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Abstract

Nearly all Human Pose Estimation (HPE) datasets con-
sist of a fixed set of keypoints. Standard HPE models trained
on such datasets can only detect these keypoints. If more
points are desired, they have to be manually annotated and
the model needs to be retrained. Our approach leverages
the Vision Transformer architecture to extend the capabil-
ity of the model to detect arbitrary keypoints on the limbs
of persons. We propose two different approaches to en-
code the desired keypoints. (1) Each keypoint is defined by
its position along the line between the two enclosing key-
points from the fixed set and its relative distance between
this line and the edge of the limb. (2) Keypoints are de-
fined as coordinates on a norm pose. Both approaches are
based on the TokenPose [12] architecture, while the key-
point tokens that correspond to the fixed keypoints are re-
placed with our novel module. Experiments show that our
approaches achieve similar results to TokenPose on the fixed
keypoints and are capable of detecting arbitrary keypoints
on the limbs.

1. Introduction
Athletes of various sports disciplines use video analysis

in order to evaluate their performance and to improve their
capabilities based on the results. In team sports, the trajec-
tories of the athletes and e.g. the ball are often at the center
of interest. In contrast, in individual sports, the analyses in-
volve mainly the precision and speed of movements of the
individual athlete. Therefore, these analyses are often based
on the location of keypoints and body parts of the athlete in
the video. Triple and long jump athletes, for example, use
the keypoint locations to calculate their step frequency and
analyze their body posture.

2D human pose estimation (HPE) techniques can auto-
mate the detection of keypoint locations, which makes the
video analysis less time consuming and available to more
athletes. As annotating images is very time consuming, the
datasets of specific sports disciplines are usually small and
contain only those keypoints that are essential for the anal-

Figure 1. Two examples of detection results for freely chosen key-
points on the limbs of triple and long jump athletes. The images
show four equally spaced lines to both sides of each limb includ-
ing the edge in pure color and the central line in white.

yses. Other keypoints, for example on the limb boundaries,
might open the possibility for new and/or extended types
of analyses, but are too expensive to annotate. With our
approach, such keypoints can be estimated without any ad-
ditional annotations.

In computer vision research, 2D HPE is a task of high
interest. The typical problem is to detect a fixed set of key-
points in images of persons. The keypoints have a fixed
definition that does not change throughout the task. The
goal is to find a model that detects these keypoints as accu-
rately as possible. Commonly, architectures involving deep
convolutional neural networks (CNNs) are used. The rea-
son is their high performance in visual tasks. CNNs extract
features in a backbone network and predict the keypoint lo-
cations in a head module which is specific for the fixed key-
points. Adding new keypoints requires a different head and
a retraining of the model. Recently, Transformer [18] ar-
chitectures have become popular among vision tasks. They
originate from natural language processing tasks and are de-
signed to handle inputs of various length like sentences. An
adaption to vision tasks is achieved by the Vision Trans-
former [5] architecture, which splits images into patches
that are handled like words in the original Transformer.
Both image patches and words are embedded to vectors of
a fixed size in a first step, called tokens.

For HPE, the TokenPose [12] architecture appends addi-
tional learnable tokens to the sequence of tokens from the
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image patches. Our approach uses the capability of Trans-
former architectures to handle inputs of various length.
Hence, we are able to detect the fixed keypoints as well as
freely selected keypoints on the human limbs in one step,
without the necessity of any costly additional annotations.
The representations of the desired keypoints - fixed as well
as freely chosen on the limbs - are converted to tokens. This
sequence of tokens of arbitrary length is then appended to
the image tokens and the network predicts a keypoint for
each token. The tokens are generated from keypoint rep-
resentations. We propose and evaluate two different key-
point representations. The first approach splits the repre-
sentation into two parts. One part encodes the position of
the projection of the desired keypoint onto the straight line
between the fixed keypoints that enclose the corresponding
body part. The second part encodes the distance of the key-
point from this projection point relative to the distance of
the boundary of the body part. We refer to this approach as
the vectorized keypoint approach. The second approach en-
codes each keypoint in normalized euclidean coordinates on
a norm pose (template pose). We call this the norm pose ap-
proach. Both approaches open the possibility to design the
keypoint representation such that desired arbitrary points on
the limbs can be represented and therefore also detected by
our model without any additional annotations or postpro-
cessing steps. Figure 1 shows two examples for such detec-
tion results. The contributions of this work are as follows:

• We propose two different representations of freely cho-
sen keypoints on human limbs. The first one is based
on the location relative to the body part boundary and
the keypoints enclosing the body part, the second one
uses the position on a norm pose.

• Our model, based on the TokenPose architecture, uses
the representations to create appropriate tokens for de-
tecting the desired keypoints. The model can deal with
any number of keypoints.

• We propose a metric to evaluate the location of de-
tected keypoints relative to the body part boundary.
Typical metrics like Percentage of Correct Keypoints
(PCK) are too inaccurate to evaluate the model’s sense
of limb boundaries precisely.

• Our experiments show that the proposed approach can
detect arbitrary keypoints on the limbs of humans
while maintaining its performance on the set of fixed
keypoints. We evaluate the model on the COCO [13]
dataset and a dataset of triple and long jump athletes.

2. Related Work
In many sports disciplines, computer vision is a benefi-

cial technique to analyze athletes. Kulkarni et al. [11] use

CNNs to estimate athletes’ poses and classify table tennis
stroke types. Woinoski et al. [22] detect and track swim-
mers during races, analyze strokes and detect breaths. Ein-
falt et al. [6] detect poses of swimmers and improve their es-
timated poses by using the swimming style as an additional
input to the neural network and pose refinement over time.
Moreover, computer vision is also used in team sports. E.g.,
Bridgeman et al. [2] track athletes in soccer videos and cre-
ate 3D poses of them, while Wei et al. [21] estimate the lo-
cation of the ball from monocular basketball video footage
based on the players’ trajectories. Furthermore, human pose
and ski estimation is used for different ski disciplines. Wang
et al. [19] estimate the poses of freestyle skiers and propose
a pose correction and exemplar-based visual suggestions to
athletes. Further, robust estimation methods for human and
ski pose recognition are proposed by Ludwig et al. [14] in
order to calculate the flight angles of ski jumpers during
their flight phase.

In sports, 2D HPE is a very common technique among
computer vision analysis applications. The approaches with
the best scores on leaderboards of common benchmarks like
COCO [13] or MPII Human Pose [1] are based on CNNs
[3, 9]. A common backbone for recent HPE approaches
(also used in [9]) is the High Resolution Net (HRNet) [20].
It preserves a large resolution throughout the whole net-
work and uses connections between different resolutions in-
stead of an encoder-decoder architecture like in [7, 16, 23].
Contrary to the fully convolutional approaches which are
most common, TokenPose [12] is a Transformer [18] based
approach to HPE. It is usable without any convolutions,
but it achieves the best and state-of-the-art results by us-
ing the stump of an HRNet as feature extractor. The ba-
sic Transformer [18] architecture takes sequences of 1D to-
kens as an input. In order to deal with 2D images or fea-
ture maps, Vision Transformer [5] proposes to embed small
image patches by a learned linear projection to 1D token
vectors. This approach is used by TokenPose. Addition-
ally, learnable keypoint tokens are appended to the image
tokens and used as the Transformer input. The output of
these keypoint tokens is then transformed through a MLP
to heatmaps. This method can be adapted to detect arbi-
trary keypoints that lie on the straight line between fixed
keypoints [15].

However, we are not aware of any related work that ad-
dresses the task of estimating freely chosen novel keypoints
while training the HPE network only with a training set with
fixed keypoint annotations and associated human segmenta-
tion masks.

3. Method
The TokenPose-Base [12] architecture is used as a ba-

sis for our model. It uses a convolutional model in the
early layers of the backbone and combines it with a Trans-
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Figure 2. Examples for the keypoint generation process on COCO images. The body part is visualized with a red overlay and the fixed
keypoints enclosing the body part in yellow. The randomly selected projection point on the line between the fixed keypoints is displayed
in green and the orthogonal line in blue. The intersection points of the line with the edge of the body part are visualized in blue, while the
red points visualize the final generated keypoints.

former architecture in the later backbone layers. The pro-
posed method can also be used in conjunction with the other
TokenPose variants.

3.1. Keypoint Generation

In order to detect arbitrarily selected keypoints on hu-
man limbs, we need to generate ground truth keypoints on
the limbs. To achieve that, we use segmentation masks of
upper arms, forearms, thighs and lower legs. As we want
to generate keypoints that are distributed over the complete
body part, we use the following generation scheme: Let bi
and bj be the coordinates of two fixed keypoints (e.g., left
shoulder and left elbow joints) that enclose the body part B
(e.g., left upper arm). At first, we uniformly sample a per-
centage pb of the line between bi and bj , which results in
the projection point bp:

bp = pb · bj + (1− pb) · bi (1)

Next, we generate the line f that is orthogonal to the line
between bi and bj and fits through bp. This line has two
intersection points c1 and c2 with the boundary of the body
part segmentation mask B . Then, we sample p̃t from a
normal distribution and define pt = max(0, 1 − |p̃t|) ∈
[0, 1]. This ratio pt corresponds to the distance from the
projection point bp to the body part boundary, referred to
as the thickness. With pt, we create the final keypoint bt as
follows:

bt =

{
(1− pt) · bp + pt · c1, p̃t >= 0
(1− pt) · bp + pt · c2, p̃t < 0

(2)

p̃t is drawn from a normal distribution in order to gen-
erate more keypoints on the body part boundaries, as this
seems harder for the model to learn. Figure 2 shows some
examples for such keypoint generations. Yellow points vi-
sualize bi and bj , a green point bp and the blue line f . The
body part segmentation mask B is visualized by a red over-
lay. The mask intersection points c1 and c2 are displayed
with blue points and the generated point bt with a red point.

3.2. Keypoint Representations

In contrast to TokenPose which uses fixed learnable to-
kens, we need to learn an embedding function for the de-
sired keypoint to a suitable keypoint token, as it is analyzed
in [15]. We propose two approaches for the input represen-
tation for this embedding function in the following sections.

3.2.1 Keypoint and Thickness Vectors

This approach is directly derived from the keypoint genera-
tion process. Each keypoint is represented by two short vec-
tors, a keypoint vector and a thickness vector. For a dataset
with n fixed keypoints, the keypoint vector vk ∈ Rn for the
keypoint bt is designed as follows:

vkl =

 1− pb, l = i
pb, l = j
0, l ̸= i ∧ l ̸= j

l = 1, ..., n (3)

This is equal to the representation in [15] for the projection
point bp. The second, novel representation vector is called
thickness vector, vt ∈ R3, and is defined according to

vt =

{
(pt, 1− pt, 0)

T
, pt >= 0

(0, 1− pt, pt)
T
, pt < 0

(4)

The fixed keypoints of the dataset are represented with pb =
0 and pt = 0.

3.2.2 Norm Pose

The norm pose approach encodes the keypoints in normal-
ized 2D-coordinates according to a norm pose. Figure 3 vi-
sualizes the used norm pose. The fixed keypoints from the
COCO dataset are displayed in light gray. The used body
parts are colored, the rest of the body is visualized in black.
The coordinates of the norm pose point bn are derived in
the same way like the keypoint generation for bt described
in Section 3.1. The coordinates are normalized to the inter-
val [0, 1]. Hence, the norm pose representation is in R2.
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Figure 3. The used norm pose depicted with the fixed keypoints
from the COCO dataset.

3.3. Model Architecture

Our model architecture is closely related to the Token-
pose [12] architecture, but has important key modifications.
Figure 5 visualizes the general architecture together with
the adaption for the keypoint and thickness vectors, which
will be explained later. At first, image features are extracted
with a CNN. At the beginning of the Transformer, the fea-
ture maps are split into equally sized feature patches. The
feature patches are embedded to visual tokens by a learned
linear projection. A 2D sine positional encoding is added to
the visual tokens. Next, the keypoint tokens are appended
to this sequence of visual tokens. The creation of these key-
point tokens is dependent on the representation type. We
do not add positional encoding to the keypoint tokens as
the order of the keypoints should not matter. In the end,
a multi-layer perceptron is used to transform the output of
the Transformer corresponding to the keypoint tokens to 2D
heatmaps.

In a first experiment, called thickness token approach in
the following, we treat keypoint vectors and thickness vec-
tors similar to feature patches. It transforms the keypoint
and thickness vectors to tokens through two independently
learned linear projections. Keypoint and thickness tokens
are then appended to the visual tokens. The problem with
this approach is that the model is not able to match the
corresponding keypoint and thickness tokens. Therefore, it
predicts the projection points bp instead of the desired points
bt. We would need a positional encoding in order to match
the tokens, but this is in contradiction to the desired inde-
pendence of the order of the keypoints.

Hence, we use a different approach, which we call vec-
torized keypoint approach. Let m be the desired embedding
size of the visual and keypoint tokens. Then, the keypoint
vectors and the thickness vectors are embedded to tokens
of size m/2 with independently learned linear projections.
These tokens are concatenated to the final keypoint tokens
of size m, which combine the information from keypoint
and thickness vectors. These keypoint tokens are appended
to the visual tokens and then fed through the Transformer

network. An illustration of this model can be found in Fig-
ure 5. During training, the tokens are first randomly sam-
pled and permuted before being appended to the visual to-
kens, as described in [15].

The norm pose coordinates are used similarly. In a first
experiment, we embed them as well with a linear projection.
However, experiments show that the performance is below
the performance of the original TokenPose model. There-
fore, we try to enhance the generated keypoint tokens by
using a multi-layer perceptron instead of the linear projec-
tion in order to give the model more capacity to learn the
keypoint semantics. This adaption is visualized in Figure
4. The rest of the model is identical to the model for the
vectorized keypoints approach (see Figure 5).

Norm Pose Coordinates

MLP

…

…

Random Sampling 

and Permutation

Figure 4. Model architecture adaption for norm pose represen-
tations. The norm pose coordinates are transformed to the key-
point vectors via a MLP. Random sampling and permutation ap-
plies only during the training phase.

3.4. Thickness Metrics

Evaluations show that models predicting only the pro-
jection points bp like the thickness token approach achieve
significant performance regarding typical metrics like the
Percentage of Correct Keypoints (PCK) or the Object Key-
point Similarity (OKS) which are described in Section 4.
These metrics are based on the distance between the pre-
dicted point and the ground truth point. As the thickness of
the limbs is relatively small, the distance between projection
points and desired points is also relatively small. This leads
to a high performance regarding these metrics, although the
model does not learn the semantic of the body part shapes.
Therefore, we propose to use a new metric considering the
thickness to measure the success of identifying freely se-
lected keypoints correctly.

Let b0t be the desired ground truth keypoint, b0p the cor-
responding projection point, c01 the intersection point on the
other side of b0p and c02 the intersection point on the same
side, w.l.o.g., as visualized in Figure 6. The ground truth
thickness t0 is computed as

t0 =
||b0t − b0p||2
||c02 − b0p||2

(5)

Assume the model predicts a point b2t on the same side of
the projection line as the ground truth point. Let b2p be the
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Transformer Layer

Transformer Layer
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MLPFeature Patch

Visual Token

Keypoint Vector

Keypoint Token

Positional Encoding

Random Sampling 

and Permutation

…

…

Thickness Vectors

Linear Projection

…

Figure 5. Model architecture with keypoint and thickness vectors. Image features from a CNN are split into patches and transformed to
visual tokens via a linear projection. Keypoint and thickness vectors are also embedded via a linear projection, but only to half of the
embedding size. Afterwards, they are concatenated to the final keypoint tokens which are appended to the sequence of visual tokens. This
sequence is the input to the Transformer network. Random sampling and permutation applies only during the training phase.

projection point corresponding to b2t and c21, c22 be the in-
tersection points in the same way as before. Then, the pre-
dicted thickness t2 is calculated as

t2 =
||b2t − b2p||2
||c22 − b2p||2

(6)

The thickness error e2 is now calculated as the absolute
difference between the ground truth thickness and the pre-
dicted thickness: e2 = |t0 − t2|. Furthermore, the model
might predict a point b1t on the opposite side of the projec-
tion line from the ground truth point. With b1p being the
projection point corresponding to b1t and c11, c

2
1 be the inter-

section points on the opposite and same side, respectively,
the thickness error e1 is calculated as

e1 =
||b1t − b1p||2
||c11 − b1p||2

+ t0 (7)

Finally, if a projection point can not be defined for a pre-
dicted point b3t , e.g., because it does not lie in the body part
segmentation, we set the thickness error e3 to the maximum
possible thickness error, which is e3 = 2.

As a first metric, we use the Mean Thickness Error
(MTE). Furthermore, we introduce the Percentage of Cor-

c11
c01
c21

c12
c02
c22

b0
t

b1
t

b2
t

b1
p

b0
p

b2
p

Figure 6. Semantic visualization of the calculation of the thick-
ness error for two possible model predictions. The ground truth
is displayed in red, the two predictions in orange. Prediction b1t
is placed on the opposite side of the gray projection line as the
ground truth point b0t , prediction b2t is located on the same side.
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Figure 7. Examples for model predictions on the DensePose subset of the COCO dataset. The first two images show the fixed keypoints in
red and a grid of four equally spaced keypoints along the projection line by five equally spaced keypoints along the thickness line for each
body part. The images are darkened for better visibility of the keypoints. The other three images show four equally spaced lines regarding
the thickness on each body part. The projection line is colored white with a color gradient to the edges.

rect Thickness (PCT). At a threshold t, it is defined as the
fraction of thickness errors that is below t. Notice that these
metrics should not be used standalone as they do not take
into account the absolute positions of the predictions, only
the relative position regarding the projection line and the
body part boundaries are considered. They are only able
to give a rough estimation, as the thickness error is always
set to the maximum error if the keypoint does not lie on the
correct body part. Therefore, in our experiments, we use the
PCT in conjunction with the PCK.

4. Experiments
All our experiments use the TokenPose-Base [12] archi-

tecture configuration as a backbone. The CNN for feature
extraction is an HRNet-w32 [20] pruned to its first three
stages. We resize all input images to a size of 256 × 192.
For the feature patches, we use the largest output feature
maps of the HRNet, which are of size 64 × 48. These fea-
ture maps are split into patches of size 4× 3, which results
in 256 feature patches in total. We use 192 as an embedding
size, equal to the TokenPose-Base implementation, and 12
Transformer Layers with 8 heads. As positional encoding,
we use a 2D sine, which is added only to the visual tokens
after the embedding and in between each transformer layer
(see Figure 5). The MLP after the Transformer layers con-
verts each output corresponding to the keypoint tokens to
heatmaps of size 64 × 48. The final keypoint coordinates
are retrieved with the DARK method [24].

4.1. COCO

Dataset. The original COCO [13] dataset contains
over 200,000 images. For our task, we need body part
segmentation masks in order to generate arbitrary key-
points on the limbs. Therefore, we use the subset of
COCO created for the DensePose [17] task. We use
the train1 split containing 39.210 person segmentations
as our training set, the val split with 2,243 person seg-

mentations as our validation set and the train2 split with
7,297 as our test set. During the keypoint generation pro-
cess, we found out that the segmentation masks contain
a lot of wrong left-right annotations. We corrected some
of them with a heuristic and some manually, resulting
in approx. 3500 annotation corrections that are publicly
available at: https://www.uni-augsburg.de/
en/fakultaet/fai/informatik/prof/mmc/
research/datensatze/. The fixed and semantically
well-defined keypoints in the COCO dataset are: l./r. eye,
l./r. ear, l./r. shoulder, l./r. elbow, l./r. wrist, l./r. hip, l./r.
knee, l./r. ankle.

Evaluation Metric. The primary metric for keypoint de-
tection on COCO is the average precision (AP) based on the
Object Keypoint Similarity (OKS). Let di be the euclidean
distance between corresponding ground truth and detected
keypoint, vi the ground truth visibility flag, s the object
scale and ki a per-keypoint specific constant. The OKS is
defined as

OKS =

∑
i exp(−d2i /2s

2k2i )σ(vi > 0))∑
i σ(vi > 0)

(8)

The keypoint specific constants are used to control the de-
manded prediction accuracy based on the keypoint type. As
these constants cannot be defined for arbitrary keypoints,
we additionally use the PCK metric at threshold 0.1. The
PCK@t considers a keypoint prediction correct at a thresh-
old t, if the distance between the predicion and the ground
truth is less than or equal to t times the torso size. We
use the distance between left shoulder and right hip as the
torso size. The recall at a certain PCK threshold represents
the fraction of keypoints that is considered correct at that
threshold. Furthermore, we use the MTE and PCT metric
with a threshold of 0.2 as described in Section 3.4 to mea-
sure the ability of the model to predict points at the right
distance from the projection line. As the maximum error
for the PCT metric is 2, we consider 0.2 as a good threshold
for evaluations.
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Model AP AP 50 AP 75 APM APL AR Avg PCK Full PCK MTE ↓ PCT ↑
TokenPose 84.6 97.8 92.2 78.9 85.1 87.3 84.1

Thickness Tokens 82.8 97.8 91.0 76.9 83.3 85.8 83.0 71.0 79.2 6.3
Vectorized Keypoints 84.0 97.8 92.1 78.3 84.3 86.7 84.2 87.2 25.5 68.1

Norm Pose Linear 78.5 96.7 87.6 72.7 79.1 82.1 80.5 83.1 33.0 56.4
Norm Pose MLP 83.1 97.8 91.2 78.0 83.6 86.0 83.7 87.1 25.7 66.9

Table 1. OKS results, PCK@0.1 and thickness metrics results on our test set of the DensePose dataset. The Avg PCK is the PCK@0.1
metric on the fixed keypoints, the Full PCK the PCK@0.1 on the fixed and generated keypoints. MTE and PCT refer to the metrics
proposed in Section 3.4. The TokenPose model is trained only on the fixed keypoints. The thickness token approach refers to the model
with distinct tokens for thickness and keypoint vectors. The vectorized keypoint approach is described in Section 3.2.1. Norm pose MLP
refers to the approach with norm pose representations and a four layer MLP for the embedding, Norm pose linear uses a linear projection.

Results. Table 1 displays the results on the DensePose
subset of the COCO dataset. The TokenPose baseline ap-
proach achieves the best results on the fixed keypoints re-
garding the AP, but it is not capable of detecting arbitrary
points on human limbs. For the other proposed approaches,
the focus is shifted from the standard fixed keypoints to the
freely selectable points on the limbs, which is the reason
for the small decrease in AP for OKS regarding the other
approaches. The vectorized keypoint approach achieves a
slighly lower AP for OKS on the fixed points, but the PCK
for the fixed points is slightly higher and the PCK for all
points including the generated keypoints (named Full PCK
in Table 1) is even higher (absolute 3.0%). The full PCK
for the approach with independent thickness tokens is lower
than the full PCK for the vectorized keypoint model by a
large margin of absolute 16.2%. The reason is that the thick-
ness token approach can not match the thickness tokens to
the keypoint tokens as the Transfomer is independent of the
order of the input sequence. Figure 8 shows an example
for this problem. Many keypoints lie in the distance from
the ground truth that is valid for the PCK, therefore the full
PCK is still quite high. This is the reason why we propose
the consideration of the MTE and the PCT. For the thickness
token approach, the mean thickness error is 79.2%, which
is really high compared to the mean thickness error of the

Figure 8. Example predictions for the thickness token model. The
predictions displayed in yellow are located only on the projection
line and do not consider the thickness of the body parts. This be-
havior motivates the need for the MTE and PCT metrics. Ground
truth keypoints are displayed in red.

vectorized keypoint approach with 25.5%. The PCT met-
ric makes the difference even clearer. Regarding the vec-
torized keypoint approach, 68.1% of the detected keypoints
are regarded as correct at a threshold of 0.2. This is over 10
times better than the PCT achieved by the thickness token
approach. Furthermore, the norm pose approach with lin-
ear embedding achieves the worst results, but using a four
layer MLP increases the AP by absolute 4.6%, which is
only absolute 1.5% below TokenPose on the fixed points.
Furthermore, the usage of a MLP improves all other met-
rics slightly, including the thickness metrics. Overall, the
norm pose MLP approach achieves slightly worse, but sim-
ilar results like the vectorized keypoint approach regarding
all metrics. Figure 7 shows some qualitative results for the
vectorized keypoint approach on the coco dataset.

4.2. Triple and Long Jump

Dataset. The triple and long jump dataset consists of
frames from videos of triple and long jump athletes during
competitions and trainings. The frames show a variety of
sports sites and athletes, like indoor and outdoor videos, dif-
ferent lighting conditions, etc. The dataset contains 6,026
labeled images in total, whereby 4,101 images are used for
training, 464 images for validation and 1,461 images for
the test set. All frames are annotated with head, neck, r./l.
shoulder, r./l. elbow, r./l.wrist, r./l. hip, r./l. knee, r./l. an-
kle, r./l. big toe, r./l. small toe and r./l. heel (20 keypoints
in total). The dataset does not contain body part segmen-
tation masks. Therefore, we use the DensePose [17] model
with a ResNet101 [8] backbone and DeepLabV3 [4] as well
as Panoptic FPN [10] heads from detectron2 [17] to gener-
ate them. Hence, there is no need to costly annotate sports
datasets with body part segmentation masks in order to use
our method.

Evaluation Metric. We use again the PCK metric as de-
scribed in Section 4.1 with the distance between left shoul-
der and right hip as the torso size. Like before, we use
t = 0.1, which corresponds to approx. 6 cm in this dataset.
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Figure 9. Qualitative results for the triple and long jump test set. The first three images show the fixed keypoints in red and a grid of four
equally spaced keypoints along the projection line by five equally spaced keypoints along the thickness line for each body part. The images
are darkened for better visibility of the keypoints. The other three images show four equally spaced lines regarding the thickness on each
body part. The projection line is colored white with a color gradient to the edges.

Additionally, we use the MTE and the PCT at a threshold
of 0.2 to evaluate the thickness of the model’s predictions.

Results. The results for the jump dataset are similar to
the COCO results and displayed in Table 2. In comparison
to the TokenPose model trained on the fixed keypoints, the
vectorized keypoint and the norm pose approach achieve ab-
solute 0.4% lower PCK on the fixed keypoints, but absolute
2.6% higher PCK if the generated arbitrary keypoints on
the limbs are also considered. Compared to the DensePose
COCO dataset, the vectorized keypoint model achieves bet-
ter results regarding the thickness of the limbs. The MTE
is a third lower and the PCT is also a lot higher, absolute
13.3%. Furthermore, the difference in the performance be-
tween linear and MLP norm pose approaches is lower. The
vectorized keypoint approach also achieves the best results
on this dataset, but the difference to the norm pose MLP ap-
proach is only marginally. In addition, Figure 9 visualizes
some qualitative results for the jump dataset, which prove
that the model has learned a sense of thickness.

Model Avg PCK Full PCK MTE ↓ PCT ↑
TokenPose 91.3

Vectorized Keypoints 90.9 93.6 16.2 81.4
Norm Pose Linear 90.3 93.5 17.0 79.0
Norm Pose MLP 90.9 93.6 16.8 79.8

Table 2. Recall values for the triple and long jump test set in % at
PCK@0.1. The first column displays the average PCK of the stan-
dard keypoints. The average PCK score including the generated
points is given in the second column. The third column shows the
MTE and the last column the PCT at threshold 0.1. The Token-
Pose model is trained only on the fixed keypoints.

5. Conclusion

This paper proposes two representations for freely se-
lectable keypoints on the limbs of humans. The first ap-
proach, called vectorized keypoints, represents each key-
point as a combination of the projection point encoded in

a keypoint vector and the thickness encoded in a thickness
vector. The projection point is the point on the line between
the two fixed keypoints that enclose the body part, while
the thickness indicates the distance of the desired keypoint
from the projection point to the body part boundary. The
norm pose MLP approach encodes the desired keypoint as
normalized 2D-coordinates relative to a norm pose and uses
a small MLP for the embedding to keypoint tokens. In order
to evaluate the ability of the model to detect keypoints with
the correct thickness, we propose to use the Mean Thick-
ness Error (MTE) and the Percentage of Correct Thickness
(PCT) analogous to the PCK metric.

Embedding both keypoint and thickness vectors inde-
pendently and adding the resulting two tokens to the trans-
former input sequence leads to the problem that the model
detects only keypoints on the line between the enclosing
fixed keypoints. This is captured by low PCT scores, de-
spite the quite high PCK and AP of the OKS metric. This
proves the necessity of the PCT metric. The norm pose ap-
proach, if the norm pose is embedded not only with a linear
layer but with a MLP, achieves satisfactory results on both
datasets. But in comparison to the vectorized keypoint ap-
proach, it performs slightly worse on all metrics. Quanti-
tative and qualitative evaluations show that both proposed
approaches can successfully detect arbitrary points on the
limbs of humans. They achieves high PCT scores, low MTE
values while maintaining high PCK (and OKS) scores on
both the DensePose subset of the COCO dataset and the
triple and long jump dataset. In the future, we plan to ex-
tend our model to arbitrary points anywhere on the human
body and not just on the limbs.
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