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Abstract

Under the new norm of working from home, demand for
fitness from home is on the rise. Different exercise forms
solve different fitness needs for different people. Yoga gives
flexibility and relieves stress. Pilates strengthens the mus-
cles. Kung Fu brings balance. It is not feasible for every-
one to hire a personal trainer. In this paper, we develop
Pose Tutor, an AI-based explainable pose recognition and
correction system. Pose Tutor combines vision and pose
skeleton models in a novel coarse-to-fine framework to ob-
tain pose class predictions. An angle-likelihood mechanism
is used to explain which human joints maximally caused
the pose class predictions and also correct any wrongly
formed joints. Even without keypoint level training, Pose
Tutor shows promising results on Yoga-82, Pilates-32, and
Kungfu-7 datasets. Additionally, user studies conducted
with multiple domain experts validate the explanations pro-
vided by our framework.

1. Introduction

Recent changes in the world such as the COVID-19 pan-
demic have exposed the vulnerability of humans to vari-
ous chronic diseases and health issues. This has further
increased the already growing interest in personal fitness
and fitness monitoring among the general public. Low in-
tensity exercise forms such as Yoga and Pilates are gain-
ing popularity owing to their numerous physical and men-
tal health benefits, in addition to being accessible to people
of almost any age. Every person’s fitness needs might be
unique and it is not always feasible for everyone to hire a
personal instructor. Moreover, safety measures such as so-

Figure 1. Sample outputs of Pose Tutor on Yoga-82 (cols 1-3)
and Pilates-32 (cols 4-5). Each column shows correct (top) and
incorrect (bottom) examples for a given pose. For each image, our
system predicts the pose class and highlights joints (green circles)
that maximally caused the prediction. Wrongly formed joints for a
given pose are highlighted using a red circle, as seen in the bottom
row. Column 1 (Bow): Right - formed by bending both the legs
at knees, hands holding the ankles. Wrong - the left knee is not
bent. Column 2 (Half-moon): Right - one leg and hand pointing
towards the sky freely. Wrong - The left knee is bent. Column 3
(Camel): Right - requires both hands to be at the ankles. Wrong
- the left arm points the sky Column 4 (Scissors): Right - lying
on the ground with left leg pointing the sky. Wrong - both legs
point the sky. Column 5 (Teaser): Right - body resting on hips
forming V shape with legs and arms stretched. Wrong - One knee
bent resting on the ground. (Best viewed in color)

cial distancing have motivated people towards home-based
solutions such as online classes and fitness apps. In a recent
user-experience study [6] of five fitness instructor apps, the
participants found corrective feedback to be highly useful in
performing the poses accurately. The study also highlighted
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the lack of precise human pose understanding as a limita-
tion of existing fitness apps. To address this, we develop
Pose Tutor, an AI-based pose classification, error localiza-
tion and correction system that provides constant real-time
feedback to users thus helping them form correct poses and
potentially prevent injuries.

Pose Tutor relies on solving the task of human pose mon-
itoring and pose correction. Interestingly, pose monitoring
lies at the intersection of two well-studied problems – (1)
human pose estimation and (2) activity recognition. While
human pose estimation aims to accurately predict the pose
keypoints, activity recognition focuses on identifying the
actions performed by a person (see Fig 2). In human pose
estimation, there is no emphasis on pose classification. On
the other hand, activity recognition typically involves clas-
sification of an action into one of many categories. How-
ever, the categories in activity recognition datasets are usu-
ally broad, such as playing basketball or doing kickboxing.
On the other hand, in pose monitoring, the pose classes are
categorized by virtue of their human pose keypoints. Since
each exercise pose usually has a well-defined set of limb po-
sitions, the pose categories are narrow and well-defined. In
addition, the similarity of poses between various exercises
further adds to the complexity of the problem. Thus, pose
monitoring combines two well-known problems of human
pose estimation and activity recognition while presenting
its own challenges such as tightly defined pose classes and
inter-pose similarity.

Pose classification is the first step in developing a pose
monitoring system. It involves predicting the pose class
(ex: mountain pose) from an image of a person per-
forming a pose. While there exist quite a few studies
[8, 12, 14, 15, 18, 22, 33] addressing yoga pose classification
problem, the interest in pose correction has been limited.
Pose correction involves notifying the user if an incorrect
pose has been made, and preferably stating steps on how
to correct the pose. Existing pose correction studies have
some limitations such as motion sensor requirement [5, 9],
inadequate feedback [24] and evaluation on limited number
of poses [3]. To address these limitations, we develop Pose
Tutor, an explainable pose classification and correction sys-
tem. We hypothesize that, to be able to correct a pose, the
system must first be able to explain its pose class prediction.

Our system consists of training a DenseNet [11] classi-
fier to predict the pose class given an input image. Such a
coarse image-level prediction is further refined as follows.
We use a pretrained off-the-shelf pose estimator (ex: Trans-
Pose [34]) to obtain noisy pose keypoints from an input
image. Using noisy keypoints, various joint angles of the
human body are obtained and ”pose vector” is generated,
that summarizes the pose predicted by the keypoint pre-
diction model. A K-Nearest Neighbors classifier is trained
using the pose vector and the output probability vector of

Playing Guitar Mountain Pose

Activity Recognition Pose Monitoring Pose Estimation

Figure 2. Pose monitoring lies at the intersection of activity recog-
nition (left) and pose keypoint estimation (right).

DenseNet to predict the pose class. Since KNN is an in-
stance based learning algorithm, it is inherently explain-
able [32]. Furthermore, the system uses joint angle distri-
butions to find the angles that contributed most to the output
prediction. Based on the angle likelihoods, the system iden-
tifies if there exists a wrongly formed joint angle and noti-
fies the user to correct those angles. To summarize, here are
the key contributions of our work:

• We develop Pose Tutor, an explainable yoga pose
recognition and correction system that combines vi-
sion models and ML classifiers to generate a pose class
prediction. An angle likelihood mechanism is used to
explain the pose class predictions and find out incor-
rectly formed joints if any.

• We curated two new datasets, Pilates-32 and Kungfu-
7, for exercise pose recognition.

• Our system shows promising results on Yoga-82 [30],
a large dataset of 29k images with 82 pose classes with
people performing poses in different viewpoints, oc-
clusions and lighting conditions. We also establish
the validity and applicability of the system by show-
ing results on two other fitness datasets: Pilates-32 and
Kungfu-7.

• User studies demonstrate the accuracy and usability of
the system by computing the agreement between the
system explanations and human explanations.

• Our system uses noisy pose keypoint estimates from an
off-the-shelf pose estimator, thus not requiring ground
truth keypoint annotations for yoga images.

2. Related Work
For a pose monitoring system such as Pose Tutor, pose

classification is the first problem to address. In this con-
text, we first describe the works in pose classification, fol-
lowed by focusing specifically on pose correction. Finally,
we highlight existing fitness monitoring systems.
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Figure 3. Proposed coarse-to-fine system for pose classification and correction. With the input yoga image shown, the system predict the
pose as “bow pose” correctly even if the pose is flawed. In addition, in the output image at the bottom, since bow pose needs both the knees
to be bent, the flawed knee joint is indicated by a red circle. Best viewed in color.

Pose Classification It is a generic term that has been ap-
plied to tasks such as classifying head poses, hand poses and
full-body human poses. Head pose classification [16,21,23]
is primarily used in face recognition, surveillance and
human-computer interaction applications. Hand pose clas-
sification [13,26,27,35] is generally used for gesture recog-
nition and human robot interaction. Full body pose classi-
fication [10, 19] refers to classifying the human pose based
on the entire body pose, that’s closely related to our task of
yoga pose classification. HOG descriptors [10] was used to
classify a person’s pose into active or passive, which is use-
ful in surveillance applications to detect a potential threat. A
zero-shot learning mechanism [19] was proposed to classify
a human pose into 22 classes (ex: sitting, standing) using
wearable sensors. Human activity recognition [7, 31, 36] is
another closely related task. However, it typically involves
images/videos of people interacting with objects (ex: play-
ing a guitar, riding a bike).

While generic full body pose classification methods are
close to our task, they focus on simple poses such as
standing, sitting, holding an object etc. Our work on the
other hand, focuses on a more challenging task of identi-
fying complex body postures such as yoga. Several works
[8, 12, 14, 15, 18, 22, 33] have addressed the task of yoga
pose classification. A method [33] uses CNN and LSTM to
classify 15 yoga poses from videos. A pretrained CNN was
fine-tuned [18] to classify 7 yoga poses.

Pose Correction While several works focus on pose clas-
sification, the interest in pose correction has been limited

[3, 9, 24]. In addition, the existing pose correction studies
have some limitations. For instance, [9] requires motion
sensors to be attached to the body which can be inconve-
nient and expensive. [24] doesn’t provide joint angle level
granular feedback on what went wrong in a pose. [3] is ap-
plied to only a limited number of poses and doesn’t account
for occlusions in the image.

Our current work addresses the limitations in existing
studies by (1) developing an angle-likelihood based expla-
nation system to identify the most important joints that con-
tributed to the class prediction, and to identify any errors
made in the pose. and (2) testing our system on three
datasets: Yoga-82 [30], Pilates-32 and Kungfu-7.

Fitness Monitoring Systems Pose Trainer [4] detects the
user’s pose and provides recommendations on how to im-
prove the pose. Similar to Pose Tutor, Pose Trainer provides
feedback based on joint angles. However, pose trainer is
evaluated on a small set of four exercises. Pose Tutor on the
other hand, is tested on a yoga pose dataset of 82 different
poses in various orientations, in addition to two other sim-
ilar datasets. Zenia [1] is a commercial app for AI based
yoga pose monitoring with voice feedback. However, Zenia
is trained on pose keypoint data of atleast 200k images [2]
whereas Pose Tutor doesn’t require extra training and works
well with an off-the-shelf pose estimator. AIFit [5] provides
human interpretable feedback on human poses. However, it
uses multiple motion capture and RGB cameras to capture
the human pose, which can be quite prohibitive for use in a
household setting. Pose Tutor on the other hand takes input
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Figure 4. Smooth GradCAM++ heatmaps on some images from
the Yoga-82 dataset. It can be seen that the heatmaps mostly focus
on the human torso which is correct but not specific enough.

from a mobile phone camera.

3. Pose Tutor

In this section, we describe our Pose Tutor system. First,
we detail the motivation behind developing Pose Tutor.
Then, we describe the vision models and pose skeleton
models used as components in our pipeline. Subsequently,
we explain how vision and skeleton models are combined
using a coarse-to-fine framework. Finally, we elaborate on
the explanation mechanism used in our system. A summary
of the Pose Tutor system can be seen in Figure 3. For ease
of understanding, we explain the Pose Tutor system in the
context of yoga poses from the Yoga-82 dataset.

3.1. Motivation

The task of yoga pose classification is to look at a still
image of a person doing a pose and accurately predict the
pose class. Since this could be considered as an instance
of an image classification problem, one approach to this
problem could be to simply fine-tune a pre-trained CNN
on the yoga pose dataset. As an experiment, we fine-tuned
a DenseNet [11] model on the Yoga-82 dataset, which re-
sulted in a decent test accuracy of 81%. In attempt to find
the rationale behind the model’s predictions, we utilized a
visual explanation method, Smooth GradCAM++ [20], to
display the class activation maps in the penultimate layer
of DenseNet. Figure 4 depicts the Smooth GradCAM++
heatmaps over a few images from the Yoga-82 dataset. It
can be clearly seen that the heatmaps mostly focus on the
human torso. While these maps are helpful, they are far
from being specific. It is well-known that yoga poses can
be classified based on the positions and angles of various
joints of the human body. So, an explanation method which
can reason the pose prediction based on specific joint posi-
tions and angles can be much more interpretable. In addi-
tion, such explanations can potentially be used to provide
feedback regarding which joints maximally caused the pre-
diction.

Figure 5. (left) The list of angle names clockwise on an image
(right), starting from the left elbow.

3.2. Vision Models

For developing Pose Tutor, we make use of two vision
models: (1) pose estimation network MP and (2) pose clas-
sification network MC . We make a fair assumption that
the category of the pose is a function of the joint positions
and angles i.e., pose keypoints. We utilize an off-the-shelf
pretrained pose estimation model MP to obtain the pose
keypoints. MP is a human pose estimation network which
takes an image as input and produces 18 heatmaps, one per
keypoint. These heatmaps can be converted to a stick fig-
ure representing the pose. We evaluate two candidates for
the pose estimation network MP in our experiments: HR-
Net [28] and Transpose [34]. HRNet has parallel multi-
resolution subnetworks which are connected via multi-scale
fusions to maintain high resolution representations across
the network. This helps in predicting spatially precise key-
point heatmaps. Transpose on the other hand, uses a Trans-
former [29] architecture for pose keypoint estimation. In
Transpose, the images are first passed through a CNN back-
bone to create a feature map, which is flattened out to be
used as an input to the transformer. The transformer esti-
mates pairwise dependencies between each feature. Finally,
a keypoint estimation head predicts the keypoint heatmaps.

For the classification network, we obtain a CNN pre-
trained on the ImageNet dataset and fine-tune it on our pose
dataset. We refer to this classification network as MC .
In our coarse-to-fine system, MC is the coarse prediction
model that predicts the pose class based on the image fea-
tures.

3.3. Pose Skeleton Model

For each image in the training set, we obtain pose key-
points using the pose estimator MP . Since MP is not
trained on the yoga pose dataset, the keypoints can be noisy.
However, our system is robust to these noisy keypoints. For
an image I ,

K := MP (I)

where K = {ki} for i = 1, 2, .., 18
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After obtaining the pose keypoints for each image, we
obtain a pose vector which is a vector of 10 angles formed
at various joints formed in the human body (see Figure 5)
concatenated with the list of normalized keypoint coordi-
nates. For instance, the angle formed between three key-
points k1, k2, k3 at k2 is calculated as the inverse of cosine
similarity:

∠k1k2k3 = cos−1

(
A . B
∥A∥∥B∥

)
Here A denotes the vector joining k1 and k2 and B de-

notes the vector joining k2 and k3.
Each training image I can be mapped to its pose vec-

tor aI using the above mentioned method. We build a K-
Nearest Neighbors classifier MF to make pose class predic-
tions based on the pose vectors. Since this classifier makes
predictions based on the keypoint location and angle in-
formation instead of pixel information of the entire image,
we call it the fine-prediction model MF . We specifically
choose the KNN classifier because it is an instance based
learning algorithm, thus being inherently interpretable [32].

3.4. Coarse-to-Fine Framework

At the inference time, we combine the vision model
(Section 3.2) and the pose skeleton model (Section 3.3) us-
ing a coarse-to-fine framework as follows. For a given input
image I , we first obtain its class probability distribution us-
ing MC . We store the top T classes with the highest proba-
bility. Simultaneously, we obtain the pose keypoints for the
image using MP and obtain its pose vector aI . Using the
previously stored database of pose vectors for each training
sample, we use a K-Nearest Neighbors classifier to classify
the pose vector aI into one of the pose classes. However, in-
stead of computing the distance between pose vectors of all
classes, we only consider the top T classes given by the pose
classification model MC . In other words, we use the top T
classes obtained from the output of MC to narrow down the
candidate classes while running the K-Nearest Neighbors
algorithm. This procedure is summarized in Pseudocode 1.

3.5. Explaining the Pose Predictions

We develop a likelihood based rationale generation
method for explaining the pose class predictions made by
Pose Tutor. For this, we utilize the pose vectors obtained for
each training image (Section 3.3). For a given pose class,
we extract all the angle values obtained for each of the 10
angles and obtain an angle distribution. As an example, Fig-
ure 6 shows the angle distribution of angle 6 (right elbow)
for the pose class “Akarna Dhanurasana”. As shown in the
figure, we divide the set of angles into 10 bins and obtain
the frequency of each bin. These frequencies are normal-
ized so that they add up to 1. We repeat this for each of
the 10 angles for all the pose classes in the dataset. During

inference, we first use pseudocode 1 to obtain the pose vec-
tor a and pose class prediction for a given image. Consider
C to be the predicted pose class. Now, for each angle in
the pose vector, we obtain the likelihood of that angle in its
respective angle distribution for class C. This likelihood is
obtained by finding out the bin in which the angle belongs,
and then extracting the normalized frequency of that bin.
For an angle ai and a predicted class C:

B := histogram(iC)

where B = {b1, b2, .., bN}
bai

= b ∈ B such that start(b) ≤ ai < end(b)

Lai
=

exp(count(bai))∑10
j=1 exp(count(bj))

Mathematically, the likelihood of the angle ai i.e., Lai

is calculated as follows. The ith angle distribution of class
C i.e., iC is divided into a set of bins B. The bin to which
angle ai belongs is denoted as bai

. The count of the an-
gles belonging to the bin in the training set is calculated and
softmax is applied to get the final likelihood of the angle ai.

Out of all the angles in the pose vector for a given image,
the angle with the highest likelihood denotes the joint that
maximally affected the pose class prediction made by our
coarse-to-fine framework. Similarly, the angle with like-
lihood close to zero is predicted to be an anomaly which
might need to be corrected by the person making the pose.

Pseudocode 1 Coarse-to-Fine Inference Framework
visionClassifier ← Classifier Trained on a dataset
poseExtractor ← Off-the-Shelf Pose Estimator

Joints = poseExtractor(trainData)
KNNV ectors = getPoseV ector(Joints)
KNN ← KNN Classifier for pose vectors

for each testImage in testSet do
predictions = visionClassifier(testImage)
topTClasses = ReverseSort(predictions)[: T ]
trainV ectors = filter(KNNV ectors, topTClasses)

testJoints = poseExtractor(testImage)
testV ector = getPoseV ector(Joints)
finalPred = KNN(trainV ectors, testV ector)

end for

4. Experimental Results
4.1. Experimental Setup

Datasets: We perform experiments on three datasets: Yoga-
82, Pilates-32 and Kungfu-7. Yoga-82 [30] is a dataset of
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Figure 6. Normalized Angle distribution of Yoga-82 training set,
for two angles (right elbow and left shoulder) for the class: Akarna
Dhanurasana.

29k images of people performing 82 different yoga poses in
various lighting, viewpoints and containing self-occlusions
and diverse backgrounds. We manually removed the silhou-
ette and sketch based images from the training set to em-
phasize our focus on yoga poses made by real people. Our
training split contains 14054 images and the test split con-
tains 7366 images. To validate the efficacy and robustness
of Pose Tutor on multiple domains, we curated Pilates-32
and Kungfu-7 datasets by collecting publicly available im-
ages from the internet. Pilates-32, a 32-class dataset, con-
tains 2473 images with 2195 training images and 278 test
images. Kungfu-7, a 7-class dataset, contains 179 images
with 158 training images and 21 test images. While 3D
poses provide a more accurate representation of the human
pose, we stick to 2D poses because our system is intended
to be used with mobile phones, most of which are equipped
with 2D cameras.

Evaluation: We quantitatively assess the performance of
our proposed system by measuring the classification accu-
racy on the test sets for each dataset. To evaluate our expla-
nation method, we qualitatively show the joints which max-
imally affect the prediction. In addition, we conduct user
studies to estimate the goodness of such explanations by
comparing them with human explanations. While there ex-
ist metrics such as PCK (Percentage of Correct Keypoints)
and PCP (Percentage of Correct Parts) to evaluate the per-
formance of a pose estimator, we don’t use them in experi-
ments since the datasets don’t contain keypoint annotations
(ground truth).

4.2. Implementation Details

TransPose [34] and HRNet [28] are used as the off-the-
shelf pose estimation networks MP in our experiments.
Both are pre-trained on the MS COCO [17] dataset. For
the pose classification network MC , we use DenseNet-161
[11] pretrained on the ImageNet [25] dataset. We fine-
tuned this network separately for each of the three datasets
with Stochastic Gradient Descent as optimizer. For our
KNN experiments, we used inverse-distance weighted near-

est neighbors, MinMax scaling, and L1 distance. The learn-
ing rate is tuned to .003 for the Yoga-82 dataset [30], .007
for the Pilates-32 dataset, and .005 for the Kungfu-7 dataset.

4.3. Main Results

As our main experiment, we train various ML models
on pose vectors obtained from TransPose, for each image.
Instead of using all classes while training, we only use
top T classes predicted by DenseNet. Results on all the
three datasets showed that KNN mostly outperformed
the other ML models except for random forests. In tune
with the coarse-to-fine framework, we have experimented
with DenseNet in combination with different ML models
for TopT predictions with T ranging from 2 to 8. Table
2 shows that DenseNet+KNN outperformed all the other
models. Thus, we chose KNNs over other ML models.
While KNN is inherently interpretable at the instance level,
random forests are not interpretable models. According
to [32], one of the ways to explain ML models is as follows:
Asking for a decision’s rationale: “What made you believe
this?” To which the system might respond by displaying
the labeled training examples that were most influential
in reaching that decision, e.g., ones identified by nearest
neighbor methods.” This supports our choice of K-Nearest
Neighbors over other ML models.

Dataset KNN only DenseNet only DenseNet + KNN
Yoga-82 0.61 (k=3) 0.81 0.79 (k=2, T=2)

Pilates-32 0.77 (k=2) 0.79 0.82 (k=2, T=2)
Kungfu-7 0.81 (k=8) 0.62 0.81 (k=6, T=4)

Table 1. Test Accuracy of Yoga-82, Pilates-32, and Kungfu-7
datasets applied on KNN, DenseNet, and DenseNet+KNN mod-
els.

We conducted experiments on Yoga-82, Pilates-32
and Kungfu-7 datasets under three settings: KNN only,
DenseNet only and DenseNet+KNN. Table 1 shows that
DenseNet+KNN models outperformed KNN-only models
for Yoga-82 (by 18%) and Pilates (by 5%) datasets while
bringing very good explanations. Both the datasets have
higher no. of poses with self-occlusions as sampled in
Figure 7. This led to noisy keypoints that are input to
KNN-only models. When self-occlusions are minimal as
in the Kungfu-7 dataset (Figure 7), keypoints are mini-
mally noisy and the KNN-only model performs in line with
the Densenet+KNN model. Also, DenseNet+KNN outper-
formed the DenseNet model for Pilates-7 by 3% which
is the best case. with a minimal loss of 2% in perfor-
mance, DenseNet+KNN is able to bring better interpreta-
tions. Though DenseNet beats all the ML classifiers includ-
ing KNN in terms of accuracy, its explanations are not spe-
cific enough, as seen in Figure 4.

In addition, we show qualitative results on the expla-
nation method for pose class predictions. Figure 7 shows
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Yoga-82 Pilates-32 Kungfu-7
Classifier Top T Acc Top T Acc Top T Acc

2 3 2 3 4 5 6 7 8 2 3 4 5 6 7
DenseNet + KNN .79 .66 .82 .81 .81 .81 .81 .80 .78 .71 .67 .67 .71 .76 .81

DenseNet + Random Forests .65 .61 .79 .78 .76 .76 .78 .77 .76 .71 .76 .86 .81 .81 .81
DenseNet + SVM .75 .73 .78 .76 .77 .76 .76 .76 .75 .67 .71 .81 .76 .76 .76

DenseNet + Logistic Regression .70 .66 .77 .74 .73 .71 .69 .67 .65 .67 .71 .81 .81 .71 .71
DenseNet + Gaussian Naive Bayes .65 .61 .76 .72 .71 .68 .66 .64 .62 .71 .76 .85 .81 .81 .81

DenseNet + Decision Trees .65 .61 .72 .70 .64 .66 .64 .60 .62 .71 .76 .85 .81 .81 .81

Table 2. Comparison of Top T performance (for various T values) of DenseNet combined with different ML models

Figure 7. Outputs of Pose Tutor: Green circles show the 4 most
important joints that contributed to the pose class prediction. Blue
lines denote the skeleton prediction from off-the-shelf pose esti-
mator (TransPose).

some examples of images with the pose stick figures over-
laid and the most important joints highlighted using green
circles. It can be seen that the most important joints are in-
deed the ones which form the most distinctive parts of the
yoga poses. We also show qualitative results on the expla-
nation method for pose correction. Figure 1 shows 5 cor-
rect examples and 5 wrong examples (Bow, Half-moon and
Boat Poses from Yoga-82) and (Teaser and Scissors from
Pilates-32) images with the pose stick figures overlaid and
the wrong joints highlighted using red circles. Using angles
that have the least likelihood, our proposed system correctly
identified the joints that are going wrong.

4.4. Ablation study

In our main experiments, we use the concatenation of the
normalized keypoints and the 10 angles as the pose vectors
to build a KNN classifier. In this ablation experiment, we
study the effect of using the following constructions of pose
vectors:

1. Joints: a vector of 18 pose keypoints.

2. Angles: a vector of 10 pose angles (see Figure 5).

3. Joints+Angles: concatenation of joints and angles.

4. Joints+Sticks: concatenation of the joints vector and a
vector of lengths of each stick in the stick figure.

5. Joints+Areas: Concatenation of the joints vector and a
vector of areas formed by angles.

6. Other combinations: Joints + Angles + Areas, Joints +
Angles + Areas + Sticks.

In our ablation study, the best performance is obtained
with “Joints+Angles” pose vectors, as seen in Table 3. This
denotes both the angles and the keypoint locations are cru-
cial in identifying a pose. Adding stick lengths or areas
separately to the joint vector doesn’t help and might even
deter the performance.

Test Acc
Skeleton Model SVM RF KNN LR NB DT

Joints 0.55 0.53 0.49 0.32 0.3 0.28
Angles 0.55 0.53 0.49 0.32 0.3 0.28

Joints+Angles 0.56 0.56 0.54 0.39 0.34 0.31
Joints+Sticks 0.53 0.53 0.49 0.35 0.28 0.28
Joints+Areas 0.53 0.49 0.47 0.3 0.17 0.03

Joints+Angles+ Areas 0.55 0.54 0.53 0.38 0.23 0.04
Joints+Angles+Areas+Sticks 0.54 0.54 0.53 0.4 0.22 0.05

Table 3. Ablation Study of Skeleton models with various ML mod-
els on Yoga-82

5. User Studies
Evaluating the explanations provided by Pose Tutor is

crucial to understanding its effectiveness. To this end, we
conduct user studies by enlisting 12 yoga, 1 pilates and 2
kung fu instructors who studied Pose Tutor’s outputs. Since
knowledge of the correctness of the pose is critical, we fo-
cused on enlisting instructors instead of practitioners. We
expect the former’s responses to be more accurate for this
study.

5.1. Data Collection

The first part of this study is about different exercise
poses with the top 4 joints predicted by our system high-
lighted as shown in Figure 7. There exist a subset of joints
in a pose, which captures the essence of that pose. To
emphasize this, we consider the top 4 joints instead of all
joints. We asked the participants an affirmative question on
whether the joints highlighted are essential for a given pose.
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Class: Boat Pose
Joints Expert1 Expert2 Expert3 Expert4

l shoulder No Yes No Yes
l hip No No Yes No

l knee Yes Yes No Yes
l elbow No Yes No Yes

r shoulder No No Yes No
r hip Yes No Yes No

r knee Yes No Yes No
r elbow Yes Yes Yes Yes

Table 4. Sample of our collected data for an image of a Boat Pose
in Yoga-82. 4 experts choose important joints according to them.

This is to validate the goodness of our explanations. The
second part asks the fitness experts as to which joints are
important for a pose. We showed multiple exercises with-
out any joints highlighted and asked experts to choose the
top 4 joints that they think are very important for each of
the poses. We excluded the face joints as they are less sig-
nificant in assessing the overall body pose. We excluded the
wrist and ankles as they don’t form any joint angles. Instead
of asking them to choose an importance score for each of the
joints for each exercise, we intentionally chose to have ‘yes’
or ‘no’ answers. This serves two purposes: (i) it enforces
the expert user to be more certain about the answer; and (ii)
it eliminates the need for us to do any post-processing of the
collected data for binning. Table 4 shows a sample of the
data we collected.

5.2. Statistical Testing

We performed binomial hypothesis testing on the col-
lected data, where the null hypothesis states that the re-
sults don’t differ significantly from the instructor responses.
These tests answer the following two questions:

(1) What proportion of poses highlighted with predicted im-
portant joints did instructors approve? This shows the over-
all conformity of our system with instructors incorrectly
predicting the important joints.

85% of the experts agreed with the top 4 joints that our
system selected as important for the form of the predicted
pose. Similarly, an expert in Pilates agreed with the top
4 joints that our system selected as important for 80% of
the poses we have shown him. Only 63% of the kung fu
stances with their top 4 important joint predictions are ap-
proved by the kung fu instructors. Poses from Yoga-82 and
Pilates-32 has different camera orientations. This means
that likelihood-based selection of the top 4 joints need not
be always the same for different images of the same pose
class. Despite this, the experts had a high agreement with
the system’s selection.

(2) Does the proportion of a joint being important for the
pose differ significantly from the proportion we get from the
instructors? This question is asked for each of the 8 joints.
Below is the formulation of the hypothesis test:

H0 : Null Hypothesis : ρ <= ρ∗

H1 : Alternate Hypothesis : ρ > ρ∗

where ρ is the proportion from our system, ρ∗ is the pro-
portion from the human experts and the level of significance
is 5%. The results of comparison between our system’s se-

Dataset No. of Experts Approval Rate
Yoga-82 12 85%

Pilates-32 1 80%
Kungfu-7 2 63%

Table 5. The Expert approval rate of Pose Tutor’s Results
lection of the top 4 important joints of a given pose, against
the average selection of top 4 joints by the experts can be
seen in Table 5. We have provided a sample of our study re-
sults in Table 6 for the Akarna Dhanurasana pose. The use
of further refined pose estimations of feet, hands, and face
micro-joints will improve our system further.

Akarna Dhanurasana Pose

Joint System’s
Selection

Expert’s
Selection P Value Outcome

l shoulder 1 0.42 0.42 >0.05
l elbow 1 0.17 0.17 >0.05

l hip 0 0.33 0.33 >0.05
l knee 0 0.58 0.58 >0.05

r shoulder 0 0.58 0.58 >0.05
r elbow 0 0.58 0.58 >0.05

r hip 1 0.67 0.67 >0.05
r knee 1 0.50 0.50 >0.05

Table 6. Our system and experts are in alignment and p-values of
joints are far greater than the critical value of 0.05, which repre-
sents standard statistical significance level.

6. Discussion and Conclusion
In this paper, we proposed Pose Tutor, a coarse-to-

fine system that combines the robustness of a vision-based
model (DenseNet) with the refinement of an instance-based
model (KNN) to bring better explanations, both for class
predictions and pose corrections. After obtaining the top T
classes from the vision-based pose classification network,
our system uses a K-Nearest Neighbors classifier on the
pose angles and keypoints to classify the pose class from
a candidate set of T classes. We verify our system by test-
ing it on three diverse datasets of varying sizes and self-
occlusions: (1) Yoga-82 (2) Pilates-32 (3) Kungfu-7. Given
that we use ML classifiers for our fine predictions, our sys-
tem is promising in terms of its classification accuracy and
its ability to denote the joints which maximally and mini-
mally explain the pose class prediction. User studies further
show that Pose Tutor’s explanations are in good agreement
with human explanations. We hypothesize that the accuracy
of Pose Tutor can be improved by (1) labeling keypoints for
a small subset of train data to get better pose keypoint pre-
dictions and (2) designing more informative pose vectors.
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