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Abstract

Trajectory estimation is a fundamental component of racket

sport analytics, as the trajectory contains information not only

about the winning and losing of each point, but also how it

was won or lost. In sports such as badminton, players benefit

from knowing the full 3D trajectory, as the height of shuttlecock

or ball provides valuable tactical information. Unfortunately,

3D reconstruction is a notoriously hard problem, and standard

trajectory estimators can only track 2D pixel coordinates. In

this work, we present the first complete end-to-end system for

the extraction and segmentation of 3D shuttle trajectories from

monocular badminton videos. Our system integrates badminton

domain knowledge such as court dimension, shot placement,

physical laws of motion, along with vision-based features such

as player poses and shuttle tracking. We find that significant

engineering efforts and model improvements are needed to

make the overall system robust, and as a by-product of our

work, improve state-of-the-art results on court recognition, 2D

trajectory estimation, and hit recognition.

1. Introduction

Badminton is the world’s second largest sport by participa-

tion [10]. However, compared to more celebrated sports such

as soccer and tennis, badminton has yet to enjoy the recent deep

learning advances in computer vision. This is not due to the lack

of need. Key analytic metrics such as trajectory information

are so important that teams and athletes painstakingly annotate

tournament matches and training videos manually. The result

justifies the cause, as Carolina Marin, an Olympic gold medallist

in badminton and three-time world champion, was rumored to

hire a team of 6 annotators for labeling all of her matches. In this

work, we aim to help athletes, coaches, and hobbyists alike in

reducing the manual labor required to label badminton videos.

In a typical badminton game, spatial information such as

where the player hits the shuttlecock and how the opponent

responded, conveys important first order information about

how the match has been progressing. Moreover, as badminton

players use various height-related tactics to adjust the rhythm

Figure 1. Court, pose, and 3D shuttlecock trajectory automatically

generated by our system. Top: test matches used in our dataset. Middle:

court, pose, and shuttlecock frame positions inferred by our system; Bot-

tom: Reconstructed 3D trajectories displayed in novel camera angles.

of the game, this spatial information is especially valuable

when presented in 3D. Previous academic work, as well as our

informal conversation with top-level players, confirm that the

use of 3D trajectories can aid in various ways such as tactics

formulation and post-game analysis [5,35].

However, recovering the 3D trajectories from monocular

videos is difficult. First, in-the-wild badminton videos generally

contain multiple points (rallies in badminton terms), and each

rally contains multiple shots. Segmenting these shots out is an

activity recognition problem, which can be challenging consid-

ering the extreme speed of the badminton shuttlecock.1 Even if

we have the shots segmented, reconstructing the trajectory of a

point (the shuttlecock) is still ill-defined due to the lack of stereo

camera cues. If some reference 3D points are known, and ballis-

tic trajectories can be assumed, then it is possible to reconstruct

trajectories for each shot, such as the work done for tennis [36]

and basketball [3]. However, unlike these sports, the badminton

shuttlecock is heavily affected by air drag, and can easily get

damaged within the course of a rally. The shuttle is also not

1A badminton smash can reach more than 250 mph, which would travel

across the entire court in less than half a second.
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allowed to touch the ground during play, thus eliminating any

useful physical information that can be inferred from the bounce

of the shuttle. Other ball sports can additionally use the location

of players’ feet to localize the ball. However, the frequent jump-

ing of badminton players, render many of these prior methods

infeasible. To make matters worse, even 2D shuttlecock tracking

is highly non-trivial: badminton is predominantly an indoor

sport, with a small court and extremely fast shuttlecock speed;

the shuttlecock is tiny, can be occluded by the player, and can

go out of the frame frequently. Altogether, this results in limited

success achieved in prior work. For example, the method

proposed by [24,25] requires human intervention for every shot.

In contrast, our system requires no human intervention and can

significantly outperform the model-based work by [19].

Our contribution Our work tackles the holistic problem

of segmenting and reconstructing the trajectory of shots from

unlabeled, monocular videos. Our approach consists of a

set of subsystems that analyzes a given video to identify the

court, player poses, and per-frame shuttlecock pixel positions.

Using these signals, we train a recurrent network to obtain

the segmentation of shots. Our network is compact, efficient

to train, and results in high accuracy in detecting the shots

(See Table 1). We then propose a novel per-shot trajectory

reconstruction method that leverages nonlinear optimization

and domain knowledge when possible. We evaluate the 3D

reconstruction method with a dataset containing real and

synthetic trajectories and show state-of-the-art performance. As

a simplification, we limit the scope in this work to singles play,

where only one player per side of the court is allowed. We hope

that the statistics provided by this system can enable players to

achieve greater levels of play through more efficient data-based

tactical analysis. Figure 2 provides an overview of our system.

2. Related Work

Prior work has generally focused on specific components

such as court detection [11, 14, 17, 31, 33, 34], activity

localization and classification [6,7,23,30], stroke analysis [18],

pose analysis [15], or ball tracking [16,22,26,29]. Our system,

on the other hand, aim to generate and integrate different

vision-based sub-signals including court, pose, shuttlecock

positions to segment unlabeled videos into the known cyclic

structure of point rallies [36], and produce 3D trajectories

of the shuttlecock that can, for example, be used in advance

visualizations to improve tactics selection [5,35]. Starting with

some of these baseline sub-signal models, we have identified a

number of key improvements to each model to boost the overall

performance of our system, detailed in §4.

3D reconstruction is a widely studied topic in vision [27],

however, its use in sports videos is relatively recent. [24, 25]

showed a confirming point method that can reconstruct 3D shut-

tlecock positions but requires human intervention in placing the

confirming points for every shot. ShuttleSpace showed that 3D

trajectories of badminton shots is useful for top-level players in

an immersive analytics system [35]. TIVEE further confirmed

that 3D trajectories conveys important tactical information and

can be used to improve game planning and post-game analy-

sis [5]. Both ShuttleSpace and TIVEE were based on confirming

points and thus requires human intervention at shot level to get

accurate 3D trajectories. Vid2Player showed that 3D trajectories

of tennis ball can be used to substitute heavily motion-blurred

broadcast footage to train a player behavioral model for

synthesis [36]. [3] used 3D trajectories of basketball shooting

to infer shooting location statistics. Vid2Player used manually

annotated shot boundaries, and [3] is based on shot boundary

detection using histogram descriptors. Finally, [19] showed

a model-based trajectory estimation method based on linear

regression and SVM. However, their method is only evaluated

on 2D synthetic shot trajectories. To our knowledge, our work

is the first end-to-end system that can provide shot segmentation

and 3D shot trajectory estimation without human intervention.

3. Dataset

Our dataset is based on the public TrackNetV2

dataset [16, 26]. In total, this dataset contains 77k anno-

tated frames from 26 unique singles matches from international

play, filmed from an overhead, static, ªbroadcast-viewº camera.

Following the approach of TrackNet, we use the 12k frames

from their three ªtest matchesº for testing, and split the rest

with 10% of the frames for validation and 90% for training.

The dataset also contains timestamp information of when either

player stroke the shuttlecock (a hit). We enhanced this dataset

by labeling the four court corners for each match, and identify

the player who hit the shuttlecock whenever hit is present.

Since the TrackNet dataset contains mostly ªbroadcast

viewsº (where the camera is situated in the bleachers behind

the court), we additionally labeled another 40 matches to test

our court detection algorithm. These additional matches were

mined from YouTube and filmed from closer angles that were

not present in the TrackNet data. As described in Section 5, we

also prepare a synthetic dataset that contains 10k 3D trajectories

simulated from a physical model.

4. Automated 3D trajectory reconstruction

In this section, we present each part of our system in

detail. For each part of the system, we review the existing

state-of-the-art in the area, and discuss modification specific

to our work where appropriate. As previously described,

our system currently only analyzes singles rallies recorded

with a fixed camera from an approximate ªbroadcast viewº

(see Figure 1 for examples of this view).

4.1. Court detection

We base our approach for detecting the court on the model-

based algorithm of Farin et al. [2,3,11,20]. Unfortuntately, we
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Figure 2. Our method leverages detected court, shuttlecock track, and player poses to segment a sequence of video frames into shots, and

reconstruct faithful 3D trajectory for each shot using a nonlinear optimizer.

Figure 3. Our court detection model is more robust than the

baseline Farin et al. method [11]. Left: Courts detected with [11].

Right: Courts detected with our model. These two images are from

additional annotated matches outside of the TrackNet dataset.

found that the original algorithm fails on many videos in our

dataset where the viewing angle is off-center. We propose a

graph-based approach to overcome this issue and significantly

boost the performance of this algorithm.

We briefly illustrate the original Farin’s algorithm [11]

before introducing our modification. Given an image of

the court, candidate lines are first detected using pixel color

thresholding followed by application of the Hough transform

(see Figure 4). The detected lines are then split into a set LH of

horizontal lines (those with slopes between -25 and 25 degrees)

and LV of vertical lines (those with slopes between 60 and

120 degrees). Finally, a combinatorial search is conducted to

match a known court layout to the candidate lines, with each

search iteration picking two horizontal and two vertical lines

for a reference rectangle in the known layout. This results in

a O(|LH|2|LV |
2) algorithm. Unfortunately, this algorithm fails

in about 24% of videos in our dataset. We found the main

culprit to be the hard angle constraints set when partitioning

results in line misclassification, which ultimately break the

algorithm. This happens most frequently when the angle of the

camera is not ideal or when the reference rectangle of the court

is not visible (see Figure 3 for examples).

To avoid this issue, we propose a new partitioning algorithm

that is free of hard-coded angle constraints. To do this, we

frame the problem as a maximum weight bipartite subgraph

identification. We represent each line as a node in a complete

graph, and for every pair of lines u and v, we connect the nodes

with an edge of weight (|angle(u,v)−π/2|+ε)−2 (ε is set to

be a small constant, e.g. 10−2), where angle(u,v) is the angle

between lines u and v closest to π/2. Then we greedily try to

partition the graph into two sets of vertices LH and LV such

that the weight between the two sets is maximized. This weight

function encourages a partition where the lines in the two parts

are roughly orthogonal to each other.

Our implementation is developed on top of the reference

code provided by [4]. To assess the accuracy of the court

detection, we measure two metrics over a manually annotated

dataset: (i) the average pixel error over all detections, and (ii) the

percentage of successful detections. We define a court detection

as successful if the IoU of the detected court and ground truth is

>0.8. On our dataset, our proposed approach increases the suc-

cess rate of court detection from 73.9% to 85.5%, and decreased

the average detection time by a factor of 40 while achieving an

higher average IoU of 0.97 (vs. 0.96 from the original method).

4.2. Pose estimation

We perform pose estimation using a top-down HRNet

model [32] to compute per-frame poses through the mmpose

framework [9]. To track poses, instead of using methods
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Figure 4. Stages of our court detection includes applying pixel color thresholding (second) and a Hough transform to obtain line candidates

(third), and then partitioning these lines (fourth) in order to efficiently search for the correct court layout (last).

developed for unstructured environments [12] or recurrent

network-based methods [21], we simply leverage the detected

court as a strong cue. We filter all detected poses that do not

have feet in the court, and identify near and far players based

on their distance to the camera. This strategy is effective due

to the fact that no one other than the players can step onto the

court, and that players do not switch side during a point. To

accommodate jumping motions, which would misplace the

player to a deeper position than they actually are, we make

two modifications to increase robustness. Firstly, we relax the

court boundary slightly. Secondly, if a side of the court has

no pose within it, we find the pose closest to the last in-court

pose recorded on that side. For all of our videos, this simple

approach identifies the two players on every frame.

4.3. Shuttle detection

288 x 512 x 32

144 x 256 x 64

72 x 128 x 128

36 x 64 x 256

3x3 conv. + batchnorm + ReLU
max pooling
2x2 upconv. + concatenate
1x1 conv. + sigmoid

72 x 128 x 128

144 x 256 x 64

288 x 512 x 32

Figure 5. Architecture of our shuttle detection model is based on

a modified U-net, where we added residual connections and use the

weighted dice and binary cross-entropy loss.
⊕

represents addition

and
⊗

represents concatenation.

We formulate the shuttle detection problem as semantic

segmentation and use a U-net style architecture (Figure 5)

inspired by TrackNetV2 [26]. Similar to TrackNetV2, to

encourage the network to learn the temporal context, we use

a 3-in-3-out architecture that predicts the shuttle masks for three

consecutive frames simultaneously (each resized to 288-by-512).

However, our model has significantly smaller footprint than

the original TrackNetV2 (2.9M parameters in our model versus

11.3M parameters), making it faster to train and perform

inference, and higher accuracy (88.6% accuracy from 84.0% in

the original). This improvement is credited to two main changes

we introduced. First, we added residual connections to each

convolutional layers (see Figure 5). Second, instead of a binary

focal loss, we use a weighted combination of the dice loss and

the binary cross-entropy to mitigate the input imbalance problem

of tiny shuttlecock, inspired by [28]. Given per-pixel prediction

ŷ∈ [0,1] and ground truth label y, the loss L we use is

LB(y,ŷ):=yT log(ŷ)+(1−y)T log(1−ŷ),

LD(y,ŷ):=
yT ŷ

||y||1+||ŷ||1+ε
,

L(y,ŷ):=(1−α)LB(y,ŷ)+αLD(y,ŷ)

where α is the blending coefficient, and ε is a small constant

for numerical stability. Throughout our experiments, we use

α=0.1 and ε=10−4. To generate the final shuttlecock location,

we threshold ŷ at 0.5 to produce a binary mask per frame, and

then use the centroid of the largest connected component in the

mask. If no pixels are above 0.5 or the area of the component

is not large enough, we report the shuttle is undetected.

To improve training, we trained the first few epochs of our

network with distillation learning [13] using parameters from

TrackNetV2. In total we used 10 distillation epochs and 40 train-

ing epochs with an Adadelta optimizer. Standard augmentation

such as random rotations, shears, and zooms were applied.

4.4. Shot segmentation

Identifying the shots of a rally is critical for reconstructing

3D trajectories (§4.5) and other downstream applications. A

shot happens when a player hits the shuttle with her racket, and

ends right before the opposing player hits the shuttle or if the

shuttle hits the court. Therefore, in order the segment the video

into successive shots, it is equivalent to identify the hit events.

We formulate the hit detection as a multi-class classification

problem. Since we are focusing on singles matches only, this

is a three way classification with labels no hit, near player hit,

and far player hit predicted at each frame.

HitNet: Hit detection architecture In all racket sports, hits at

certain parts of the court (e.g. the side lines) occurs more often
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n x c

Input Tensor

GRU Layer

Softmax

Fully connected layer
n = Number of frames

c = Features per frame 

n x c' n x c'

1 x c' 1 x 3

Figure 6. Architecture of our hit detection model is based on a

simple GRU-based recurrent network that consumes court, pose, and

2D shuttlecock information to make hit predictions.

than the others. Moreover, due to the need to efficiently translate

power to the ball, athletes have very consistent poses when hit-

ting, and have to perfect their positioning with respect to the ball.

The higher the level of the athlete, the higher this consistency. As

a result, we hypothesize that the court layout, the poses, and the

shuttlecock location play an important role in identifying hits.

We propose a recurrent model that leverages the previously

computed court layout (§4.1), poses (§4.2), and shuttlecock

positions (§4.3) and their temporal tracks to predict hits. For

each frame of the video, we create a feature vector comprising

of the pixel coordinates of the court corners, the two players’

poses, and the location of the shuttle, and normalize them jointly

in the x and y directions. The features are embedded into 32

dimensions using a fully-connected layer, before feeding into

the recurrent unit. The recurrent unit comprises of two GRU

layers that takes 12 frames at a time, and predict whether a hit

occurred between frame 7 to 12. We then feed the last token

embedding of this recurrent unit into a small fully connected

layer before passing it to the softmax layer to generate

confidence scores. The architecture is shown in Figure 6. The

network is compact in size (around 16K parameters) and can

reach 86.3% accuracy. The network can performance inference

over several thousand frames a second. To show that each

feature (court, pose, shuttle) contributes significantly to the

output accuracy, we perform ablation studies in Table 1.

The training is done on our dataset with standard data aug-

mentation. Artificial noise is also added in the pixel coordinates

5% of the time to simulate noise in the pipeline. Cross-entropy

is used as the loss function with the Adam optimizer. Learning

rate is set at a constant 0.01. For the input normalization, we

scale all x-pixel coordinates and y-pixel coordinates of the

feature (court, pose, and shuttlecock) to the interval [1,2], and

set undetected shuttle and pose coordinates to (0,0). All features

were normalized together to ensure that the spatial relationship

is preserved. Finally, due to the class-imbalance between hit

and no-hit events, we rebalance the dataset to ensure an equal

number of each type of event were used in the dataset.

Constrained optimization of the network output Next, we

incorporate badminton domain knowledge to further optimize

the HitNet output. The optimization is based on imposing

several constraints. In particular,

I. We know the approximate number of hits for a given rally.

Based on typical shuttle speeds and the court size, the

average time between hits is around 1 second, implying

that a rally lasting D seconds has approximately D hits.

II. No two hits can be too close in time. Empirically, we found

half a second to be a good threshold. In the TrackNetV2

dataset, no two hits are within 0.5s of each other.

III. Hits must be alternating between opposing players, hence

no two adjacent hits should be classified to the same player.

Our optimization aims to find a set of hits roughly maximizing

the sum of confidence scores subject to these constraints.

More formally, given F frames and a set of per-frame

confidence scores
{(

s
(i)
1 ,s

(i)
2 ,s

(i)
3

)}F

i=1
, our goal is to

associate each frame with a label pi ∈ {1,2,3} indicating no

hit, or a hit by one of the players. Since the three scenarios are

mutually exclusive, it suffices to label all the frames on which

hits occur (the rest will be labeled as no hits).

Let {tj}
M
j=1 denote the frame indices where a hit has

occurred, with M total hits. Suppose the total duration of the

video is T seconds (implying T hits on average), and the video

is at f fps. We seek to maximize the following objective:

max
htj

,tj

M
∑

j=1

(

s
(tj)
htj

−τ
)

,

s.t. M≤T,

tj+1−tj≥f/2 ∀1≤j<M,

htj ≠htj+1, htj ∈{2,3} ∀tj

where τ is a parameter that encourages the algorithm to use

fewer than T hits if possible. Without τ , the algorithm will

always use exactly T hits as none of the confidence scores are

negative. In practice, we set τ to be the mean of
s
(i)
2 +s

(i)
3

2 across

all the frames. The first two inequalities enforces constraint I

and II, and the third enforces the shuttle to be hit by alternating

players. The global optimum of the objective above can be found

by standard dynamic programming running in O(Tf) time.

In Table 1 we compare our model against a naive baseline

that simply detects a hit when the second derivative of either

the shuttle x-coordinate or y-coordinate exceeds a predefined

threshold (tuned for maximum accuracy). The locations of large

second derivative indicate ªdiscontinuitiesº in the velocity that

occur when a shuttle is struck. To measure the effectiveness

of our constrained optimization, we further compare against a

naive post-processing which simply classifies using the largest
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Table 1. Comparison of HitNet over baselines and ablation

study shows that HitNet benefits from all input features with the

optimization-based postprocessing. Derivative-based method attempts

to detect hits by thresholding on trajectory derivatives, and RF is a

random forest-based classifier. HitNet is our model.

recall acc. prec. f1

Derivative-based 65.7% 53.8% 74.7% 0.699

RF 65.1% 57.4% 83.0% 0.730

HitNet (Shuttle) 70.2% 68.8% 97.4% 0.815

HitNet (Shuttle+Pose) 73.9% 75.6% 97.1% 0.850

HitNet (All) 78.1% 76.4% 97.2% 0.866

HitNet+optimization 94.3% 89.7% 94.9% 0.946

confidence score while ensuring that no two hits are within 0.5

seconds of each other. If two frames are classified as hits and

are within 0.5 seconds of each other, the earlier one is classified

as a hit and the later one is classified as a no hit.

To measure the accuracy, recall, and precision of the models,

we only look at frames where hits occurred. If we were to

include all frames, then a trivial detector outputting no hit for

all frames would get close to 100% accuracy. To be precise,

suppose the ground truth has hit-player pairs G = {(ti,pi)}
indicating that player pi hit the shutte on frame ti, and the

model predicts Ĝ={(t̂i,p̂i)}. The metrics we use are:

acc.=
|G∩Ĝ|

|G∪Ĝ|
, recall=

|G∩Ĝ|

|G|
, prec.=

|G∩Ĝ|

|Ĝ|
.

As Table 1 shows, our model offers a substantial (> 35%)

accuracy improvement of the hit detection over the naive model.

4.5. 3D Reconstruction

With the shots segmented (§4.4), we can now independently

reconstruct trajectories for each shot. We pose this as a

constrained nonlinear optimization problem.

Physics-based trajectory estimation The ability to recon-

struct shot-by-shot offers great advantage because without the

discontinuous forces applied to the shuttle, the 3D trajectory,

x(t), can simply be approximated2 by a particle under drag [8]:

d2x

dt2
=g−Cd||x||2x, (1)

subject to x(0)=x0,
dx

dt
(0)=v0 (2)

with initial position x0=(x0,y0,z0)
⊺, velocity v0, and the drag

coefficients Cd. g is a constant representing the gravitational ac-

2The rotation and spin of the shuttle also affects the motion, which can be

accounted for with more complicated models. However, we find the simple

drag model to be sufficient for our purposes.

celeration. Given x0, v0, and Cd, we can integrate this differen-

tial equation to get x(t). Note Cd can change from shot to shot,

as the shuttlecock feathers slowly break over the course of a rally.

Estimating the initial conditions The problem for the above

equation is of course that the initial conditions are unknown.

However, note that given 3D trajectory estimates and camera

parameters, we can project x(t)∈R
3 to image space to obtain

2D trajectory estimates x̂(t) ∈ R
2 using the Direct Linear

Transform [1]. This requires 6 known 3D coordinates, which

we have via the 4 boundary court corners detected in §4.1

plus the 2 tip points on the net poles3. Given the camera

parameters, we can measure how good a given 3D trajectory

is by measuring the reprojection error:

Lr=∥x̂(t)−x̃(t)∥22, (3)

where x̃ is the tracked 2D coordinates of the shuttlecock we intro-

duced in §4.3. This problem can then be solved with a non-linear

regression optimizer until we find a good set of initial conditions.

3D trajectory reconstruction algorithm The vanilla version

of our reconstruction algorithm is therefore built on solving

Equation (2), and refining the initial conditions by reprojecting

the solution back to image space using Equation (3).

The reconstruction can be greatly improved by incorporating

additional priors. We can provide priors on the start and end

positions of the shot through the players’ poses. We can also

penalize the unlikely event that the shot goes out by extending

the trajectory of the shuttle until it hits the ground.4 The final

loss we use is

L3d=σLr+∥x(0)−xH∥22+∥x(tR)−xR∥
2
2+d2O, (4)

where xH and xR are the 3D position estimates of the hitting

and receiving players. These are estimated using their feet

position at the time of hit and receive, respectively, with a

vertical height estimation of 2m. dO is the distance out of the

court if we extend the trajectory of the shuttle until it hits the

ground. If the shuttle lands inside the court, dO=0. We found

the use of dO is quite important, as it helpfully rules out the

cases where the shuttlecock shoots out the back or side of the

court in a way that cannot be penalized by the reprojection loss.

σ is used to adjust the closeness of the reprojection to the initial

and final coordinate guesses. In practice, we use σ= ||P ||−2
2 ,

where P is the camera projection matrix. This choice of σ
allows us to compensate for the fact that Lr is measured in

image coordinates, while the other three terms in Equation (4)

are measured in 3D world coordinates. This optimization is

solved with some domain-specific constraints:

3The 2D frame position of the pole is found by orthogonally projecting the

midpoints of the sidelines up towards the closest white line that is approximately

parallel to the back line of the court
4In professional play, the shuttle rarely goes out by more than a few inches.
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• The initial and final 3D shuttle coordinates should have

height less than 3 metres, i.e., 0≤x0≤3.

• The initial velocity of the shuttle is less than 426 kph, or

roughly 120 m/s, i.e., ||v0||2≤120.

• The initial coordinates of the shuttle is on the same side

as the player that hit it. Since the court is 13.4 metres long,

this constraint implies that 0≤x0 ≤ 6.1, 0≤ y0 ≤ 6.7 if

the closer player hit the shuttle, and 6.7≤y0≤13.4 if the

farther player hit the shuttle.

• The initial velocity is towards the opposing player, i.e.

v
⊺

0(xR−xH)≥0.

5. Experiments

We have already shown several benchmark comparisons and

ablation studies for the court detection, shuttlecock tracking, and

shot segmentation (Table 1) in previous sections. In this section,

we focus on experiments around 3D trajectory reconstruction

and discuss several factors affecting its accuracy.

Synthetic trajectory dataset On top of the dataset introduced

in §3, we create an additional evaluation dataset containing

10k synthetic trajectories to obtain ground truth 3D positions.

We do this by randomly sample the initial conditions and start

position, and reject samples that fail to reach over the net or

land on the opposite court. With the initial conditions, we can

solve Equation (2) to obtain the trajectories. Vertical height

up to 2.5m and speed up to 1500m/s is used. To ensure even

coverage in the simulated trajectories, we simulated trajectories

with initial heights up to 2.5 metres, divided the 3.05×6.7×2.5
metre quarter court into 10×20×20 cm cells, and generated a

trajectory from each cell. The remaining quarters are symmetric

and do not need to be simulated. Our synthetic dataset allows

us to measure both the reconstruction error (distance between

the true 3D trajectory and the reconstructed one) as well as the

reprojection error (pixel distance between true trajectory and

the reconstructed one when projected to 2D).

Reconstruction accuracy on synthetic data We first evaluate

our reconstruction algorithm on the simulated trajectories. Us-

ing camera projection matrices from the three test matches, we

project the 3D coordinates onto the image space and reconstruct

it back using our algorithm. To mimic uncertainty that might

occur in the pipeline affecting the estimated impact location, we

add uniformly distributed random noise between −0.5m and

0.5m onto the hit positions, xH and xR. In Figure 7, we show

the accuracy of our reconstruction on this synthetic dataset.

We bundle trajectories that start and end in different zones to

illustrate the effect camera perspective and travel distance might

have on the error (further discussion on this in later sections).

On average, adding the priors improves the error from 14.9 cm
to 8.0 cm. The 2D reprojection error are not shown as they

are consistently less than 1 pixel for all zones, showing our

algorithm is working well to minimize the reprojection error.

Reconstruction accuracy on real data We use the dataset

introduced in §3 that contains real-world matches to study the re-

construction accuracy. Note that in this dataset, 3D ground truth

positions are not available and thus only 2D reprojection error

can be computed. To tease out effects of different parts of the

pipeline, we perform two versions of the study: one where we

use ground truth shuttle tracking and hits, and the other where

all features were estimated with the system. The result is shown

in Table 2. As expected, the estimated shuttle tracking and hits

do contain errors, and thus the end-to-end reconstruction con-

tains up to four times the error in pixel counts. The highest error

is 37.1 pixels, or about 5% given the image resolution we are

working with. For the measurement, we exclude the first and last

shot of a rally to account for the often occluded first shot (serve),

and the last shot (ground impact) as they are not annotated.

Error attribution Inspection of the performance on both

synthetic and real data reveals several observations regarding

the reconstruction error: 1) the error tends to be higher when

a shot is leaving from the front court, and demonstrates certain

zone specific behaviors; 2) misclassification of a hit (either

false positive or false negative) has a rippling impact on the

reconstruction; 3) certain limitations of the aerodynamic model

in simulating the true trajectory.

As shown in Figure 7, the reconstruction errors are always

higher when the shots are leaving from the front court. In Fig-

ure 8, we show that the error is highly correlated with the shuttle-

cock flight time. This is because longer trajectories naturally cor-

respond to more on-screen observations, which in turn constrain

the optimizer to find a more accurate initial conditions. Similarly,

the inverse flight time shown in Figure 7 shows good agreement

with this observation. We also note that when shuttlecock flies

so high that it becomes off-screen, typically in a to-the-back shot,

the number of observations are reduced, too. This helps explain

why shots going to the back court also results in higher error.

We have briefly discussed the observation in Table 2 that

the end-to-end reconstruction contains much higher errors

than the reconstruction bootstraped by the ground truth

shuttle and hit labels. First, for the error in the bootstraped

reconstruction, visual inspection of the pose and the court

detection results show that they are sufficiently accurate, so we

believe this might be due to the approximations made in the

simplified aerodynamic drag model we used in Equation (2).

Shuttlecock can experience changing cross sectional area and

thus changing drag coefficients during a shot; it can tumble and

flip dynamically when a front-to-front net shot is played; some

players ªsliceº the shuttlecock harder, making the spin of the

shuttlecock another variable that is not modeled. An improved

aerodynamic model can improve the baseline performance.

On the other hand, the error in the end-to-end reconstruction
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(a) Full loss (b) Only reproj. loss (c) Inv. flight time (d) Zones

Front

Middle

Back

Figure 7. Measured reconstruction error (in cm) on 10k synthetic trajectories shows that shots leaving from the front cause larger errors.

(a) is based on optimizing our full loss Equation (4), where (b) is based on optimizing only the reprojection loss Equation (3). (c) shows the inverse

flight time of the shuttle for each zone, and (d) shows the standard badminton court and the zone assignment, where we have divided the half-court

into front, middle, and back zones covering one-third each.

Figure 8. Reconstruction error with respect to shuttlecock flight

time shows that longer flight time leads to drastically lower error until

saturated at around 5cm.

is largely due to misclassified hits. Although both false positive

and false negative will disrupt the model, failure to detect or

misclassifying the player who hit the shot will have severe

consequences. In the former case, not detecting a shot means

that the dynamic model in Equation (2) is invalid as the

near-instantaneous energy input from the racket is suddenly

present. It is therefore not surprising that reconstruction will

fail. In the latter case, misclassifying the player who hits the

shot might cause our postprocessing algorithm to completely

misplace the sequence, causing the entire rally to be ruined.

Combining these two effects, even though our shot segmen-

tation has around 90% accuracy, this can result in erroneous

reconstruction for 20% of the shots, as a hit is sandwiched by

two shots. Therefore, it is of paramount importance that the

hit detection model be improved; we leave this to future work.

6. Conclusion

In this paper, we introduce a novel shot segmentation and

3D trajectory reconstruction method for monocular badminton

Table 2. Measured reprojection error on the real data for both

bootstrapped pipeline using ground truth shuttlecock tracking and hit

detection, and the end-to-end pipeline where all features were inferred.

This table reveals that even with bootstrapped labels the reconstruction

is still not perfect. On the other hand, incorporating inferred shuttlecock

tracking and hits will significantly increase the error.

Error (bootstrapped) Error (end-to-end)

Match 1 8.1 px 37.1 px

Match 2 8.9 px 28.8 px

Match 3 9.8 px 23.3 px

videos. To segment the shots, we leverage domain-specific

court, pose, and tracked shuttlecock positions to design an

efficient GRU-based recurrent network that achieves 90%
accuracy on an enhanced TrackNet dataset. Using these

shots, we show that it is possible to pose the monocular

reconstruction problem as nonlinear optimization with the help

of a physics-based dynamic model. Finally, we evaluate our

method on both synthetic data and real data, and discuss its

strength and weakness in relation to shuttlecock flight time, as

well as the starting and ending position of shots.

Our method has several avenues for future exploration. To

increase the robustness of the system, we are currently in the

process of annotating additional data. We believe more data,

especially those of different views, can greatly improve the

robustness of the system. Another extension of our hit detection

is shot type classification. Given shot type annotations along

with the hits, we believe it is possible to build a robust shot-type

in a manner similar to our hit detector. We note that our recon-

structed 3D trajectories can have many downstream applications

such as shot retrieval, novel view synthesis, highlight detection,

and statistics gathering. Finally, we note that although we are

demonstrating our method’s efficacy on badminton videos, we

expect it to generalize to other racket sports.
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