
Pass Receiver Prediction in Soccer using Video and Players’ Trajectories

A. Details of alignment between video and 2D
trajectory

We used wide-angle videos that 20 players on the field
were always visible. The expected role of these videos is
to provide the model with appearance information such as
the posture and facial orientation of the 20 players on the
field in a match. However, since the bounding boxes that
indicate the players’ areas are not annotated in the video,
we needed to develop an automatic annotation system using
tracking data and basic computer vision. This is a general
approach that can be applied to similar wide-angle videos
and location information.

A.1. Obtaining videos of individual players

In order to obtain players’ bounding boxes, we needed
to obtain their coordinates from the videos: we tried to
convert the tracking data described in the field coordinate
system (x, y) into the video coordinate system (X,Y ).
A panoramic image showing the whole field was gener-
ated from each match video, and a homography matrix H1

mapping between each frame of the match video and the
panoramic image was calculated based on matching points
obtained by SuperGlue which is a graph neural network for
feature matching [5]. The homography matrix H2 that maps
the field image to the panoramic image was obtained by
manually selecting corresponding feature points. Finally,
the 2d trajectories were transformed from the field coor-
dinate system into the video image coordinate system by
Eq. (1). XY
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However, due to camera distortion, the transformed co-
ordinate points do not exactly match the player’s area. We
corrected this coordinate drift by using an object detector
and point registration algorithms.

A.2. Using a deep object detection model

You Only Look Once (YOLO) is a high-performance ob-
ject detection model that has been used for detecting per-
sons and objects in sports video [4]. By applying YOLO
version 5 (YOLOv5) [2] to the videos, we can obtain the

position of any object and the exact bounding box. How-
ever, the necessary objects (20 players in our case) are not
always detected, and since it is a detection model, it is dif-
ficult to track objects through time, as the detected objects
are not ensured to be consistent frame by frame. On the
other hand, the transformed coordinate points of each player
from the tracking system are recorded for the 20 players,
and individuals are tracked and identified, though the coor-
dinate points do not perfectly match the detected positions
by YOLOv5. Therefore, we assumed that the positions and
bounding boxes detected by YOLOv5 are mostly accurate,
and we tried to correct the miss detection and the positional
shifts of the coordinates from the tracking system by solv-
ing the alignment problem between the two data.

A.3. Correction of missing points by ICP

Figure 1. Addition pseudo-detected points by ICP (red squares)
and removing unwanted points using Hungarian matching (gray
squares).

To correct missing detected points by YOLOv5, we used
iterative closest point (ICP) [6], which is a rigid point reg-
istration algorithm that is highly aware of the shape of a
point cloud. In our process, this means that the formation of
players is reflected in a rigid transformation matrix. Prob-
able positions of undetected players can be estimated by
spotting the players’ coordinates that do not have the coun-
terpart. Thus, we added these points to detected points by
YOLOv5 as pseudo-detected points. However, unnecessary
points such as referees are also moved by ICP. In order to



remove these points, we used Hungarian method. Also, ICP
only estimates rigid transformation and it cannot address the
uneven shift caused by camera distortion.

A.4. Removing unnecessary detection points using
the Hungarian method.

Figure 2. The result of hungarian matching between the detection
points by YOLOv5 (blue) and moved points by ICP (red). Aligned
points are surrounded with the black circles.

Applying hungarian matching between the detection
points by YOLOv5 and moved points by ICP, there are two
type of unaligned points: only detection points (blue points
without black circle in Fig. 2) or only moved points (red
points without black circle in Fig. 2). The first type is the
part to be added as a pseudo-detection point as described
in a previous section, and the second type can be judged as
the points that are not necessary 20 players to be obtained
from the tracking data, and by removing this unassigned
points from the detection points of YOLOv5, all the detec-
tion points other than 20 players can be excluded. The cor-
rection process of missing points and unnecessary points is
illustrated in Fig. 1.

A.5. Correction of uneven positional shift by CPD

(a) Result of ICP. (b) Result of CPD.

Figure 3. Each color dots means as same as those in Fig. 1. ICP
cannot move players’ coordinates (black dots) to detected points
(blue dots), but CPD can.

Finally, we used coherent point drift (CPD) [3], which
calculates the mobility of each point individually, to deal
with non-uniform distortions. To obtain the bounding boxes
of the newly detected players in this refinement, we referred
to the size of the bounding of YOLOv5 detection that is
closest to the player in interest.

B. Dataset statistic
We used the wide-angle videos of 25 matches in 3 sta-

diums. The number of teams and the number of matches
included in 25 matches is Tab. 1. The first row indicates spe-
cific team and the second row shows the number of matches
which the team was involved. Thus, our dataset has 16
teams. Each stadium has its own home team, which means
that three specific teams played more games than the others.
The names of the teams are given in alphabetical order so
that they cannot be identified.

We used only the successful pass scenes.Each scene is a
few seconds length, ranging from 1.0 to 7.0 seconds, and the
pass occurs at the end of the scene. The number of scenes
at each length is shown in Tab. 2.

C. The architecture of 3D CNN
The proposed model uses a 3D ResNet [1] to share the

weights of the model when extracting the features of each
player. However, since the network structure proposed in
previous studies is redundant for the image size, we reduce
the number of parameters by using up to the second Resid-
ual layer. The specific network structure of the 3D Resnet
to be used is as follows: Tab. 3.
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team A B C D E F G H I J K L M N O P total
match 10 2 10 2 3 2 2 2 1 9 1 1 2 1 1 1 25

Table 1. The number of teams included in the 25 games and the number of games played by each team. There are 16 teams (A-P) in our
dataset.

1sec 2sec 3sec 4sec 5sec 6sec 7sec total
train 441 442 398 412 352 367 8499 10911
valid 54 58 59 54 37 57 1240 1559
test 136 98 112 94 97 95 2484 3116
total 631 598 569 560 486 519 12223 15586

Table 2. Number of scenes for each length.

Layer Name Architecture
conv1 7 × 7 × 7, 64, stride 1(T), 2(XY)

2*conv2 3 × 3 × 3 max pool, stride 2[
3× 3× 3, 64,stride 1(TXY)
3× 3× 3, 64,stride 1(TXY)

]
× 2

conv3
[
3× 3× 3, 128,stride 2(TXY)
3× 3× 3, 128,stride 1(TXY)

]
× 2

average pool, 64-d fc

Table 3. The architecture of 3D CNN used in our experiments,
basing on 3D Resnet [1]
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