Because
the pruning criterion is associated with network status, the
topology of the network connections can be dynamically
adjusted during the training process, which exhibits more
flexibility compared with post-training pruning. Srinivas et
al. [38] introduced additional gate variables to perform pa-
rameter selection and showed that this is equivalent to us-
ing a spike-and-slab prior. Zhu and Gupta [52] introduced
a gradual pruning algorithm where the pruning rate starts
from an initial sparsity and gradually decreases to the target
final sparsity. Mocanu et al. [29] evolved an initial sparse
topology of two consecutive layers of neurons into a scale-
free topology during learning.

Before-training pruning is a recently emerged technique
that prunes a given network once at initialization prior to
training with an aim to reduce the need for either heuris-
tically designed pruning schedules or additional hyperpa-
rameters used in post-training pruning. Lee et al. [23] pro-
posed single-shot network pruning (SNIP) that employs a

saliency criterion based on connection sensitivity that iden-
tifies structurally important connections in the network. Af-
ter pruning, the sparse network is trained in the standard
way. Paul et al. [33] introduced combined pruning scores
(COPS) instead of a single pruning criterion to create more
powerful pruning strategies. Wang et al. [43] proposed the
gradient signal preservation (GraSP) algorithm in order to
preserve the gradient flow through the network for more ef-
ficient training.

The lottery ticket hypotheses (LTH) [&] stated that dense,
randomly-initialized, feed-forward networks contain sub-
networks (winning tickets) that, when trained in isolation,
reach test accuracy comparable to the original network in a
similar number of iterations. However, the identification of
the winning ticket still needs heavy train-prune-retrain op-
eration, which limits practical application. Evci et al. [7]
proposed RigL for training sparse models without the need
of a “lucky” initializations. You et al. [48] discovered that
the winning tickets can be identified at a very early train-
ing stage, termed as Early-Bird (EB) tickets, via lowcost
training schemes. Chen et al. [2] examined several super-
vised and self-supervised pre-trained models widely used in
computer vision using LTH and discovered that core LTH
observations remain generally relevant in the pre-training
paradigm of computer vision.

2.3. Pruning rPPG networks

To the best of our knowledge, we have not seen pub-
lished literatures addressing pruning rPPG pulse extraction
networks. But the need for reducing computational bur-
den and running on resource limited devices exists. On
the one hand, typical rPPG application scenarios, e.g., driv-
er monitoring, sleep monitoring, fitness exercise, etc. have
hardware with restricted computational power. On the oth-
er hand, the rPPG network cannot be designed very deep
due to limited number of training samples. Tables 1 and 2
summarize common datasets and algorithms in rPPG, from
which one can see that, in comparison with ImageNet or
ResNet, rPPG has much smaller datasets and networks. The
benefits of introducing neural network pruning into rPPG
are two-fold: 1) deeper and larger-scale networks for rPPG
pulse extraction can be designed in order to obtain higher
accuracy, and 2) the demand for hardware requirements is
alleviated.

3. Methodology
3.1. Preliminaries

Sparse distribution refers to the ways of distributing
non-zero elements over the layers while maintaining the
overall sparsity. The following three sparse distributions are
widely used.

1) Uniform. The sparsity of each layer keeps the same
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Table 1. Comparison of common networks proposed for rPPG pulse extraction.

Name ‘ Input size # of layers  # of parameters (X 10%) storage (MB)  FLOPs (x 10%)
DeepPhys [3] 3 x 150 x 36 x 36 9 1.46 5.70 9.62
HR-CNN [306] 3 x 300 x 192 x 168 13 1.87 7.32 988.97
PhysNet [49] 3 x 128 x 128 x 128 15 0.83 3.26 130.52
MTTS-CAN [27] 3 x 150 x 36 x 36 9 1.45 5.70 9.61
DeeprPPG [26] 3 x 120 x 128 x 64 15 0.54 2.12 26.76
RhythmNet [32] 3 x 10 x 300 x 25 21 11.42 44.64 1.70

Table 2. Comparison of selected publicly available datasets used for rPPG research.

Name ‘ # of subjects  # of frames  # of videos resolution average duration/video (sec)  storage (GB)
PURE [39] 10 125,366 60 640 x 480 69.9 38.6
COHFACE [13] 40 202,092 164 640 x 480 61.6 0.662
ECG-fitness [36] 17 407,232 202 1920 x 1080 67.2 1044
UBFC-rPPG [1] 42 81,401 42 640 x 480 64.4 69.8
BUAA-MIHR [46] 13 257,339 143 640 x 480 59.9 220
NBHR [16] 257 886,001 1130 640 x 480 32.7 921

as the overall sparsity. Some works [7] keep the first lay-
er dense because the sparsity of the first layer will have a
significant effect on the performance but has little effect on
reducing the model size.

2) Erdos-Renyi. Named after the famous mathematician
Paul Erdos and Alfred Renyi, Erdos-Renyi model is origi-
nally proposed for generating random graphs. Given a pos-
itive integer n and a probability value 0 < p < 1, define
the graph G(n, p) to be the undirected graph on n vertices
whose edges are chosen as follows. For all pairs of ver-
tices v, w, there is an edge (v, w) with probability p. For
network pruning, the sparsity of layer [ is set as follows,

sW o (1 - %), where C;,,, C,y+ denote the num-
ber of input and output channels, respectively.

3) Erdos-Renyi-Kernel. ERK modifies the Erdos-Renyi
rule by including kernel height and width in the scaling fac-
tors so that the sparsity of layer [ is associated with not only

input and output channels but also height A and width w,
ie., s (1 — %)

In this paper, we use uniform distribution to keep the
method simple. The bias and batch-norm layers are kept
dense because it has little effect on reducing the total model
size.

Layer-wise pruning vs. global pruning. Layer-wise
pruning prunes layer by layer and keeps every layer spar-
sity equal to the overall sparsity while global pruning puts
all parameters from different layers together and sorts with
threshold according to the overall sparsity. As a result, the
sparsity of each individual layer in global pruning is differ-
ent and may not be equal to the overall sparsity.

Dense-to-sparse vs. sparse-to-sparse training. The
difference between dense-to-sparse and sparse-to-sparse
training lies in the initialization of the network. Let s; be the
initial sparsity. Then, s; = 1 denotes using the dense model
as the initial network. Sparse-to-sparse training 0 < s; < 1
starts from a sparse subnetwork by setting (1 — s;) x 100%
parameters of the dense model to zeros.

Gradual pruning. Instead of keeping the pruning rate
unchanged over the entire training process, gradual pruning
starts with the initial sparsity s; and decreases the pruning
rate gradually to the final sparsity s ;. The decay rule can be
polynomial [25], sinusoidal [7], or other forms.

Regeneration. Inspired by the neuroregeneration mech-
anism of the human brain that connections can be regener-
ated or synthesized to recover the damage in the nervous
system, it is beneficial to regenerate some of the connec-
tions being pruned during the pruning process. The number
of the connections to be regenerated can be the same as that
of the connections being pruned or only a small proportion
is regenerated.

Pruning criterion. Pruning is realized by sorting a cer-
tain criterion in descending or ascending order and thresh-
olds them according to the target sparsity. Weight mag-
nitude [25] is perhaps the most commonly used criterion.
Other criteria include gradient [7], low-rank decomposi-
tion [47], Hessian [22], etc. In this paper, we use weight
magnitude for cutting the neuron connections and gradient
for regeneration.
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3.2. Backbone network

PhysNet [49] is chosen as our backbone network for e-
valuation because it can achieve satisfactory results on var-
ious occasions. In this paper, we only use the 3D CNN
based version. The network consists of one 2D convolu-
tional block, four 3D convolutional blocks, and one spatial
global average pooling layer. The network takes as input
the raw video segment of T-frame face images with RGB
channels (in this paper, 7" = 150). The 2D convolutional
block serves as a preprocess to extract spatial features as
representation, and the 3D convolution block takes into ac-
count spatial and temporal correlations in the feature tensor
simultaneously for more robust feature extraction. The s-
patial global average pooling layer is used for finalizing the
feature tensor to the output with the same size as the ground
truth pulse signal. Detailed network specifications are sum-
marized in Table 3.

Table 3. PhysNet architecture specification. The 2D kernel is of
size H x W, and the 3D kernel is of size T' x H x W, where
C, T, H,W denote channel, time, height, and width, respectively.
The dimension of the output sizeis C' x T'x H x W.

Name ‘ Kernel Output

Input | none 3x T x 192 x 128
conv2D | 5x5  32xT x192x128
maxpooling; | 1x2x 2 32 x T x 96 x 64
conv3Dq; Ix3Ix3 64 x T x 96 x 64
conv3Dqy 3x3x3 64 x T x 96 x 64
maxpoolings | 1 X2 Xx 2 64 x T x 48 x 32
conv3Dsy; 3x3x3 64 x T x 48 x 32
conv3Dyo I Xx3Ix3 64 x T x 48 x 32
maxpoolings | 1x 2 x 2 64 x T x 24 x 16
conv3Ds; 3x3x3 64 x T x 24 x 16
conv3Ds3o 3 x3x3 64 x T x 24 x 16
maxpooling, | 1x2x2 64 xT x12x 8
conv3Dy; Ix3Ix3 64xT x12x8
conv3Dys 3x3x3 64xT x12x8
avgpooling | 1x12x 8 64x T x1x1
conv | 1x1x1 IxTx1x1

3.3. Pruning rate decay

We follow the common practice of gradual pruning strat-
egy that the pruning rate attenuates gradually to the target
sparsity instead of attenuation only once. Let N be the total
number of pruning iterations, s; be the initial sparsity, s; be
the final sparsity. The pruning rate at the n-th iteration is

calculated as follows:

-2y (M)
Sp =585+ (8; — s5) ( - N)

forn = 0,1,...,N. We employ layer-wise pruning in our
experiments.

3.4. Drop criterion

We follow the weight magnitude pruning strategy that
sets the neurons with the least weight magnitude absolute
value to zero. Specifically, let O, s N denote the
weight magnitude, sparsity, and the number of parameters
of the I-th layer, respectively. We prune the 1 — s() pro-
portion of weights with least magnitude absolute, which is
calculated as follows:

Togw = ArgTopK(|@(l) l, s(l)N(l)) 2)

where ArgTopK (v, k) returns the first k£ element indices
of vector v sorted in descending order, and | - | denotes the
absolute operation. The dropped elements are set to zero.

3.5. Regeneration

In the process of training a neural network, there exist
such elements whose weight magnitudes are small but the
gradients are significant. Small weight magnitudes are usu-
ally regarded to have a small contribution to the training
loss and can be removed, whereas the effect of gradient
cannot be ignored in the backward path. Therefore, these
elements should be regenerated and continue to participate
in the training. We follow RigL [7], which regenerates part
of the pruned connections based on the gradient magnitude.
Specifically, let g(¥) be the gradient of the I-th layer, and r be
the proportion of regenerated connections with zero weight
magnitude. The regenerated connections are identified ac-
cording to the following equation:

T,0) = ArgTopK (|gV],r - (1 — sO)NW®) 3)

iglgm

The connections in the mask associated with identified
indices are set to 1. The corresponding weights remain zero
so that the overall loss function is kept unchanged.

4. Experiment settings
4.1. PURE dataset

First collected by Stricker et al. [39], the PURE dataset
recruited 10 subjects (8 males and 2 females) performing
6 head movements in front of a digital camera, including
steady, talking, slow translation, fast translation, small rota-
tion, and medium rotation. 60 one-minute videos with reso-
lution 640 x 480 pixels and frame rate 30 frames per second
(fps) are recorded. The data are saved in individual images
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with portable network graphics (PNG) format. Ground-
truth PPG is collected using a fingertip pulse oximeter when
video recording simultaneously. The PURE dataset is split
into train/val/test set with the ratioof 8 : 1 : 1.

4.2. Implementation details

The video is partitioned into a segment of 5 second time
window with a step length of 1 second. Viola-Jones face
detector [42] is used to locate face in the first frame and
Kanade-Lucas-Tomasi (KLT) algorithm [4 1] is used for the
tracking in the following frames. The bounding box is
cropped and resized to 192 x 128. We use mean squared
error (MSE) as the loss function and Adam as the optimiz-
er. We prune every 300 iterations. The maximum number of
epoch is 4. For the experiments with pruning rate decay, the
final epoch SNR is reported. For the experiments without
decay, the best SNR is reported.

4.3. Evaluation metrics

1) Signal-to-noise-ratio (SNR). First proposed by de
Haan et al. [5], SNR is used for evaluating the signal qual-
ity pulse predictions output by rPPG algorithms. Both the
predicted signal and the ground truth signal are transformed
to the frequency domain and the SNR is calculated as the
ratio between the power of signal component and the noise
component. The frequency of the signal component (dom-
inant frequency) is determined by calculating the heart rate
of the ground truth signal. The dominant frequency and it-
s second harmonics together with a window length of w is
selected as the signal region. The frequency outside of the
signal region is regarded as the noise region. In this paper,
we set w = 0.4 Hz.

2) Floating point operations (FLOPs). FLOPs is typi-
cally used for measuring the computational complexity of
a given network by summing up all the multiplication and
summation operations needed to obtain the prediction. It is
related with both input feature size and network configura-
tions such as the number of layers, kernel size, layer types,
etc. Sparse network has fewer FLOPs compared with its
dense counterpart because the “damaged” connections are
not included in the FLOPs.

5. Results and discussions

5.1. Naive pruning

We start from the naive pruning strategy where there is
no pruning rate decay and connection regeneration. We in-
vestigate the performance by varying the initial sparsity s;
and final sparsity sy, respectively. The maximum number
of epoch is set to be 4 because we found that, when train-
ing PhysNet, the best score is usually obtained at the third
or fourth epoch. The best SNR scores are selected for each

round. We run five rounds and report the mean and standard
deviation. The results are reported in Fig. 1.
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Figure 1. Boxplot of SNR results on PURE dataset. (a) s; = 1.0,
varying sy, (b) varying s;, sy = 0.1.

The results show that the SNR decreases as s decreases
and has no significant relationship with s;. Fig. 1(a) shows
that SNR starts to drop when sy is less than 0.5. Mean SNR
decreases from 9.59 dB (sy = 0.9) t0 9.01 dB (sy = 0.1).
Fig. 1(b) shows that SNR keeps basically stable (mean:
8.91 dB) when s; changes. No monotonic increasing or de-
creasing trend is observed.

5.2. Dense-to-sparse vs. sparse-to-sparse
Table 4. SNR results of the pruning method in comparison with

dense-to-sparse and sparse-to-sparse training. The result of origi-
nal PhysNet is included for benchmarking.

Name | si sy | SNR(dB)
PhysNet | - - [9.30+0.14
1.0 0.9 | 9.59+0.22
1.0 0.8 | 9.49+0.30
1.0 0.7 | 973+ 0.14
Denseto. | 10 06 | 9494017
sparse 1.0 0.5 9.51+0.39
1.0 0.4 |9.55+0.13
1.0 0.3 ]9.37+£040
1.0 0.2 | 921+ 040
1.0 0.1 | 9.01£0.09
09 0.1 |8.93+0.14
0.8 0.1 | 9.15+0.30
0.7 0.1 |9.05+0.28
Sparse.to. | 06 01 | 8:84£0.39
sparse 0.5 0.1 | 890+0.36
04 0. | 8.52+037
03 0.1 | 8.88+0.20
02 0.1 | 8.93+0.25

The results comparing dense-to-sparse training and
sparse-to-sparse training are shown in Table 4. The result-
s show that dense initialization generally performs better
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than sparse initialization. In dense-to-sparse experiments,
the SNRs when sy is greater than 0.3 are higher than that
of PhysNet. Only when s; is less than 0.3 drops the SNR
score down below PhysNet. Nevertheless, the SNR is still
higher than most of sparse-to-sparse experiments. In gener-
al, dense-to-sparse experiments have average SNR 9.43 dB
while sparse-to-sparse have average SNR 8.91 dB.

5.3. Effect of pruning rate decay and connection
regeneration

In this experiment, we investigate the effect of pruning
rate decay and connection regeneration by combining with
and without these two variables while keeping s; = 1.0,
sy = 0.1, resulting in four combinations. Each combination
is ran five rounds and the average SNR scores are reported,
as shown in Table 5.

Table 5. SNR results of the pruning method in comparison with
pruning rate decay and connection regeneration. The result of o-
riginal PhysNet is included for benchmarking.

| decay regeneration | SNR (dB)
PhysNet | - - | 9.30+ 0.14
PhysNetgg X X 9.01+ 0.09
PhysNet;, v X 9.784+ 0.26
PhysNetg; X v 7.86+ 0.24
PhysNet;; v v 9.384+ 0.25

The results show that the pruning rate decay is benefi-
cial to the SNR improvement while the connection regen-
eration has a detrimental effect to the SNR. Specifically,
the naive pruning method PhysNetyg achieves SNR score
0.29 dB lower than that of PhysNet. When pruning rate de-
cay is added, the SNR increases to 9.78 dB, i.e., 0.48 dB
higher than PhysNet. The lowest SNR is achieved by the
method PhysNety; when only the connection regeneration
is added, i.e., 7.86 dB, 1.44 dB lower than PhysNet and 1.15
dB lower than PhysNetqy. The negative effect of regenera-
tion can also be observed when comparing PhysNet;; and
PhysNet;(, where SNR decreased by 0.40 dB when connec-
tion regeneration is added when there exists pruning rate de-
cay. PhysNet;o achieves the highest SNR, even higher than
the original PhysNet.

5.4. Finding the best combination

In this experiment, we concatenate the best-performing
components together obtained in the previous experiments
with an aim to find the best combination. The pruning detail
is as follows: s; = 1.0, varying sy, with pruning rate decay,
and without connection regeneration. The results are shown
in Fig. 2.

The results show that, SNR increases as sy decreases,
which is opposite to that in Fig. 1(a). In order to show the
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Figure 2. Boxplot of SNR results on PURE dataset under the set-
ting: s; = 1.0, varying s, with pruning rate decay, without con-
nection regeneration.

relationship more intuitively, we plot in Fig. 3 the mean S-
NR as a function of sy comparing with and without pruning
rate decay. When pruning rate decay is added, SNR with
larger s; decreases while SNR with smaller sy increases.
This can be explained by the fact that when s is large, the
network is close to dense. Adding decay introduces addi-
tional parameter perturbation. When s is small, however,
the network is very sparse. If decay is not added, a lot of
connections will be lost at the beginning of training, which
is detrimental to the final performance.
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Figure 3. Average SNR results on PURE dataset comparing with
and without pruning rate decay under the setting: s; = 1.0, vary-
ing sy, and without connection regeneration.

5.5. Computational complexity

The FLOPs needed for training and inference are cal-
culated. For PhysNet model and the given input size in
this paper, the FLOPs of the dense model for inference is
2.29 x 10!, For the sparse model, the FLOPs can be ap-
proximately calculated as 2.29 x 10! multiplied by cor-
responding sparsity due to the fact that the float operation
is mainly concentrated in convolution, while that of batch
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normalization and ReL.U activation can be ignored. There
are 2264 iterations in one epoch and the network is pruned
every 300 iterations. We accumulate all the FLOPs in every
iteration. The results are given in Table 6.

Table 6. FLOPs needed for training and inference.

Method FLOPs
s; sy decay training inference
PhysNet | 2.07 x 10" 2.29 x 10"
1.0 0.1 X 2.69 x 10 2.29 x 1010
1.0 0.1 v 7.03 x 10 2.29 x 100
05 0.1 X 2.35 x 10 2.29 x 1010
0.5 0.1 v 4.28 x 10*  2.29 x 1010

The results show that, for both dense-to-sparse and
sparse-to-sparse training, the FLOPs needed is one order of
magnitude less than that of the dense model. Training with
decay needs more FLOPs than that without decay. For the
same final sparsity, dense initialization needs more FLOPs
than sparse initialization.

6. Conclusion

rPPG features small-scale network architecture and lim-
ited number of training samples, which is also common in
many medical imaging fields. This paper introduces prun-
ing techniques which is currently an active research topic
to rPPG network, observes network behavior, and draws
some rules. PhysNet is chosen as the backbone architec-
ture, based on which we add pruning rate decay, connec-
tion regeneration, varying initial sparsity and final sparsity.
Experiments are conducted on a publicly available dataset
PURE. The results show that the pruning rate decay is bene-
ficial to the performance improvement, whereas the connec-
tion regeneration has a detrimental effect. Given the same
final sparsity, dense initialization generally performs better
than sparse initialization. The network seems insensitive
to initial sparsity. The combination s; = 1.0, sy = 0.1,
with decay, and without regeneration is the best trade-off
between SNR and FLOPs, achieving average SNR 9.78 dB,
increased by 0.48 dB in comparison with the original Phys-
Net.

It should be mentioned that the connection regeneration
has a detrimental effect to the network performance, which
contradicts the conclusion in image classification. The rea-
son needs to be further investigation. The network sensi-
tivity to the initialization, i.e., network performance given
different initializations, is another crucial issue worth to be
investigated, which will be our future work. More exper-
iments on other datasets and other rPPG networks are ex-
pected.
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