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Abstract

Interaction recognition from multi-person videos is a
challenging yet essential task in computer vision. Often the
videos depict actions with multiple actors involved, some of
whom participate in the main event, and the rest are present
in the scene without being part of the actual event. This
paper proposes a model to tackle the problem of interac-
tion recognition from multi-person videos. Our model con-
sists of a Recurrent Neural Network (RNN) equipped with
a time-varying attention mechanism. It receives scene fea-
tures and localized actors features to predict the interaction
class. Additionally, the attention model identifies the peo-
ple responsible for the main event. We chose penalty clas-
sification from ice hockey broadcast videos as our applica-
tion. These videos are multi-persons and depict complex
interactions between players in a non-laboratory record-
ing setup. We evaluate our model on a new dataset of ice
hockey penalty videos and report 93.93% classification ac-
curacy. We include a qualitative analysis of the attention
mechanism by visualizing the attention weights. Our code
is publicly available 1.

1. Introduction
Human Action Recognition from Videos (HARV) has

drawn a significant amount of attention to the field of com-
puter vision due to its diverse applications, such as video
surveillance, health care, entertainment, and sports analyt-
ics. It owes its popularity to the increased usage of cam-
eras and communication and sharing platforms such as so-
cial media and broadcasting. Additionally, the development
of powerful computing technologies such as Graphics Pro-
cessing Units (GPUs) along with the emergence of deep
learning architectures marked a great leap forward in the

1https://github.com/SummerVideoAnalysis/Interaction-Classification-
with-Key-Actor-Detection-in-Videos

evolution of HARV research. HARV is an inevitable com-
ponent of video analysis due to the fact that human actions
and their interactions with the environment account for the
predominant part of interactions in the videos.

Figure 1. Sports broadcast scenes are often crowded. In this figure,
the two players in the bounding box are the ”key” actors respon-
sible for the main interaction (penalty). The goal is to classify the
main event while attending to the key actors.

A significant portion of HARV literature focuses on
single-person actions, where an individual performs a pri-
mary action. However, in many applications, the activity in-
volves the interaction between two or more individuals. The
majority of datasets [33, 35, 55] are centered around sim-
ple interactions (e.g., handshake) recorded in a controlled
laboratory environment. Often the cameras are adjusted
to provide a distinguishable view of the action (and ac-
tor), minimize the occlusions, and remove the camera mo-
tion. Addressing the simple scenarios resulted in progress
in HARV over the years; however, nowadays, a vast major-
ity of HARV applications demand automated systems capa-
ble of recognizing complex actions in naturally occurring
environments.

In multi-person videos, the scene contains several actors,
with only a few of them involved in the primary event. For
example, in a penalty scene from a sports broadcast video,
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Figure 2. Histogram of maximum number of players in each clip
across the ice hockey penalty dataset

(usually) only two players are involved in the penalty, while
other players present in the frame are not taking part in the
key interaction Fig. 1. Following [29] in this context, we re-
fer to the actors responsible for the primary event, the ”key”
actors. Therefore, in multi-person videos, it is crucial to
identify the key actors as well as recognize the primary in-
teraction. Our proposed methodology in this paper tackles
the problem of key actor detection from multi-person videos
without requiring explicit annotations of the key actors.

Sport broadcast videos offer a variety of challenges in
terms of multi-person HARV. In recent years the research
community has contributed to the two main categories of
this field. The mainstream contribution is to recognize and
distinguish different sports activities (e.g., swimming ver-
sus running) using sports datasets such as Sports-1M [24]
or UCF Sports [26]. Most of the methods in this branch
leverage the inter-class appearance (context, e.g., swim-
ming pool vs. running track) differences to achieve good
performance. The second category of sports analysis rec-
ognizes the players’ activities or the team during a game,
which is more challenging and less studied. The available
studies in this field are often sparse and sport-specific be-
cause each sport has unique spatiotemporal dynamics and
characteristics. This domain of sports analysis from broad-
cast videos provides beneficial insight into the game for
coaches, referees, and sports analysts. Features such as
players’ appearances (including pose), players’ positions
and their trajectories, and the trajectory of sport-specific
objects (e.g., the puck in ice hockey) are prevalent in this
domain.

Among the sports, ice hockey (hockey for short) broad-
cast videos include complex scenes and interactions due to
the frequent (self) occlusions, fast movements of the play-
ers in a relatively small rink (i.e., 1

4 of a soccer field), var-
ied camera viewpoints (i.e., scale and angle), blurry scenes
due to camera motion, and rapid transitions between game
events. Additionally, the bulkiness and the color of the play-
ers’ uniforms create confusion while extracting the appear-

ance features such as the human skeleton pose (pose for
short). For example, in the far camera shots, the coloring
of the jerseys can make the players blend in with the back-
ground.

Penalties are examples of complicated human interac-
tions during a sports game that can significantly affect
the dynamics and directions of the game. The players’
speed and density on the hockey rink cause much physi-
cal contact, making penalties an inevitable part of hockey
games. The substantial (self) occlusions in penalty scenes,
the sub-optimal and varying camera viewpoints (i.e., scale
and angle), along with a low inter-class variance of penalty
scenes, call for a novel framework to address these chal-
lenges. Therefore, this paper proposes a CNN-RNN based
model equipped with an attention mechanism that recog-
nizes penalties from ice hockey broadcast videos while iso-
lating the responsible players for the event.

Our model receives an ice hockey penalty clip, players’
pose, and hockey stick annotation (i.e., coordinates of stick
ends) as input and outputs a penalty class. The video frame
CNN features along with pose information is input to mul-
tiple RNNs (LSTMS) dedicated to frame features, pose fea-
tures, and event. A time-varying attention mechanism is
employed to identify the important (key) players based on
the information from previous time steps. The local play-
ers’ features along with the global video features are used
for penalty classification. Additionally, the key actors are
implicitly detected within the attention mechanism.

Our paper is structured as follows. Sec. 2 reviews the
current literature related to our work. Sec. 3 presents our
dataset and the accompanying annotations. We elaborate
on different components of our methodology in detail in
Sec. 4. Sec. 5 discusses our experimental setup, classifica-
tion results, and analysis of attention mechanism. Finally,
we conclude the paper in Sec. 6.

Figure 3. An example of pose estimation failure to capture accu-
rate pose on our ice hockey penalty data.
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2. Related Work
The emergence of deep learning marks an era of ad-

vancement in many computer vision applications, includ-
ing HARV. Simonyan et al. pioneered a popular branch
of HARV by proposing two-stream architecture for video
classification [37]. The idea is based on the fusion of
two CNNs, with one CNN learning representation from the
stack of RGB images (i.e., video frames); and the other cap-
turing motion information from image-like modalities (e.g.,
optical flow). The success of this proposition inspired many
researchers to explore variations of CNN [6, 21, 43, 51] and
RNN [10,11,38,54,57] architectures for the task of HARV.

The pose is a compact feature that summarizes an image
(or a video frame) into important key-points, the coordi-
nates values of human joints. Many successful methods for
HARV integrate pose as one of their features in combina-
tion with RNN [25, 31, 44] and CNN [8, 9, 16] architectures
or combine it with appearance and motion features [58]. Al-
though the pose is a useful feature for HARV, it is expensive
and time-consuming to annotate. The advancement of suc-
cessful pose estimators such as OpenPose [5] alleviated the
need for manual annotation of pose and facilitated its inte-
gration into HARV.

Interaction recognition has been recently the subject of
a handful of studies. Some studies propose an RNN ar-
chitecture that takes CNN extracted features as input to
perform temporal reasoning of the individual interactions
[10, 25, 34, 36]. Similar to HARV, interaction recognition
studies integrated pose features in their model, either explic-
itly as the main feature [25, 31, 44] or as a guide to extract
Spatio-temporal features [22, 23, 52, 56].

Person images and videos are found under various names
such as key actor detection [7, 29], important people detec-
tion [19], and action localization [39]. It is important to
note that even though many studies address spatial action
localization from videos, their target dataset includes ac-
tions defined around a single person [17,20,30]. In terms of
supervision, some studies rely on the expensive and time-
consuming annotation of the key actors [7, 27, 28, 41, 50].
Among the key actor detection models from multi-person
videos, the study by Ramanathan et al. [29] is closer to our
approach. They address the problem of key actor detection
in basketball broadcast videos using only weak supervision.
The paper uses frame-level CNN representations and the
spatially localized frame-player-level features to input an
RNN model with an attention mechanism.

The literature on Ice hockey is not extensive. Many stud-
ies focuses on player identification and tracking [45,48,49].
Another stream of studies focus on localizing spaces [14]
and objects (e.g., puck) [46, 47] from the videos. Neher
et al. proposed a CNN model for the pose estimation of
hockey players. Studies such as [4, 13] tackle the problem
of recognizing single-person actions (e.g., passing, shoot-

ing) using pose and optical flow. Tora et al. [42] propose
a CNN-RNN based method to classify multi-person puck
possession events (e.g., dump in, shot). To our knowledge,
there is no study available on multi-person penalty classifi-
cation from ice hockey broadcast videos.

3. Dataset
Our ice hockey penalty dataset consists of three Slash-

ing, Tripping, and No Penalty classes with 76, 80, and 98
clips, respectively. The clips are collected from National
Hockey League (NHL) broadcast videos [3]. We select
Slashing and Tripping because they are among the top oc-
curring penalties during hockey games [2]. We add a No
penalty class that includes snippets of players skating, face-
off, goal, and other game events except penalties.

To label the two penalty classes, we utilize the play-by-
play tool provided by NHL. NHL [3] defines slashing and
tripping penalties as follows: ”Slashing is the act of a player
swinging his stick at an opponent, whether contact is made
or not” and ” a player shall not place the stick, knee, foot,
arm, hand or elbow in such a manner that causes his oppo-
nent to trip or fall ”.

The clips are two to six seconds long and include two to
seven players. The clips from penalty classes have exactly
two key actors. The total number of players in each clip can
vary from frame to frame, meaning that all the players (key
or others) can exit/enter the scene anytime during the event.
Fig. 2 demonstrates the histogram of the maximum number
of players across the dataset.

The dataset represents challenges such as significant
view variation of the penalty scenes in terms of angle
and scale (i.e., close to medium-far shots), camera motion,
blurry frames, and (self) occlusion. The penalties are pre-
sented either in actual speed or slow-motion replays.

We include ground-truth pose annotation of 14 key-
points for all the clips. We first take advantage of pose
extraction libraries (i.e., Openpose [5]). Often the pose
extractors are trained on ”usual” human poses such as
standing and sitting. Consequently, a complex interaction
(e.g., penalties) that includes (self) occlusions and ”un-
usual” poses is challenging for the pose extractor, which in
turn leads to numerous missing joints in the frames. Fig. 3
demonstrates an example of pose estimation failure to cap-
ture precise pose on our dataset.

Therefore, we post-process the extracted poses and fill
in the missing joints using manual annotation and heuristic
conditions based on the pose information from the neigh-
boring frames. In our annotations, if the player (or referee)
is too far (i.e., more than half the shot length) or mostly in-
visible (i.e., more than half of the joints out of frame), we
exclude their poses. Additionally, for the joints that are out
of frame, we set their coordinates to zero. In our dataset,
we avoid redundant identification number assignments. It
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Figure 4. Frames from our ice hockey penalty dataset, including pose and hockey stick annotations. Classes from top to bottom: tripping,
slashing, no penalty.

means, that if players leave and re-enter the scene, their pre-
vious ID will be assigned to them; and while they are absent
from the scene their joint coordinates are set to zero.

Many penalties include the use of a hockey stick. This
information is crucial to classify penalty events. Therefore,
our dataset contains ground truth annotations of hockey grip
and heel for every player in each clip. We use CVAT anno-
tation tool [1] for this purpose. Fig. 4 shows a few examples
of clips and their pose annotations in our dataset.

4. Method

We propose a CNN-RNN based model that receives
video frames and poses as input and classifies each video
into three classes. The model is equipped with a time-
varying attention mechanism on the players’ pose. This
section elaborates on feature extraction, network achitec-
ture, and attention mechanism. Additionally, we introduce
two variations of our primary model as baselines that only
receive frames and pose annotations as input, respectively.
Fig. 5 demonstrates an overview of our proposed model.
The notations in this section are inspired by the work of Ra-
manathan et al. [29].

4.1. Feature extraction

In order to extract scene features from video frames, we
feed every frame to a Resent152 network [18]. The features
from the last convolutional layer of Resent152 are then em-
bedded into a 512-dimensional vector. We call this vector

Figure 5. The architecture of our model. The scene features are
extracted from each video frame. A BiLSTM extracts global infor-
mation from the scene features. These features and players’ poses
are input to an attention model. The attention mechanism’s output
and scene features are input to the interaction classification LSTM
for final interaction classification.

ft. Additionally, we use the players’ pose and hockey stick
annotation as localized features for every frame. pti is a
32 dimensional vector representing x, y coordinates of pose
and hockey stick key-points (16 in total) for player i at time-
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step t.

4.2. Network and attention mechanism

We extract the global context feature from ft using a
bidirectional LSTM, notated as BiLSTMf . At every time
frame, the hidden state from BiLSTMf is input to an atten-
tion mechanism and is part of the input to an LSTM, which
classifies the interaction, LSMTc. The second part of the in-
put to LSMTc is the output of our attention mechanism that
applies attention to players’ features in each frame, based
on the previous hidden state of LSMTc (h

c
t−1) and the cur-

rent hidden state of BiLSTMf (hf
t ).

hf
t = BiLSTMf (h

f
t−1, h

f
t+1, ft) (1)

hc
t = LSTMc(h

c
t−1, h

f
t , pat) (2)

The inputs to the attention model at time-step t are
hc
t−1, hf

t , and players features pti where i = 1, ..., N
with N representing the maximum number of players in
the video. First, each player’s feature (pti) is concatenated
with hc

t−1 and hf
t and then fed to a Multi-Layer Percep-

tron (MLP). The output of the MLP is masked and Soft-
maxed to generate attention weights for each player’s fea-
ture. The final representation from the attention mechanism
is the weighted sum of players’ key point features present
in frame t. We denote this vector by pat.

pat =

Nt∑
i=1

Softmax
(
MLP ([pti, h

f
t , h

c
t−1])

)
pti (3)

Finally, as mentioned earlier, the concatenation of pat
and hf

t are input to the interaction classification LSTM. The
output of LSMTc passes through an embedding layer, and
a Cross-Entropy loss is calculated on the predictions from
the last time-step (T ) of the LSMTc (noted as ycTi

) . In
equation 4, K represents the number of classes. In our
ice hockey dataset K = 3 (i.e., tripping, slashing, and no
penalty) Fig. 5 demonstrates our architecture.

loss = −
K∑

k=1

ycTi
log ycTi

(4)

4.3. Baseline models

As baselines, we introduce two simpler versions of our
model. Each baseline utilizes only one of the available fea-
tures (i.e., global frame features or localized players fea-
tures ). Our first baseline model (Model 1) receives the
scene features as input to the BiLSTMf followed by the
LSMTc to output labels. Therefore, this model does not
have access to pose information and cannot localize the key
actors.

Figure 6. Attention model. At time-step t, the attention model
identifies the key players based on hc

t−1 and hf
t .

On the other hand, our second baseline model (Model 2)
takes in the players’ poses. The poses and the hidden states
from LSMTc are input to the attention mechanism. The
weighted sum of players’ poses is the output of the attention
model and input to the interaction classification LSTM. It
means, in our second baseline, neither the attention model
nor the interaction LSMTc has access to scene features from
BiLSTMf .

5. Experimental Evaluation

5.1. Experimental setup

The hidden states dimensions in LSTM and BiLSTM are
512. The MLP of the attention mechanism includes a lin-
ear layer of dimension 512, ReLu activation, linear layer of
dimension 1, followed by a Softmax. We sample 64 frames
from the clips. The batch size is 32, with a learning rate
of 0.00005 for the primary model (Model3). Additionally,
we augment our dataset using the horizontal flip and affine
transformation (e.g., scale). We use 70%, 20%, and 10% of
our data for training, validation, and testing and choose the
hyper-parameters based on the loss and metric on the vali-
dation set. We run each model using 3 different initial seeds
and report the test accuracy averaged over the seeds.

5.2. Results

In this section, we present the results of our fusion model
(Model3) and compare them against our baseline mod-
els (Model1 and Model2). We report the accuracy of the
(penalty) event classification task; meaning, the number of
times that our model correctly predicts the label (i.e., trip-
ping, slashing, no penalty) of the input video. The event
classification accuracy is shown in Table 1. Model3 that
fuses the scene and localized players’ features outperforms
both of the baselines models with access to only one of
the modalities, emphasizing the importance of integrating
global and local information.
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Model Accuracy (%)

Model1: only frames (no Att) 87.43
Model2: only pose (Att) 80.66
Model3: frames and pose fusion (Att) 93.93

Table 1. Penalty classification accuracy for our interaction classi-
fication primary and baseline methods

Model Accuracy (%)

Model2: only pose (Att) 80.66
Model2 wo stick: only pose (Att) 74.86
Model3: frames and pose fusion (Att) 93.93
Model3 wo stick: frames and pose fusion (Att) 90.46

Table 2. Studying the effect of stick keypoints on penalty classifi-
cation

Many penalties in ice hockey involve using the hockey
stick; therefore, the knowledge of the location of the hockey
stick plays an essential role in the classification of penalties.
In Table 2 we show an ablation study on the effectiveness
of hockey stick annotations. Specifically, we run Model2
and Model3 with the same settings, except the number of
key-points; we feed only the players’ body key-points and
exclude the hockey stick key-points (i.e., feeding 14 key-
points in total). Table 2 demonstrates the performance drop
upon excluding the stick key-points. In Table 3 we com-
pare our method against a few popular action/interaction
recognition approaches. It is important to note that, even
though these methods classify the interactions, they do not
localize the key players. However, our proposed method of-
fers interaction classification as well as key actor detection.
Long-term Recurrent Convolutional Networks (LRCN) [10]
is a CNN-RNN based approach that receives video frames
as input. PoseC3D [12] is a 3D-CNN-based model that cre-
ates 3D heatmap stack representations from human skele-
ton data as input. The pose estimation is an element of
their approach; therefore, we use their proposed pose esti-
mation to acquire the raw human skeleton. To do so, we first
use Faster-RCNN [32] to detect actors, followed by HR-
Net pose estimation [40], which is a top-down pose estima-
tor. To train the PoseC3D model, from available back-ends,
we pick Slowonly [15] with Resnet [18] backbone. Finally,
we run Spatial temporal graph convolutional networks (ST-
GCN) [53] as a member of popular graph convolutional net-
works.

5.3. Analyzing attention

In Fig. 7, we visualize the performance of the attention
mechanism in terms of detecting the key actors and their
relation to interaction prediction. We extract the attention

Model Accuracy (%)

LRCN [10] 63.64
ST-GCN [53] 67.35
PoseC3D [12] 81.63
Ours 93.93

Table 3. Comparing our primary model with some popular action
recognition methods. Note: none of the methods above, offer key
actor detection

weights on the test set and round up the number, meaning
minimal attention weights are rounded to zero and not dis-
played. The weights have passed through a masking mech-
anism as well as Softmax. (i.e., Eq. (3)).

In Fig. 7 (a), the attention model correctly attends to two
key players while ignoring the non-key actor (i.e., the ref-
eree). Toward the end of the clip, the model places heavier
weight on the falling player, which is a good indicator of a
penalty interaction. As depicted in Fig. 7 (b), Our model
correctly recognizes a No penalty interaction by exploring
different players present in the scene over time and focus-
ing on the two players ready for a face-off. However, in
the cases of Fig. 7 (c), the attention is fixated on the wrong
player when the main event is finished resulting in incor-
rect classification. Fig. 7 (d), depicts an unusual case of
the player committing the penalty falling on the rink. Addi-
tionally, the model attends to the non-key actor during the
penalty peak resulting in an incorrect classification.

Overall we can observe the relation between key actor
localization and the interaction classification, demonstrat-
ing the effectiveness of our model. Additionally, the im-
ages demonstrate the time-varying nature of our attention
mechanism, meaning the model switches its focus as new
information arrives from the previous frames.

6. Conclusion
This paper introduces a CNN-RNN based model with

a time-varying attention mechanism for interaction classi-
fication in multi-person sports videos. Our model can lo-
calize the key actors in the scene without requiring key
actor annotations. Our method is flexible to the number
of people in each frame and video, therefore applicable to
any multi-person scenario. In this paper, we evaluate our
model on the dataset of ice hockey penalties. Our dataset
includes three interaction classes, ground truth pose, and
hockey stick annotations for the players. We demonstrate
the proposed model performance on our dataset and com-
pare it against a few popular action recognition methods.
We emphasize the effectiveness of hockey stick annotation
through ablation studies and finally visualize the qualitative
performance of the attention mechanism on some examples
from our dataset.
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(a) GT: slashing, Pred: slashing (b) GT: no penalty, Pred: no penalty (c) GT: slashing, Pred: no penalty (d) GT: tripping, Pred: no penalty

Figure 7. Visualization of attention mechanism on some examples. The figure demonstrates the link between the attention performance
and the interaction classification.
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