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Figure 1. Overview of our dataset and tracking results. We provide a dataset of (a) calibrated 8K fish-eye (wide-view) camera, (b) 4K
bird-view drone camera, and (c) global navigation satellite system (GNSS) data .

Abstract

Tracking devices that can track both players and balls
are critical to the performance of sports teams. Recently,
significant effort has been focused on building larger broad-
cast sports video datasets. However, broadcast videos do
not show the entire pitch and only provides partial infor-
mation about the game. On the other hand, other cam-

* Both authors contributed equally to this research.

era perspectives can capture the whole field in a single
frame, such as fish-eye and bird-eye view (drone) cameras.
Unfortunately, there has not been a dataset where such
data has been publicly shared until now. This paper pro-
poses SoccerTrack, a dataset set consisting of GNSS and
bounding box tracking data annotated on video captured
with a 8K-resolution fish-eye camera and a 4K-resolution
drone camera. In addition to a benchmark tracking algo-
rithm, we include code for camera calibration and other
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preprocessing. Finally, we evaluate the tracking accu-
racy among a GNSS, fish-eye camera and drone camera
data. SoccerTrack is expected to provide a more robust
foundation for designing MOT algorithms that are less re-
liant on visual cues and more reliant on motion analy-
sis. The dataset and related project code is available at
https://github.com/AtomScott/SoccerTrack 12.

1. Introduction

In sports, fine-grained tracking data is utilized to build
advanced metrics and provide teams an analytical edge.
Therefore tracking systems are becoming essential for
strengthening sports clubs. Recently, significant efforts
have been made to build larger broadcast sports video
datasets (e.g., [9, 14, 15]) and algorithms that utilize a large
amount of data. For example, action spotting [5,14,15] and
video summarization datasets [36, 37] have been released
and studied for commercial usage in large markets such as
the Big Five European Soccer Leagues (England Premier
League, La Liga, Ligue 1, Bundesliga and Serie A) [41].
However, broadcast videos do not show the entire pitch and
only provides partial information about the game. Also, it is
mostly only available to wealthy professional sports teams.
Therefore, teams with fewer resources find it difficult to
benefit from.

Modern measurement sensors, such as the global naviga-
tion satellite system (GNSS) and local positioning systems
(LPS), have enabled us to obtain players’ location data on a
soccer field. However, these sensors have different advan-
tages and disadvantages (see Section 2) and are not always
available due to the environment or budgets. Pioneering
work using such data provided player location data by us-
ing video cameras [11] or using LPS, and 2 K panorama
videos [32]. GNSS, including global positioning system
(GPS), has also been intensively used mainly for condition-
ing [16] athletes. In other work, various indicators (e.g.,
moving distance) were compared with those of LPS [2] and
camera-based tracking systems [33].

Camera perspectives that capture the whole field in a
single frame, such as fish-eye and bird-eye view (drone)
cameras, are viable options for estimating player and ball
tracking data. Although high-resolution fish-eye cameras
and drones may be expensive now, with the rapid growth
of technology, we can expect lower-cost alternatives in the
future. Several researchers [12, 18, 22] have utilized drone
footage to aid in tracking from a bird’s eye view, but the
drone camera data has not been made available. Unfortu-
nately, there has never been a publicly accessible dataset
of annotated fish-eye and drone videos. Additionaly, the

1Project Website: https://atomscott.github.io/SoccerTrack
2Code Documentation: https://soccertrack.readthedocs.io/en/latest/

necessary preprocessing steps such as camera calibration
and field registration and tracking algorithms required for
camera-based tracking (see Fig. 5) using such video data is
also rarely made public.

In this paper, we introduce SoccerTrack, a dataset set
consisting of video captured with an 8K-resolution fish-
eye camera and a 4K-resolution drone camera. Each video
has bounding boxes annotated and is equipped with GNSS
tracking data. We summarize the novelty of this paper in
Table 1. Code for the core algorithms will be released,
which include calibration, field registration, and multi-
object tracking (MOT), as illustrated in Fig. 2. Further-
more, we will publicly share their benchmark algorithms.

The contributions of this paper are as follows.

• We build a new soccer tracking dataset called Soccer-
Track, including data from fish-eye and drone cameras
annotated with bounding boxes and pitch coordinates
as described in Table 1.

• We propose and will share algorithms for camera cal-
ibration, tracking (players and ball) and other prepro-
cessing as illustrated in Fig. 2.

• We perform comprehensive evaluations of the tracking
accuracy between the GNSS, fish-eye and drone cam-
eras data.

The remainder of this paper is organized as follows.
First, in Section 2, We provide an overview of the related
work. Next, we describe the SoccerTrack dataset in Section
3. In Section 4, we describe the tracking algorithms includ-
ing calibration and other preprocessing. Then, we present
the experimental results in Section 5, and conclude this pa-
per in Section 6.

2. Related work
2.1. Multi-object tracking dataset

MOT is a well-established task in computer vision. The
main objective of MOT is to track the trajectories of a col-
lection of objects, such as pedestrians, while recognizing
their identities as they move through a sequence of video
frames. Many MOT datasets focused on various scenarios
have been proposed. MOTChallenge [10,25,29] is the most
widely used benchmark for monitoring multiple objects. It
includes, among other things, some of the largest datasets
for pedestrian tracking that are currently available to the
public.

In the sports domain, pioneering work in soccer track-
ing datasets provide player location data with video cam-
eras [11], and 2 K panorama videos with LPS data [32]. For
other purposes, large broadcast videos (e.g., [9,14,20]) and
event datasets (e.g., [31]) have been shared. Virtual envi-
ronments such as Google research football (GFootball) [23]
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Dataset Camera Wide-view Top-view GNSS/LPS Location data Bounding box Tracking code
D’Orazio et al. [11] 3 7 7 7 3 7 7
Pettersen et al. [32] 3 Panorama 7 LPS 3 7 7
Pappalardo et al. [31] 7 7 7 7 3 7 7
GFootball [23] 3 — — — 3 7 7
SoccerNet v1 [14] 3 7 7 7 7 7 7
SoccerNet v2 [9] 3 7 7 7 3 3 3

SoccerTrack (ours) 3 Fish-eye Drone GNSS 3 3 3

Table 1. Overview of various representative soccer datasets. Because GFootball [23] is a virtual environment, the camera types cannot be
defined. In SoccerNet v2 [9], location data and tracking codes were available at the Tracking Challenge (a competition).

Figure 2. The process for building a dataset. (a) Using a 4K drone video data, we perform frame alignment with iterative closest point
(ICP) fitting, background subtraction and blob detection. (b) Using a 8K fish-eye video data, we perform video calibration, and player and
ball detection using YOLOv5 [21]. Thereafter, for both data, we perform player alignment with GNSS data solving a linear assignment
problem (LAP) and obtain tracking data from bird-eye and wide-view.

can also be used to generate synthetic camera and location
data. In other team sports, basketball [6, 27] and volley-
ball [19] video datasets have been shared publicly.

These measurement systems have different pros and
cons. GNSS and LPS have advantages in that they do not re-
quire tracking algorithms, but they require sensors to be at-
tached and have basically worse spatio-temporal resolution
than camera systems. The recent development of GNSS,
which comprises multiple tracking satellite systems such as
the GPS, GLONASS, Galileo and BeiDou, has improved
the availability and signal strength of surrounding satellites
compared with traditional GPS devices [8]. A previous
study investigated the GNSS accuracy of velocity and accel-
eration using motion capture data [8] and that of the running
distance [4]; however, the position accuracy was unknown
and the data were not shared. GNSS/GPS is easier to use but
has a worse spatio-temporal resolution than LPS [17, 35].
Fish-eye and panorama cameras can capture the full pitch
using one and multiple cameras, respectively. The fish-eye

video saves human labor costs; however, the image is some-
times distorted and requires calibration. Drone cameras can
provide more accurate 2D coordinates without occlusion if
they can capture the image from bird-view; however, they
require another source of information to identify the play-
ers. In this paper, we provide all three sources (fish-eye,
drone and GNSS) of data and annotated bounding boxes for
fish-eye and drone videos.　
2.2. Multi-object tracking algorithms

The typical approach to MOT algorithms follows the
tracking-by-detection paradigm, which attempts to solve
the problem in two steps. (1) The detection model detects
items of interest via bounding boxes in each frame, then (2)
the association model extracts visual re-identification (re-
ID) features corresponding to each bounding box, ties the
detection to an existing track, or generates a new track based
on specified metrics set on features. Such approaches bene-
fit from increasingly powerful image recognition backbones
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to extract important visual features.

Scalability is a challenge for tracking-by-detections
MOT algorithms. When there are a high number of ob-
jects in the environment, the inference speed decreases be-
cause the two models do not integrate features and must
apply the re-ID models for each bounding box individu-
ally in the video. Recent advances in multi-object tracking
have centered on the joint-detection-and-tracking paradigm,
in which object localization and association are performed
concurrently [28, 30, 43, 49, 52, 53].

Most appearance-based tracking paradigms have a fa-
tal flaw in instances when objects have highly similar ap-
pearances, for as in team sports where members of the
same team wear identical gear. For example, DeepSORT
[50] attempts to combine distance measures based on mo-
tion states with deep appearance descriptors, however when
tuned for performance, the resulting parameters depend
significantly on appearance over motion. The authors of
DanceTrack [42] advocate for a more comprehensive and
intelligent tracking system that incorporates additional in-
puts into modeling, such as object motion patterns and tem-
poral dynamics. DanceTrack is a large-scale dataset that
emphasizes tracking targets with uniform appearance and
diverse motion. Although it is a significant effort to counter
the recent appearance-focused paradigm, an algorithm that
highly outperforms previous methods using motion analysis
was not presented. The proposed dataset also lacks depth
information, which is crucial for fine-grained motion.

We provide the first transparent baseline for player posi-
tion estimation with interchangeable modules, that relies on
modern techniques and freely available data, while evaluat-
ing each module.

2.3. Application of tracking data

The positional coordinates of players on the soccer pitch
are fundamental information in soccer analysis and tactical
understanding. Using Tracking data, one can analyze vari-
ous aspects of soccer. For example, event detection, such
as automatic offside detection [46], and movement eval-
uations, such as shots and passes, (e.g., [7, 38]), off-ball
(e.g., [40]) and defense (e.g., [45]) can be realized. Tracking
data will enable the simulation of future motions via trajec-
tory prediction [13,24,44]. It also enables applications such
as trajectory similarity and retrieval [47, 48]. GNSS/GPS
has been intensively used mainly for conditioning [16] and
compared with LPS [2] and camera-based tracking systems
[33]. However, only performance indices such as distance
and velocity were compared in these studies, and the data
and tracking accuracy for both sources have not been eval-
uated and publicly shared.

Figure 3. GNSS devices used in the measurement experiment.
Athletes inserted the device inside a special vest to prevent the
device from falling.

3. SoccerTrack dataset
In this section, we describe the MOT tracking dataset,

SoccerTrack. We explain the dataset construction process,
dataset structure and evaluation metrics, in that order.

3.1. Dataset Construction

All data in SoccerTrack was obtained from 11-vs-11 soc-
cer games between college-aged athletes. Measurements
were conducted after we received the approval of Tsukuba
university’s ethics committee, and all participants provided
signed informed permission. After recording several soccer
matches, we annotated the videos semi-automatically based
on the GNSS coordinates of each player.

We illustrate the full dataset construction procedure in
the following four steps:

(i) Capture fish-eye and bird-eye view (drone) video and
perform camera calibration;

(ii) Transform GNSS data collected from wearable de-
vices into the pitch coordinates;

(iii) Synchronize the time between the drone video and
GNSS data, and assign IDs to annotated bounding
boxes.

(iv) Synchronize the time between the drone video and
fish-eye video, and assign IDs to annotated bounding
boxes.

An overview of the SoccerTrack dataset is provided in
Table 2. Next, we describe the details of each step listed
above.

3.1.1 Video Collection

We used a fish-eye lense (Z CAM E2-F8, China) to enlarge
the camera’s field of view and adjusted the position of the
camera beforehand to capture the entire soccer field. The
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Wide-view camera Top-view camera GNSS
Device Z CAM E2-F8 DJI Mavic 3 STATSPORTS APEX 10 Hz

Resolution
8 K

(7,680 × 4,320 pixels)
4 K

(3,840 × 2,160 pixels)
Abs. err. in 20-m run:

0.22 ± 0.20 m [4]
FPS 30 30 10
Player tracking 3 3 3
Ball tracking 3 3 7
Bounding box 3 3 —
Location data 3 3 3
Player ID 3 3 3

Table 2. Overview of SoccerTrack dataset.

Figure 4. An example of detected blobs. Using a foreground mask
to detect moving objects in the frame enables the detection of ob-
jects from the drone viewpoint video without learning.

resolution was 8 K (7,680 × 4,320 pixels), the frame rate
was 30 fps, and the raw video data was approximately 1
TB. To remove lens distortion from the fish-eye video, we
recorded a checkerboard calibration pattern from various
angles to calculate the camera’s intrinsic and extrinsic pa-
rameters. We implemented a k-means clustering algorithm
to select a diverse set of checkerboard images automatically.
As a result, 200-300 frames were selected and used as input
to OpenCVs fish-eye calibration method.

To record from a bird’s-eye perspective, we used a DJI
Mavic drone (Da-Jiang Innovations Science and Technol-
ogy Co., Ltd., China). The resolution was 4 K (3,840 ×
2,160 pixels), frame rate was 30 fps, and raw video data
was approximately 250 GB.　

3.1.2 GNSS Data Collection

GNSS (STATSports Apex 10 Hz, Northern Ireland) data
were collected outdoors on the soccer field. The STAT-
Sports Apex unit is an athlete-tracking system released in
August 2017, which is widely used in professional clubs

(e.g., in the Premier League and Serie A). During measure-
ment, the players wore the device in a custom-made sports
vest. The GNSS simultaneously acquires and tracks mul-
tiple satellite systems (e.g., GPS, GLONASS, Galileo, and
BeiDou), thus providing more accurate positional informa-
tion than typical GPS devices.

GNSS data preprocessing was performed as follows.
First, we obtained each player’s latitude and longitude co-
ordinates from the GNSS devices. Next, this data was then
projected onto pitch coordinates via a homography trans-
form derived by manually annotating keypoints in the ge-
ographic coordinate system. As a result, pitch coordinates
are normalized to be within a range between 0-68 × 0-105
m. Finally, after visually inspecting the GNSS coordinates
to confirm no apparent outliers, we project the GNSS co-
ordinates onto the drone camera space to prepare for semi-
automatic annotation.

A previous study [4] evaluated the accuracy of the same
GNSS devices. They used three courses, a 400-m athletic
track, a custom team-sports oriented circuit of 128.5-m, and
a 20-m sprint, for evaluation. Results show that the accumu-
lated absolute errors from the running distance were 4.19 ±
3.48 m, 2.85 ± 1.4 m, and 0.22 ± 0.20 m, respectively.
For evaluation of GNSS accuracy, we followed [2] using
two selected course tests; (i) linear course and (ii) circular
course. The trials were performed at two speeds: walking
(< 6 km/h) and running (> 16 km/h). A bias-corrected root
mean square error (RMSE) score was calculated using the
euclidean distance between the course and the GNSS mea-
surement. The GNSS coordinates were are projected to a
pitch plane (as explained in Section 3.1.3) so that RMSE
can be interpreted in meters. We performed a grid search to
choose optimal offsets to use as bias. The results are shown
in Table 3. We found similar tendency to the result of a GPS
study [2], which showed the accuracy was slightly more af-
fected by the movement speed.
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Course Speed Bias Ave. RMSE∗ (std.)

Linear Walk
-1.970
-1.162 0.514 (0.183)

Linear Run
-1.263
-1.060 1.163 (0.157)

Circular Walk
-1.465
-1.667 0.436 (0.456)

Circular Run
-1.060
-1.354 0.769 (0.140)

Table 3. Bias and average RMSE of performed trials. Two bias
values are about x and y coordinates. Average RMSE is calculated
after bias correction.

3.1.3 Drone Video Annotation

This section details our approach to efficiently annotating
bounding boxes in the drone video. Manual annotation is a
laborious task that takes around between five and six hours
to annotate one minute of footage. We quickly concluded
that annotating all footage would be impracticable. Instead,
we utilized well-established computer vision techniques to
determine reasonable estimates to shorten the process. Fig.
2 (a) is a pipeline showing the semi-automatic annotation
process on a drone.

First, we used maximum contour detection after line ex-
traction on binarised frames. We then adjusted the line
length settings to ensure that the maximum contour al-
ways resembled the outer lines of the soccer field. To fill
holes in the pitch lines, preprocessing operations such as
Gaussian blurring and morphological closing. The Dou-
glas–Peucker algorithm [34] was applied to simplify the re-
sulting maximum contour into a rectangle which was then
used as Region of Interest (ROI). Next, we detect blobs
in foreground masks generated with the K-Nearest Neigh-
bor (KNN) background subtraction algorithm as shown in
Fig. 2 [56]. Blobs are found using the Determinant of the
Hessian (DoH) method [3]. Both algorithms were chosen
above others after a reasonable balance between speed and
accuracy was demonstrated. After removing blobs outside
the ROI, the remaining blobs were projected onto the pitch
plane in a manner similar to that described in Section 3.1.2.
These calibration and preprocessing are used in our tracking
system.

Once the blobs and GNSS coordinates are on an identi-
cal coordinate system, we formulate a Linear Assignment
Problem to assign a GNSS device ID to each blob. Prior to
assignment, iterative closest point (ICP) [1] was employed
to minimise any discrepancy introduced by preprocessing,
GNSS sensor error, and other sources of inaccuracy.Finally,
we import the assignment data into the Computer Vision
Annotation Tool (CVAT) [39] to manually inspect and cor-

rect false annotations. CVAT provides a simple mechanism
that linearly interpolates bounding boxes between missing
annotations. By combining linear interpolation and estima-
tions based on GNSS-ID assign blobs, we were able to sig-
nificantly speedup the annotation process. After annotating
30 minutes worth of data with this method, we replaced the
DoH blob detector with a fine-tuned YOLOv5 [21] object
detector pre-trained on the COCO object detection dataset
[26] as it was more accurate at detecting the players. We
used a similar procedure to train an object detector for ball
detection, except that for the first 30 minutes, we manually
annotated all frames without using any image processing
algorithms.

3.1.4 Fish-eye Video Annotation

To perform annotation on fish-eye videos, we manually an-
notated keypoints of a single frame and computed a homog-
raphy matrix to transform coordinates from fish-eye frames
to pitch coordinates. Since the fish-eye camera is fixed, we
did only need a single homography matrix. Next, we per-
form object detection using a pre-trained YOLOv5 object
detector. Unlike the drone videos, YOLOv5 was able to de-
tect the most of the players without fine-tuning. We then
estimated the ID of each bounding box in each frame by
performing ICP between detections in fish-eye videos and
annotated drone videos. Since the YOLOv5 object detector
was not able to detect every player perfectly, a number of
estimated IDS were incorrect. These incorrect assignments
were fixed manually in CVAT.

3.2. Dataset Structure

Here we outline the structural information of the Soc-
cerTrack dataset. At the time of writing, this dataset con-
sists of 20 clips of 30-second video footage (.mp4) cap-
tured by fisheye and drone cameras. Each clip is accompa-
nied by an annotation file in simple comma-separated value
(CSV) format. Each line of the csv file represents one ob-
ject instance and contains the values; frame, id, bb_left,
bb_top, bb_width, bb_height. We also provide correspond-
ing GNSS data in CSV format. Manually annotated pitch
key-point coordinates are stored in JSON files. The first 15
video clips (7.5 minutes) will be utilized for training and
tuning model parameters, while the last 5 clips (2.5 min-
utes) will be used as a testset.

3.3. Evaluation Metrics

Multi-Object Tracking (MOT) has a reputation for being
tough to evaluate correctly. While metrics such as the com-
monly used MOTA tend to overemphasize accurate detec-
tion, IDF1 and AssA will, on the other hand, overemphasize
association quality. Therefore, Higher-Order Tracking Ac-
curacy (HOTA) has been adopted as the primary metric in
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several recent benchmarks since its proposal (BDD100K,
KITTI, DanceTrack). HOTA aims to balance detection
and association by explicitly combining a DetA and AssA.
However, we were not able to find simple implementations
of the HOTA metric. In contrast to the standard MOT set-
ting, where the number of tracking targets is unknown, we
know that there is one ball and 22 players in soccer. Al-
though this characteristic may open opportunities to custom
metrics particular to n-known object tracking problems, we
chose to abide by current MOT practices. Thus, we use
MOTA as the key performance indicator for SoccerTrack.
In addition, we also provide statistics regarding False Posi-
tives (FP), and ID switches (IDs).

3.4. Limitation

Here we discuss some of the known limitations of the
SoccerTrack dataset. Although we significantly improve
over past broadcast view datasets by providing a fish-eye
and birds-eye view in addition to bounding box labels and
GNSS coordinates, we acknowledge the following short-
comings. To begin, we were unable to provide a diversity
of environmental conditions. For instance, all games were
played on a single field, and there are only two distinct sets
of soccer jerseys. Furthermore, since the weather was sunny
primarily, trackers trained on this dataset may not perform
well in the rain. Additionally, we could not conduct exper-
iments with fine-grained data such as human pose or seg-
mentation masks, which are sure to be of interest to sports
science experts. Most of all, we could only provide a frac-
tion annotated data in this release due to time and resource
constraints. Out of approximately 120 minutes of recorded
video data, we annotated 10 minutes of both drone and fish-
eye video. We continue to work on the remaining data and
plan to release a fully annotated dataset by the end of the
current year. To look on the bright side, our efforts were re-
ceived with warm support and we are given future chances
to measure more games at several venues. We are optimistic
about providing more comprehensive datasets in the future.

4. SoccerTrack Algorithm

We provide tracking algorithms including camera cali-
bration and other preprocessing procedures for the Soccer-
Track dataset. We use camera calibration and other prepro-
cessing procedures for drone and fish-eye camera data as
described in Sections 3.1.3 and 3.1.4, respectively. As our
tracking algorithm, we extend [46]’s tracker, which is essen-
tially a modified version of DeepSORT. DeepSORT uses a
combination of motion and appearance metrics to assign de-
tections to tracklets. The following subsections outline the
procedures involved in metric calculation and assignment.

4.1. Motion Information

Our motion model follows the modifications in [46],
where the authors use coordinates projected onto the pitch
plane as the observation input of the motion model. In con-
trast, DeepSORT directly uses the bounding box coordi-
nates from the object detector. In addition to being more in-
tuitive, pitch coordinates are the de facto representation for
many sophisticated motion models [24, 51]. Therefore, al-
though we adopt a basic Kalman Filter model, we anticipate
future work to improve on it in order to improve tracking ac-
curacy and efficiency. Further, we introduce simple spatial
constraints to eliminate tracklets that are out-of-bounds.

4.2. Visual Information

We use the omni-scale network (OSNet) [55] archi-
tecture to extract deep appearance features from detected
bounding boxes. An OSNet is pre-trained on a large-scale
person re-identification dataset [54] for use in fish-eye view
camera. On the other hand, we train an OSNet from scratch
for use in drone video. This is due to the fact that top-view
images are significantly different from images in the large-
scale person re-identification dataset. Our training approach
is not covered in depth in this work, but we will make a pre-
trained model available in our GitHub repository.

4.3. Assignment

An effective method of solving the association problem
between existing tracks and newly acquired detections in
the detect-then-track paradigm is to construct an assignment
problem that can be solved using the Hungarian algorithm.
DeepSORT combines a motion descriptor and a deep ap-
pearance descriptor into a single cost function with the goal
of minimizing the total assignment cost. In similar fashion,
we combine the two metrics explained in Section 4.1 and
Section 4.2 The influence of each metric on the combined
association cost can be controlled through hyperparameter
λ. We select the best λ by performing grid search over the
training set.

5. Experiments
In this section, we perform two experiments: evalua-

tions of location data accuracy and tracking algorithm per-
formance. First, we evaluate location accuracy of the Fish-
eye video and GNSS data compared with the drone video,
which has less distortion or bias because of the top-view
video. Second, we assess the performance of our tracker
on both fish-eye and drone videos. The primary evaluation
metric used is MOTA, also we mention a few other com-
plimentary metrics, as explained in Section 3.3. In the
most common use cases of MOTA, the link between ground
truth objects and tracker output is established by intersec-
tion over union (IoU) with a threshold of 0.5 as similarity
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Figure 5. The pipeline of the tracking system. By building an algorithm inspired by DeepSORT, both visual and motion information
are taken into account. Field Registration is performed for drone video (left), and calibration is performed for 8K fish-eye video as
preprocessing of video (right).

criteria. However, since the drone bounding boxes present
in the drone video are significantly smaller than those in the
usual MOT setting, we lower this threshold to 0.2. The last
1000 frames were used to test each camera view, while the
rest of the frames were used to train and select hyperparam-
eters.

5.1. Location data accuracy

First, we evaluated the keypoint accuracies in the drone,
fish-eye, and GNSS. We used 65 key points (for details, see
shared code) and computed L2 errors (mean ± standard de-
viation [m]) between the ideal and estimated key points in
the soccer field for the three sources. Results show that the
errors in the drone camera (0.06 ± 0.03) and GNSS projec-
tion error (0.13 ± 0.09) were smaller than that in the fish-
eye (0.56 ± 0.42). Next, similarly to Section 3.1.2, a bias-
corrected RMSE was calculated using the euclidean dis-
tance between the GNSS and drone data and that between
the fish-eye and drone data. We assume that the drone data
has less distortion or bias because of the top-view video and
use them as the ground truth. First, a homography matrix
estimated from the manually annotated keypoints projected
all bounding box annotations to pitch coordinates. We then
upsampled the GNSS data (10 Hz) to 30 Hz (drone and fish-
eye data) and computed temporal mean values of the bias-
corrected RMSE (3320 frames) for each player (22 play-
ers in total). Results show that the bias-corrected RMSE
(mean ± standard deviation [m] among 22 players) of loca-
tion data in the fish-eye camera (2.76 ± 2.86) was similar
to (but the SD was smaller than) that in the GNSS (2.77
± 4.47) but that of the velocity data in the fish-eye cam-
era (2.14 ± 0.51) was more accurate than that in the GNSS
(2.62 ± 0.34). Overall, the accuracy of the fish-eye cam-
era annotations was better than that of GNSS. Although the

GNSS accuarcy was already investigated [17, 35], little re-
search has been done on the fish-eye camera accuracy. The
fish-eye camera can capture finer interactive movements of
players and a ball.

5.2. Tracking performance

We performed tracking using both fish-eye and drone test
videos (five 30-second clips for each camera view). All met-
rics were calculated for each clip and then averaged. The
average tracking performance in fish-eye video resulted in
a 14.2% MOTA score, 19691 FPs, and 19 ID switches. The
average tracking performance in the drone video resulted
in a 57.50% MOTA score, 8781 FPs, and 5 ID switches.
We observe that the low MOTA score for fisheye camera
may be because of falsely tracked people (such as coaches
or bench-starters). The large number of false negatives is
mostly due to low confidence object detection results and
can be decreased by tuning confidence thresholds or using
a better object detector.

6. Conclusion

In this paper, we presented SoccerTrack, the first fish-eye
and birds-eye view video dataset for detection and tracking
in soccer. We experimentally demonstrated that both views
could be used to perform tracking. We anticipate that our
research will pave the way for future monitoring initiatives
in a variety of other sports, in addition to soccer.
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Olivier Bachem, Lasse Espeholt, Carlos Riquelme, Damien
Vincent, Marcin Michalski, Olivier Bousquet, et al. Google
research football: A novel reinforcement learning environ-

3577



ment. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 4501–4510, 2020. 2, 3

[24] Hoang M Le, Peter Carr, Yisong Yue, and Patrick Lucey.
Data-driven ghosting using deep imitation learning. In Pro-
ceedings of the 11th MIT sloan sports analytics conference,
2017. 4, 7

[25] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler.
MOTChallenge 2015: Towards a benchmark for multi-
target tracking. arXiv:1504.01942 [cs], Apr. 2015. arXiv:
1504.01942. 2

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6

[27] Keyu Lu, Jianhui Chen, James J Little, and Hangen He. Light
cascaded convolutional neural networks for accurate player
detection. In British Machine Vision Conference (BMVC),
2017. 3

[28] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and
Christoph Feichtenhofer. Trackformer: Multi-object track-
ing with transformers. 2021. 4

[29] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K.
Schindler. MOT16: A benchmark for multi-object tracking.
arXiv:1603.00831 [cs], Mar. 2016. arXiv: 1603.00831. 2

[30] Jiangmiao Pang, Linlu Qiu, Xia Li, Haofeng Chen, Qi Li,
Trevor Darrell, and Fisher Yu. Quasi-dense similarity learn-
ing for multiple object tracking. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, June 2021. 4

[31] Luca Pappalardo, Paolo Cintia, Alessio Rossi, Emanuele
Massucco, Paolo Ferragina, Dino Pedreschi, and Fosca Gi-
annotti. A public data set of spatio-temporal match events in
soccer competitions. Scientific data, 6(1):1–15, 2019. 2, 3

[32] Svein Arne Pettersen, Dag Johansen, Håvard Johansen,
Vegard Berg-Johansen, Vamsidhar Reddy Gaddam, As-
geir Mortensen, Ragnar Langseth, Carsten Griwodz,
Håkon Kvale Stensland, and Pål Halvorsen. Soccer video
and player position dataset. In Proceedings of the 5th ACM
Multimedia Systems Conference, pages 18–23, 2014. 2, 3

[33] Eduard Pons, Tomás García-Calvo, Ricardo Resta, Hugo
Blanco, Roberto López del Campo, Jesús Díaz García, and
Juan José Pulido. A comparison of a gps device and a multi-
camera video technology during official soccer matches:
Agreement between systems. PloS one, 14(8):e0220729,
2019. 2, 4

[34] Urs Ramer. An iterative procedure for the polygonal approx-
imation of plane curves. Computer graphics and image pro-
cessing, 1(3):244–256, 1972. 6

[35] Markel Rico-González, Asier Los Arcos, Filipe M.
Clemente, Daniel Rojas-Valverde, and José Pino-Ortega.
Accuracy and reliability of local positioning systems for
measuring sport movement patterns in stadium-scale: A sys-
tematic review. Applied Sciences, 10(17), 2020. 3, 8

[36] Melissa Sanabria, Frédéric Precioso, and Thomas Menguy.
Hierarchical multimodal attention for deep video summa-
rization. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 7977–7984. IEEE, 2021. 2

[37] Melissa Fallas Sanabria, Frédéric Precioso, and Thomas
Menguy. Profiling actions for sport video summarization:
An attention signal analysis. 2020 IEEE 22nd International
Workshop on Multimedia Signal Processing (MMSP), pages
1–6, 2020. 2

[38] Atom Scott., Keisuke Fujii., and Masaki Onishi. How does ai
play football? an analysis of rl and real-world football strate-
gies. In Proceedings of the 14th International Conference
on Agents and Artificial Intelligence - Volume 1: ICAART,,
pages 42–52. INSTICC, SciTePress, 2022. 4

[39] Boris Sekachev, Nikita Manovich, Maxim Zhiltsov, An-
drey Zhavoronkov, Dmitry Kalinin, Ben Hoff, TOsmanov,
Dmitry Kruchinin, Artyom Zankevich, DmitriySidnev, Mak-
sim Markelov, Johannes222, Mathis Chenuet, a andre, te-
lenachos, Aleksandr Melnikov, Jijoong Kim, Liron Ilouz,
Nikita Glazov, Priya4607, Rush Tehrani, Seungwon Jeong,
Vladimir Skubriev, Sebastian Yonekura, vugia truong,
zliang7, lizhming, and Tritin Truong. opencv/cvat: v1.1.0,
Aug. 2020. 6

[40] William Spearman. Beyond expected goals. In Proceedings
of the 12th MIT sloan sports analytics conference, pages 1–
17, 2018. 4

[41] Statista. Revenue of the biggest (big five) european soccer
leagues from 1996/97 to 2021/22. (Accessed: 2022/2/21). 2

[42] Peize Sun, Jinkun Cao, Yi Jiang, Zehuan Yuan, Song Bai,
Kris Kitani, and Ping Luo. Dancetrack: Multi-object track-
ing in uniform appearance and diverse motion. arXiv
preprint arXiv:2111.14690, 2021. 4

[43] Peize Sun, Jinkun Cao, Yi Jiang, Rufeng Zhang, Enze Xie,
Zehuan Yuan, Changhu Wang, and Ping Luo. Transtrack:
Multiple-object tracking with transformer. arXiv preprint
arXiv: 2012.15460, 2020. 4

[44] Masakiyo Teranishi, Keisuke Fujii, and Kazuya Takeda. Tra-
jectory prediction with imitation learning reflecting defen-
sive evaluation in team sports. In 2020 IEEE 9th Global
Conference on Consumer Electronics (GCCE), pages 124–
125. IEEE, 2020. 4

[45] Kosuke Toda, Masakiyo Teranishi, Keisuke Kushiro, and
Keisuke Fujii. Evaluation of soccer team defense based on
prediction models of ball recovery and being attacked: A pi-
lot study. PloS One, 17(1):e0263051, 2022. 4

[46] Ikuma Uchida, Atom Scott, Hidehiko Shishido, and Yoshi-
nari Kameda. Automated offside detection by spatio-
temporal analysis of football videos. In Proceedings of the
4th International Workshop on Multimedia Content Analysis
in Sports, pages 17–24, 2021. 4, 7

[47] Zheng Wang, Cheng Long, and Gao Cong. Similar sports
play retrieval with deep reinforcement learning. IEEE Trans-
actions on Knowledge and Data Engineering, 2021. 4

[48] Zheng Wang, Cheng Long, Gao Cong, and Ce Ju. Effective
and efficient sports play retrieval with deep representation
learning. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
pages 499–509, 2019. 4

[49] Zhongdao Wang, Liang Zheng, Yixuan Liu, and Shengjin
Wang. Towards real-time multi-object tracking. The Euro-
pean Conference on Computer Vision (ECCV), 2020. 4

3578



[50] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
In 2017 IEEE international conference on image processing
(ICIP), pages 3645–3649. IEEE, 2017. 4

[51] Raymond A Yeh, Alexander G Schwing, Jonathan Huang,
and Kevin Murphy. Diverse generation for multi-agent
sports games. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4610–
4619, 2019. 7

[52] Fangao Zeng, Bin Dong, Tiancai Wang, Xiangyu Zhang, and
Yichen Wei. Motr: End-to-end multiple-object tracking with
transformer. arXiv preprint arXiv:2105.03247, 2021. 4

[53] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,
and Wenyu Liu. Fairmot: On the fairness of detection and
re-identification in multiple object tracking. International
Journal of Computer Vision, 129:3069–3087, 2021. 4

[54] Liang Zheng, Zhi Bie, Yifan Sun, Jingdong Wang, Chi Su,
Shengjin Wang, and Qi Tian. Mars: A video benchmark for
large-scale person re-identification. In European conference
on computer vision, pages 868–884. Springer, 2016. 7

[55] Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and
Tao Xiang. Omni-scale feature learning for person re-
identification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3702–3712, 2019. 7

[56] Zoran Zivkovic and Ferdinand Van Der Heijden. Effi-
cient adaptive density estimation per image pixel for the
task of background subtraction. Pattern recognition letters,
27(7):773–780, 2006. 6

3579


