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Abstract

One of the requirements for team sports analysis is
to track and recognize players. Many tracking and re-
identification methods have been proposed in the context
of video surveillance. They show very convincing results
when tested on public datasets such as the MOT challenge.
However, the performance of these methods are not as sat-
isfactory when applied to player tracking. Indeed, in addi-
tion to moving very quickly and often being occluded, the
players wear the same jersey, which makes the task of re-
identification very complex. Some recent tracking methods
have been developed more specifically for the team sport
context. Due to the lack of public data, these methods use
private datasets that make impossible a comparison with
them. In this paper, we propose a new generic method
to track team sport players during a full game thanks to
few human annotations collected via a semi-interactive sys-
tem. Non-ambiguous tracklets and their appearance fea-
tures are automatically generated with a detection and a re-
identification network both pre-trained on public datasets.
Then an incremental learning mechanism trains a Trans-
former to classify identities using few game-specific human
annotations. Finally, tracklets are linked by an associa-
tion algorithm. We demonstrate the efficiency of our ap-
proach on a challenging rugby sevens dataset. To overcome
the lack of public sports tracking dataset, we publicly re-
lease this dataset at https://kalisteo.cea.fr/
index.php/free-resources/. We also show that
our method is able to track rugby sevens players during a
full match, if they are observable at a minimal resolution,
with the annotation of only 6 few seconds length tracklets
per player.

1. Introduction
Player tracking in team sports consists in detecting and

identifying the players in video sequences. It is a necessary
task to automate the generation of individual statistics such
as ball possession, field position or involvement in play se-
quences. Player tracking in team sports such as rugby is

a.

b. c.

Figure 1. Tracking French players (blue jerseys) in our rugby sev-
ens dataset: a. France / Kenya extract, b. Argentina / France ex-
tract, c. France / Chile extract.

however a challenging task. Rugby is a sport of physical
contact where player occlusions are very frequent on cam-
era during rucks, tackles and scrums. The players can also
adopt a wide range of body postures from sprinting to lay-
ing on the ground in a foetal position. Players from the
same team share a very similar appearance since they wear
the same jerseys. Moreover, the number of pixels in which
the players are visible is often limited in the case of a TV
stream (sometimes with a height below 150 pixels). This
prevents the access to fine identification details.

Player tracking is a specific Multi-Object Tracking
(MOT) problem. MOT has been widely studied in the lit-
erature. Security applications have lead to the development
of many people tracking approaches. Offline methods use
all the frames of the input video sequence to optimize the
generation of tracks while online methods target real-time
applications by relying only on the current and previous
frames to generate the tracks. The most recent frameworks
achieve the best performance using deep neural network ar-

3461

https://kalisteo.cea.fr/index.php/free-resources/
https://kalisteo.cea.fr/index.php/free-resources/


chitectures. The availability of large public datasets and
challenges such as the MOT challenge [38] allows to fairly
train and compare the various approaches.

Some recent people tracking methods have also been
proposed for the specific context of team sports: soccer
[24, 54], basketball [34] and hockey [47]. These methods
often use private datasets specific to their studied sport to
get competitive results evaluated on short video clips ex-
tracted from a match. Game-specific annotations are re-
quired to train a player tracking and identification system
to adapt to the player identities and the context of a game.
The number of such annotations is an important factor that
will determine the success of using such a system in real
world scenario. Little focus was made in previous work
on the practicability of this annotation process. Conse-
quently, we propose an incremental learning approach to
identify players with very few game-specific annotations.
Our method is offline: it tracks and identifies players once
the game has been completed. It benefits from the closed
gallery re-identification (re-ID) hypothesis as, contrary to
video surveillance, the number of players is known and
limited. Since our method does not use any sport-specific
knowledge, it can be applied to any team sport.

Our annotation process consists in several steps. Bound-
ing boxes around all the persons in the frames are first ex-
tracted from the input video to generate non-ambiguous
tracklets. A tracklet is the uninterrupted sequence of the
bounding box images of a single player. Tracklets can have
a variable length since a player can enter or leave the cam-
era field of view or be occluded by an other player. At this
stage, the user provides few annotations per player to train
the tracklet re-ID network. Finally, the obtained tracklet
classification scores or appearance features feed an algo-
rithm that look for an optimal association between tracklets
and identities.

The contributions of this paper are the following:
We tackle the sparsity of training data in team sport con-

texts by leveraging generic detection and re-ID datasets.
The detection network is only learned on a public dataset.
The re-ID network is pretrained on a video surveillance
public dataset.

We propose a new architecture based on a Transformer
network [46] to classify and generate tracklet appearance
features. An incremental learning mechanism using few
user interactions trains this model and strengthen the re-ID
performances throughout the whole annotation process.

Some datasets have been proposed for basketball [8] and
soccer [11] player tracking with multiple static cameras.
However, although Deliege et al. [9] are extending their
SoccerNet dataset to tracking and re-ID, no dataset with a
moving point of view has been made available. We pub-
licly release our rugby sevens tracking dataset composed
of single-view videos that can pan, tilt or zoom to follow

the action. It is one of the most challenging team sport for
tracking on which no approach was tested.

We demonstrate the efficiency of our approach on our
dataset. On a full game, it can achieve up to 67.9% detec-
tion and identity classification recall when the players are
sufficiently visible with only 6 annotations per player.

The paper is organized as follows: Section 2 introduces
Related Work. Our method is described in Section 3.
Finally, Section 4 provides our results on our challeng-
ing rugby sevens dataset, compares them to state-of-the-art
methods and analyzes them in an ablative study.

2. Related Work

2.1. Multiple people tracking

Two categories of MOT algorithms can be distinguished.
Offline methods leverage the full sequence of images

to globally optimize the generated tracks with a graph
paradigm. The vertices are the detections on each frame and
the edges are the connections between detections that form
tracks. Thus, Zhang et al. [53] uses a minimum cost flow
iterative algorithm that models long term occlusions. The
approach described by Berclaz et al. [2] takes only an oc-
cupancy map of detection as input and applies a k-shortest
path algorithm on the flows. More recently, Brasó and Leal-
Taix [5] proposed a fully differentiable network that learns
both the appearance and geometrical feature extraction as
well as the detection association to generate tracks. Hor-
nakova et al. [23] use lifted edges to model long term in-
teractions and generate the optimized solution with a linear
programming relaxation.

Online methods only use the current and past frames to
associate new detections with tracks. They have raised more
interest in the literature as they fit real time scenario. Thus,
the SORT algorithm [4] uses a Faster R-CNN [40] person
detector. Then, a Kalman filter [25] predicts the future po-
sitions of each track. The Intersection-Over-Union (IOU)
between these predictions and the detected bounding boxes
are used as inputs of an Hungarian algorithm that matches
the detection with the tracks. ByteTrack [55] achieves state
of the art tracking performance with a two steps association
algorithm: the first step focuses on high confidence detec-
tions while the second step deals with the low confidence
ones. The Deep SORT algorithm [49] adds a re-ID network
to extract the visual appearance of each person. The input
data of the Hungarian algorithm becomes a combination of
a Manaholis distance as the spatial term and a cosine dis-
tance between the re-ID vectors as the appearance term.

Using distinct networks for detection and re-ID has the
advantage of separating the two tasks that may have oppo-
site objectives. The detection task aims at learning common
features to recognize humans while the re-ID task aims at
learning distinctive features of each individual. However
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this may cause scalability issues as each detected bounding
box must be independently processed by the re-ID network.
Single-shot methods were therefore proposed to generate
the bounding boxes coordinates and re-ID vectors with a
single network. Thus, Track-RCNN [48] uses a common
backbone with specific heads for each task. FairMOT [56]
achieves better tracking performance by focusing only on
the detection and re-ID tasks. Meinhard et al. [37] use a
Transformer architecture.

Applying traditional MOT to team sport players usually
leads to many ID switches. Each time a player leaves the
vision field or is occluded too much time, a new identity is
generated at reappearance. This prevents the reliable gener-
ation of individual statistics (see section 4.2.3).

2.2. Multiple team sport player tracking and re-
identification

2.2.1 Tracking

Some tracking methods have been proposed for the con-
text of team sports. For soccer, many approaches performed
tracking by first extracting the field regions [1,12,26,33,36,
50]. In the method of Liu et al. [33], an unsupervised clus-
tering algorithm classifies the players among four classes
(two teams, referee or outlier). The tracking is formulated
as a Markov chain Monte Carlo data association. D’Orazio
et al. [12] classify each player with an unsupervised clus-
tering algorithm. The tracking takes as input geometrical
and motion information. It is based on a set of logical rules
with a merge split strategy. In Xing et al. [50], the obser-
vation model of each player is composed of the color his-
togram in the cloth regions, the size and the motion. The
tracking is formulated as particle filtering. Theagarajan and
Bhanu [45] used a YOLOv2 [39] network detector and a
DeepSORT tracker [49] to identify the player controlling
the ball.

All the previous approaches do not build individual ap-
pearance signatures per player identities. If a player leaves
the camera field of view and re-enter later, he/she will be
considered as a new person. This prevents the generation of
individual statistics.

2.2.2 Re-identification

Jersey number recognition has been studied in the literature
to identify team sport players. Ye et al. [52] developed a
method based on Zernike moments features [27]. Gerke et
al. [15] were the first to use a convolutional neural network
to classify jersey numbers from bounding box images of
players. It was later combined to spatial constellation fea-
tures to identify soccer players [14]. To ease the recognition
of distorted jersey numbers, Li et al. [30] trained a branch
of their network to correct the jersey number deformation
before the classification. Liu and Bhanu [32] enabled jersey

number recognition only in the relevant zones by detecting
body keypoints. For hockey player identification, Chan et
al. [7] used a ResNet + LSTM network [19, 22] on tracklet
images to extract jersey numbers.

When a single view is available, as in our rugby sevens
dataset, jersey numbers are often not visible, partially visi-
ble or distorted. Besides, to our knowledge, there is no pub-
licly available training dataset for team sport jersey num-
ber recognition. A solution can therefore be to use appear-
ances to re-identify players. Teket and Yetik [44] proposed
a framework to identify the player responsible for a basket-
ball shot. Their re-ID network, based on MobileNetV2 [42],
is trained with a triplet loss formulation. The framework
described by Senocak et al. [43] combines part-based fea-
tures and multiscale global features to generate basketball
player signatures. Both approaches are based, as ours, on
the hypothesis of a closed gallery however they use a pri-
vate dataset to train their model which makes comparisons
impossible.

2.2.3 Tracking with re-identification

Several methods tracks players by using re-ID features
[24,34,47,51,54]. Lu et al. [34] use DPM [13] to detect bas-
ketball players. Local features and RGB color histograms
are extracted on players for the re-ID. Zhang et al. [54] pro-
posed a multi-camera tracker that locates basketball players
on a grid based on a K-shortest paths algorithm [2]. Players
are detected and segmented with a network based on Mask
R-CNN [17]. Re-ID features are computed thanks to the
team classification, jersey number recognition and a pose-
guided feature embedding. To track soccer players, Yang
et al. [51] iteratively reduced the location and identifica-
tion errors generated by the previous approach by creating a
bayesian model that is optimized to best fit input pixel level
segmentation and identification. Hurault et al. [24] use a
single network with a Faster R-CNN backbone [40] to de-
tect small soccer players and extract re-ID features. Kong et
al. [28] mix player appearance, posture and motion criteria
to match new detections with existing tracks. Vats et al. [47]
use a Faster R-CNN network [40] to detect hockey players
and a batch method for tracking [5]. Specific ResNet-18
networks [19] are used to identify the player teams and jer-
sey numbers.

Most of the approaches presented here [34, 47, 51, 54]
train their re-ID or jersey number recognition model with a
private dataset.

2.2.4 Minimizing the number of annotations

To our knowledge, few previous work focus on the mini-
mization of the game-specific training annotations for re-
ID. For example, Lu et al. [34] used a mere 200 labels
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Figure 2. Incremental learning of tracklet classification. The user
provides annotations to train the model to correctly classify the
tracklets to a player identity.

for every players in a team with their semi-supervised ap-
proach. Senocak et al. [43] use 2500 cropped images for
each player to train their re-ID network. Teket and Yetik
[44] use a training dataset that contains 30 to 1000 images
per player. In this paper, by asking the user to annotate
tracklets, we aim to demonstrate that it is possible to pro-
duce meaningful player re-ID results for a rugby sevens full
game with only 6 annotations per player.

3. Proposed method
3.1. Overview

We propose a new method to track the Np players of a
team in a video with a single moving view of a game. The
first step of our method generates Nt tracklets we qualify as
non-ambiguous because they contain a single identity. For
this purpose, bounding boxes around persons are detected
and associated across frames automatically. The user can
then provide few identity annotations to some of the gener-
ated tracklets thanks to a dedicated interface show on Figure
4. The tracklet re-ID network can then be trained with these
annotations. Once the model is trained, classification scores
and re-ID features are generated for all the tracklets. This
data feeds an algorithm that matches every tracklet to an
identity. Once the annotation interface has been updated,
the user can then decide to add more annotations to correct
the wrong classifications or to stop this incremental learning
mechanism if she/he is satisfied by the results. The whole
process is depicted on Figure 2.

3.2. Tracklet generation

Non-ambiguous tracklets are generated with a tracking
by detection paradigm. A Faster R-CNN network [40] with
a ResNet-50 backbone [19] trained on the COCO dataset
[31] detects all the persons in the video frames. This de-
tector is a well-known model used in several recent work
[24, 47]. To generate the tracklets, we use the simple and
classic approach described in [4]. Bounding boxes between
the previous and the current frames are associated by bi-

S
in

g
le

 i
m

a
g

e
R

e
-I

d
 n

e
tw

o
rk

Fu
lly

 c
o
n
n
e
ct

e
d

E
n
co

d
e
r

D
e
co

d
e
r

B
a
tc

h
 n

o
rm

Fu
lly

 c
o
n
n
e
ct

e
dTransformer

ID loss

Triplet
loss

Queries Qq

Tracklet
sampled images

Tt
1 Tt

2

Tt

StFt

Rimg

dt×d1 dt×d2 d2

Nq×d2

dt×H×W

d2

Nc

Figure 3. Architecture of the tracklet classification network. Rimg

extracts re-ID features T 1
t from the tracklet images. They are com-

bined by the transformer to generate a single tracklet re-ID vector
Ft. The model is trained by ID loss and triplet loss.

partite matching with an Hungarian algorithm [29]. This
matching is performed with a single IoU criteria since the
player appearances are later taken into account by our track-
let re-ID model. We also use a Kalman filter [25] to predict
the position of an existing track in the current frame.

Each generated tracklet will be later matched to a single
identity. We therefore want to avoid as much as possible
identity switches inside tracklets. When a tracklet partially
occludes an other one, bipartite matching may generate a
wrong association. Our algorithm therefore splits the track-
lets that intersect since they are considered as ambiguous.
If at the current frame, two tracklet bounding boxes have
an IoU above a threshold µ = 0.5 these tracklets are termi-
nated and new ones are created. We also filter out tracklets
that have a length inferior to lmin. We indeed consider that
they may also be ambiguous by containing several identi-
ties in their images. Besides, they do not provide enough
diverse data to the tracklet re-ID model.

3.3. Incremental learning tracklet classification

The aim of our system is to match tracklets to identities
with the fewest possible annotations. This process is done
through incremental learning since the user can choose to
add more training annotations while the quality of the gen-
erated tracklet association is not satisfying. We set the target
number of classes Nc = 1+Np. The class zero corresponds
to all persons we do not want to track (players from the op-
ponent team, referees, public). Our tracklet re-ID model
is mainly composed of a single image re-ID network Rimg

followed by a Transformer [46] as illustrated on Figure 3.
For Rimg , we chose the model described by Luo et al.

[35] for its simplicity. It uses a ResNet-50 backbone [19]
and has been trained on the generic Market1501 dataset
[57]. It takes as input single images at resolution H × W
and outputs player appearance features at dimension d1. We
regularly sample dt images from each tracklet and combine
their appearance features to obtain the tracklet features ten-
sor T 1

t ∈ Rdt×d1 . The feature dimension of T 1
t is then

reduced to d2 by a fully connected layer to obtain T 2
t . This

limits the dimension of the features inside the next nodes of
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our model in order to train it quickly.
The Transformer in our model then combines the re-ID

features of the sampled tracklet images T 2
t to generate a sin-

gle tracklet re-ID vector Ft. Its cross-attention nodes can
learn to focus on the most distinctive features across the
tracklet sampled frames. It takes as input of the encoder T 2

t

and as input of the decoder the Nq queries Qq . Similarly
to DETR [6], the queries Qq ∈ Rd2 are learned embed-
dings. Each query learns to specialize on some features of
the player identities. However, we do not use any input po-
sitional encoding because, since our initial variable length
tracklets are resampled to fixed length dt, there are no com-
mon temporal link between the features. We found that us-
ing 16 encoder layers, one decoder layer and 16 heads in the
multi-head attention models was the best set of parameters.
At the output of the decoder, a batch norm layer generates
the tracklet features Ft. For the classification, a fully con-
nected layer computes the classification scores St ∈ RNc .

Given a tracklet t, the Nqc queries among Nq that gives
the highest classification scores are selected for the back-
propagation. The optimized loss is defined by

L = LID(St, Ŝt) + αLTriplet(Dt,p, Dt,n),

where LID is the standard cross entropy loss, Ŝt are the tar-
get classification logits, LTriplet is the soft-margin triplet
loss [21], Dt,p and Dt,n are feature distances of positive
pairs and negative pairs and α is a binary constant. As de-
scribed by Luo et al. [35], the idea of combining a classifi-
cation loss and a triplet loss is to let the model learn more
discriminative features Ft ∈ Rd2 . For the triplet loss, we
use a batch hard strategy that finds the hardest positive and
negative samples.

Once the model has been trained, all tracklets are pro-
cessed by the model at inference stage to compute the track-
let classification scores St and features Ft.

3.4. Association algorithms

With generated scores St and the features Ft, we have
the needed data to match tracklets to player identities by
using an association algorithm. Two alternative methods
are investigated.

3.4.1 Iterative association

An iteration of the association algorithm consists in select-
ing the highest score in the matrix of all tracklet scores St.
The highest score represents a matching between the track-
let t and the identity i. The algorithm then checks that t
can be associated to i by verifying that the tracklets already
associated to i do not already appear in the frames where t
appears. If the association is possible, t is added to the list
of tracklets associated to i and a new iteration of the algo-
rithm is run. When the iterative association is used, we set

α = 0 during the incremental learning to only optimize the
classification scores St.

3.4.2 Matrix factorization association

The second algorithm is inspired from [20]. The authors
describe a multi-camera batch people tracking system that
assigns tracklets extracted from different views to identi-
ties. The input of the algorithm is a tracklet similarity ma-
trix S generated with appearance, motion and localization
criteria. A Restricted Non-negative Matrix Factorization
(RNMF) algorithm optimizes the identity assignment. The
association matrix A ∈ RNt×Np is computed thanks to the
iterative updating rule given in [10]. We applied the RNMF
algorithm to our single view case with S as the sum of an
appearance term Ψapp and a localization term Ψloc. The
similarity between two tracklets u and v is computed with:

S(u, v) = clip(Ψapp(Fu, Fv)) + clip(Ψloc(Bul, Bvf ))

where clip(x) = max(min(x; 1); 0).
Ψapp is defined by equation 1.

Ψapp(Fu,Fv) = 1− 1

ηapp
· d(Fu, Fv) (1)

where d(Fu, Fv) is the cosine distance between the feature
vectors of the two tracklets and ηapp is the cosine distance
threshold above which we consider that u and v belongs to
two distinct identities.

Ψloc is defined by the equation 2. tul is the end time of
the of the first tracklet and tvf is the start time of the sec-
ond tracklet. Bul and Bvf are the corresponding bounding
boxes.

Ψloc(Bul, Bvf ) ={
(1 + ηloc) · IoU(Bul, Bvf )− ηloc if tvf − tul ≤ τ

0, otherwise
(2)

where ηloc and τ are constant numbers. Ψloc aims at giving
a high similarity scores to two successive tracklets if Bul

and Bvf have a high IoU. When the RNMF association is
used, we set α = 1 during the incremental learning.

4. Experimental Results
4.1. Implementation details

Our system is implemented using the Pytorch frame-
work. The minimum number of frames of a tracklet lmin

is set to 10. All the tracklets are resampled to dt = 10.
Our re-ID network [35] takes as input images of resolution
H = 256 and W = 128. It outputs features at dimension
d1 = 2048. Our Transformer network takes input features
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Figure 4. Partial screen capture of our semi-interactive annotation
interface. Each cell corresponds to one tracklet. Each column
corresponds to one player identity, except the zero column that
contains all the persons we do not want to track.

at d2 = 128. The number of input queries Nq is set to 32.
They are randomly initialized. The number of queries se-
lected for backpropagation Nqc is set to 4. It is trained dur-
ing 120 epochs with an AdamW optimizer, a learning rate
of 9 × 10−5, a weight decay of 10−4 and a batch size of 4.
The transformer parameters are initialized with Xavier ini-
tialization [16]. For the linear layer, He initialization [18] is
used. ηapp and ηloc are experimentally set to 0.35 and 0.43.
The time threshold τ for the localization similarity is set to
0.5 seconds.

Our semi-interactive annotation interface, illustrated on
Figure 4, can run on a laptop GPU (Quadro M2000M). It
allows the annotator to generate training data for our model
by indicating to which player belongs a tracklet. The train-
ing time represents about 0.8 second per annotation when
Rimg is frozen and the iterative association is used.

4.2. Player tracking on rugby sevens samples

4.2.1 Dataset

Rugby sevens is a variant of rugby where two teams of
seven players play a game composed of two seven minute
halves. It is an Olympic sport since 2016. We annotated a
total of 58193 person bounding boxes in the images of three
rugby sevens samples of 40 seconds to use them as ground
truth for players of both teams, the referees and some peo-
ple in the public. These samples come from the Argentina
/ France, France / Chile and France / Kenya games of the
2021 Dubai tournament. They are encoded at a resolution
of 1920 by 1080 pixels and a frame rate of 50 frames per
seconds. The aim of our experiments is to track players
from one of the two teams taking part to the game.

Tracklets were extracted with the method detailed in sec-
tion 3.2. About 30% of the tracklets have a number of
frames superior to lmin = 10. This represent an average

of 346 tracklets per video of 40 seconds. These tracklets
have an average length of one second and correspond to
about 89% of the detected bounding boxes. We publicly re-
lease the tracking ground truth and the generated tracklets at
https://kalisteo.cea.fr/index.php/free-
resources/.

4.2.2 Quantitative results and ablation studies

The annotator selects a number of tracklet examples for
each player appearing in the sequence and also for the class
0 (opponent team, referees, public). At each round of an-
notations, a new user annotation for each player and two
user annotations for the class 0 are added on average. As
the training of our system is quick, the user can observe the
consequences of the added annotations on the classification
results and correct the big mistakes for the next round of
annotations (for example false positives with high scores).

Once the user annotations have been added, we train
the network with the same user annotations and 5 differ-
ent seeds. We then compute standard MOT metrics [41]:
IDF1, MOTA and ID switches. Since our main objective
is to correctly identify each player, the IDF1 metric is the
most important to observe. MOTA is however key to report
the completeness of the tracking bounding boxes for each
player. Figure 5 shows the results of our method obtained
with four variants. Results are analyzed according to two
conditions: Rimg frozen or trained and with the iterative as-
sociation algorithm or with the RNMF algorithm. As small
tracklets are filtered, our method cannot achieve 100% per-
formance. In order to estimate the upper performance limit,
we associate each tracklet to the ground truth. However,
since our generated tracklets are not perfect, their associ-
ation to the ground truth may also be ambiguous, which
explains the not null ID switch limits.

Number of annotations. For the three video extracts,
the more user annotations are provided, the best the MOT
metrics are. However, we can observe that above the third
round of annotations (about 3.5 annotations per player), the
metrics only slightly improve and sometimes slightly de-
teriorate. This performance threshold can be explained by
the difficult tracking conditions of some instants: the play-
ers are sometimes highly occluded or very small, there are
very few details to identify them and the detection is dif-
ficult on complex postures. Some errors are illustrated on
Figure 6. From the first to the third round of annotations,
with Rimg frozen and the iterative association algorithm,
IDF1 and MOTA metrics increases on average respectively
by 11 and 9 p.p. (percentage points) while the ID switches
is divided by 5.

Association algorithm choice. The global RNMF opti-
mization matches an identity to each tracklet but sometimes
generates conflicts and wrong associations. This leads to
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Figure 5. MOT metrics for the tracking of rugby sevens players in 3 videos. The x-axis corresponds to the total number of annotations
divided by the number of tracked players. The variation intervals for the 5 seeds and average values are represented. The tested variants are:
Rimg frozen with the iterative association (—), Rimg frozen with the RNMF association (—), Rimg trained with the iterative association
(—), Rimg trained with the RNMF association (—) and the ground truth association (- - -).

a. occlusions b. small sizes c. uncommon postures

Figure 6. Illustration of complex situations that lead to missing
detections and identification of players (here the players in blue).

better MOTA metrics as more detections are kept than with
the simple iterative algorithm. For the third round of anno-
tations, the MOTA metric is increased by 12 p.p. on aver-
age when Rimg is frozen. However, the IDF1 metric is de-
creased by 1 p.p. and the number of ID switches increases
by 25. The iterative association should therefore be pref-
ered to minimize wrong identity associations. The RNMF
algorithm however leads to a more complete tracking.

Training strategy. Our experiments demonstrate that,
even if Rimg is not fine-tuned with data from the target
domain (Rimg frozen), it is still able, thanks to the Trans-
former network, to generate relevant features to re-identify
the players. For the third round of annotations, the IDF1 and
MOTA metrics are respectively on average 75% and 66%
with the iterative association algorithm. The best results are
however obtained when weights of Rimg are also updated

during training. For the third round of annotations, with the
iterative association algorithm, the IDF1 and MOTA metrics
are increased respectively by 3 and 2 p.p. The number of ID
switches is reduced on average by 3. When the weights of
Rimg are updated, the training time for the 120 epochs sig-
nificantly increases (from 28 seconds to 25 minutes for 32
annotations) and the system is no longer interactive. Indeed,
the number of trainable parameters raises from about 4 to 25
millions. So, the optimal usage is to create the user anno-
tations with Rimg frozen and once the user is satisfied with
the results, restart the training with the same annotations
and Rimg updated to obtain even better results.

4.2.3 Comparison with state of the art multiple person
tracking methods

Generic tracking algorithms track all the persons appearing
in the video frames. This would include in our case, players
of both teams, the referees and the public. Our approach
however track players from a single team. This makes the
comparison not straightforward. Some approaches have
been proposed for the tracking of team sport players with
single moving views [24, 34] but the comparison is still not
easy since their evaluation datasets are private. We there-
fore decided to run generic tracking algorithms on our rugby
sevens extracts. In order to make a fair comparison with
our approach, we manually selected the tracks generated
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Video Method IDF1 IDs MOTA

ByteTrack [55] 48.8 26 49.4
Argentina TWBW [3] 24.4 64 40.8
/ France MOT neur. solv. [5] 34.0 54 33.9

Ours 76.8 17 64.6
ByteTrack [55] 54.9 23 64.4

France TWBW [3] 22.7 74 28.4
/ Chile MOT neur. solv. [5] 29.6 53 40.2

Ours 84.3 21 75.4
ByteTrack [55] 60.3 14 64.0

France TWBW [3] 30.6 44 45.0
/ Kenya MOT neur. solv. [5] 48.0 26 61.1

Ours 82.2 7 70.1

Table 1. MOT metrics for the tracking of the rugby sevens French
team players.

by these algorithms that are associated, even partially, with
players from the French team. We tested two online meth-
ods, TWBW tracker [3] and ByteTrack [55], with their de-
tections. ByteTrack achieves a very high performance on
the MOT 2017 challenge [38]. We also tested an offline
method, the MOT neural solver [5], with our detections.
The results are presented in Table 1. With the limitations
mentioned above, the metrics shows significantly lower per-
formances for generic trackers. This is probably due to dif-
ficulties to handle correctly the occlusions and the players
entering or leaving the view field. It therefore justifies our
usage of a closed identity gallery with few annotations to
learn the player appearances. Compared to ByteTrack [55],
the IDF1 metric is increased on average by 26 p.p.

4.3. Evaluation of player identification on a full
rugby sevens game

Our system aims to track and identify players on a full
game. Yet, a human-annotated tracking ground truth for a
full game would be costly to generate. We therefore de-
cided to evaluate the detection and re-ID performance of
our approach on 32 frames regularly sampled in the France
/ Kenya game and focus on the French players. With play-
ers changes, 12 French players in total participated to this
game. The ground truth represents 128 players bounding
boxes. For each experiment, we trained the model with 5
different seeds using the same 70 annotations (about 6 per
player). Results are shown in Table 2. The best total de-
tection and identification performance (53.6%) is obtained
when the Rimg is trained and the RNMF association algo-
rithm is used. A significant number of French players are
not detected or correctly identified. This happens when the
players on the back are only visible on few pixels or when
some players occlude others. Nevertheless, the total recall
goes up to 67.9% for the bounding boxes with an area su-
perior to the average area of all the ground truth bound-
ing boxes (25214 pixels). This demonstrates that when the

Rimg Assoc. Det. Team class. Id. class. Total
recall recall recall recall

All detected bounding boxes
frozen iter.

75.8

58.4±2.1 73.8±4.5 32.7±2.4
frozen RNMF 74.6±2.5 60.9±6.5 34.5±4.6
trained iter. 75.9±3.9 84.0±3.4 48.3±3.0
trained RNMF 89.1±2.0 79.4±2.6 53.6±1.8
Big detected bounding boxes (area superior to 25214 pixels)
frozen iter.

89.7

60.8±2.2 77.3±6.8 42.1±3.1
frozen RNMF 72.3±2.2 66.4±5.0 43.1±4.4
trained iter. 76.2±3.5 87.4±5.2 59.7±4.2
trained RNMF 90.8±0.9 83.5±3.4 67.9±2.6

Table 2. French player detection and classification results on 32
frames of the France / Kenya game for 5 different seeds. Aver-
age values and standard deviations are provided. The detection
recall corresponds to the number of players detected. The team
classification recall corresponds to the number of players classi-
fied as French among the detected players. The identity classifica-
tion recall corresponds to the number of correctly identified play-
ers among the players classified as French. The total recall is the
product of all the previous columns and represents the complete
performance of our system.

players are sufficiently visible, our system is able to track
them during a full match with few annotations.

5. Conclusion
In this paper, we proposed a new method to track team

sport players with few user annotations. We demonstrated
the performance of our approach on a rugby sevens dataset
that we publicly release. We also showed that our method
can track rugby sevens players during a full match with the
annotation of only 6 few seconds length tracklets per player
if they are observable with a minimal resolution. To our
knowledge, no previous work on tracking of rugby players
has been published. As future work, we would like to im-
prove the detection of small and partially occluded players.
Since our approach can be applied to any team sport, we
would like to test it on other sports such as basketball. We
also believe that the user annotation step would be sped up if
an active learning process could smartly suggests tracklets
to annotate.
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