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Figure 1. VG-VAE is a variational immanent method to learn Hierarchical intrinsic, local and global geometric signatures. Geometric sig-
natures aid in the comprehension of pointcloud morphology. Understanding morphology is equivalent to unearthing Poincloud’s creation,
and is observed in this Figure. Grey represents input pointcloud, the next Coloured pointcloud represents geometric signatures G, and the
highlighted pointcloud represents geometric labels G.

Abstract

In this paper, we propose VG-VAE: Venatus Geometric
Variational Auto-Encoder for capturing unsupervised hi-
erarchical local and global geometric signatures in point-
cloud. Recent research emphasises the significance of the
underlying intrinsic geometry for pointcloud processing.
Our contribution is to extract and analyse the morphology
of the pointcloud using the proposed Geometric Proximity
Correlator (GPC) and variational sampling of the latent.
The extraction of local geometric signatures is facilitated
by the GPC, whereas the extraction of global geometry is
facilitated by variational sampling. Furthermore, we apply
a naive mix of vector algebra and 3D geometry to extract
the basic per-point geometric signature, which assists the
unsupervised hypothesis. We provide statistical analyses of
local and global geometric signatures. The impacts of our
geometric features are demonstrated on pointcloud classifi-
cation as downstream task using the classic pointcloud fea-

ture extractor PointNet. We demonstrate our analysis on
ModelNet40 a benchmark dataset, and compare with state-
of-the-art techniques.

1. Introduction

In recent years, 3D pointcloud has grown in relevance
in a variety of fields, including 3D printing, Metaverse, and
self-driving automobiles as sensors capture depth in addi-
tion with other visual signals. Pointclouds are beginning to
play a crucial role in many real-world applications, such as
simultaneous localization and mapping (SLAM) [14] [5],
3D object detection, digitization of heritage sites towards
presentation in AR/VR/XR/MR. Towards presentation of
3D data in digital space, there is a need for efficient methods
to analyze, process and derive huge volume of 3D point-
clouds [15] [20] [25] [22] [23]. In contrast to human vi-
sion, supervising a machine to infer geometric information
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Figure 2. The proposed framework VG-VAE: Venatus Geometry Point-Cloud Variational Auto-Encoder. Here GPC represents Geometric
Proximity Correlator, Xi represents Geometric features, Gi represents Geometric signatures and Gi represents Geometric labels, S
represents empirical latent space, µ represents empirical mean, σ represents empirical log variance and z represents sampled latent space.

is challenging. Representing 3D object as a collection of
intrinsic structure provides morphology as a geometric sig-
nature. This abbreviated representation of a 3D object is
critical for improving shape understanding, processing, and
analysis. To address the lack of geometric information in
3D pointclouds, various studies attempt to decompose a 3D
pointcloud into meaningful structures, and infer a topolog-
ical graph by modelling correlations between these parts
[16] [9] [10] as geometric signatures. However, the decom-
position is completely perceptual. While, some approaches
attempt to recover a parametric form of the input point-
clouds using defined geometric shapes [12] [24] [9] [10].

Authors in [10] [9] discuss about deriving fundamen-
tal geometric signatures and use them as a plugin towards
downstream tasks. These techniques find challenges gen-
eralizing across datasets and hybrid geometries. Towards
this, we propose self-supervised approach to eliminate the
need for generalization across datasets, and generate re-
designed hybrid geometric signatures for a chosen dataset
unlike [10] [9].

The main contributions of the work are:

• We propose a self supervised / unsupervised technique
to derive geometric features of pointcloud and name
it as VG-VAE: Venatus Geometry Point-Cloud Varia-
tional Auto-Encoder.

– A novel Geometric Proximity Correlator (GPC)

to co-relate intrinsic and empirical geometric sig-
natures of a pointcloud.

* An Intrinsic Geometric Interpreter (IGI) to
derive the features of pointcloud in existing
and higher dimensional space.

* A KNN prior based geometric feature aware
encoder.

• We propose to consider variational sampling to gener-
alize over extrinsic geometric features across the sam-
ples.

• We model a geometry aware pointcloud classifier us-
ing the derived geometric features as a plugin towards
classification of pointclouds.

• We demonstrate the effect of derived geometric signa-
tures on benchmark dataset (ModelNet40) and com-
pare the results with state-of-the-art techniques.

In Section 2 we discuss the proposed VG-VAE: Venatus
Geometry Point-Cloud Variational Auto-Encoder. We dis-
cuss the ablation and results of proposed model and com-
pare with state-of-the-art techniques in Section 3, and con-
clude in Section 4.
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Figure 3. Isoloted view of GPC: Geometric Proximity Correlator that extracts the individual geometric signatures. Here IGI: Intrinsic
Geometry Interpreter facilitates extraction of intrinsics.

2. Venatus Geometry Point-Cloud Variational
Auto-Encoder (VG-VAE)

We model VG-VAE, Venatus Geometry Point-Cloud
Variational Auto-Encoder for learning unsupervised hier-
archical geometric features in pointcloud data. Geometric
aspects of a pointcloud characterise its morphology which
facilitates abstraction, generation, and description of the
pointcloud as shown in Figure 2. Towards this, we propose
a Geometric Proximity Correlator (GPC) for extracting hi-
erarchical local and global geometric signatures. Further
we estimate the underlying per-point variations in higher
dimensional space with nearest neighbour as a prior using
Variational sampling.

2.1. Geometric Proximity Correlator (GPC)

Geometric Proximity Correlator facilitates to capture the
geometric signatures. Geometric signatures are computed
via a seven step process as shown in Algorithm 1. Ini-
tially, we search for the prior i.e., indices idxknn us-
ing K-Nearest neighbours. Intrinsic Geometry Interpreter
ψ is estimated on the given pointcloud pc. Towards ex-
tracting the empirical (learnt) features PCG, we emphasis
on weight shared mlp that projects ψ to a higher dimen-
sional space. The geometric posterior X is captured by
gathering the nearest neighbour gatheredneighbours in
higher dimensional space aided by prior idxknn as shown
in Figure 3. To boost the learning, we compute the statis-
tical features (Mean, Standard deviation, Min, and Max) of
gatheredneighbours with respect to its K nearest neigh-
bours and project them to higher dimensional space using
a weight shared mlp. The proposed geometric signatures
G are captured by tapping PCG and computing mean for
the nearest neighbours, whereas the geometric labels G are

simply obtained by computing clusters G. The idiosyncratic
clusters are inspired from Attention Based Decomposition
network [9] and PointDCCNet [10].

Algorithm 1: Geometric Proximity Correlator
Input: Point Cloud→ PC; // B,N,C

Output: Geometric Proximity Correlator’s weights
fθ; Geometry aware pointcloud features
X; Geometric Signatures G and
Geometric Cluster labels G.

1 InitializeK, k, fθ, Cin, Cgeo, and Cout according
to Section 2.

2 idxknn = Knn index(PC,K).
/* B,N,C */

3 ψ = intrinsic geometry interpreter (PC).
/* B,N,C1 */

4 PCG = shared mlp(Cin + C1, Cgeo)(ψ).
/* B,N,Cgeo */

5 gatheredneighbors = gather operation(idxknn,
PCG).

/* B,N,Cgeo,K */

6 min, max, std, and mean← gatheredneighbors.
7 X← shared mlp(Cgeo, Cout)(Concat(min,

max,std,and mean)).
/* B,N,Cout */

8 G = mean(PCG, dim=-1).
9 G = KMeans( k, G ).

2.1.1 Intrinsic Geometry Interpreter (IGI)

The unsupervised hypothesis of our network is notably
aided by joint learning, variational sampling of latent and
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a basic Intrinsic Geometry Interpreter ψ. The variational
sampling of latent guarantees that the global signatures of
the pointcloud is captured, whilst the geometric interpreter
enables encapsulating the local signatures. The Intrinsic
Geometry Interpreter ψ is a naive combination of vector
algebra and 3D geometric as shown in Figure 3. Point-
clouds are widely used to produce meshes by triangulation.
By forming a triangle with respect to two nearest neighbors
(pcj1, pcj2) of pointcloud pci, we estimate Intrinsic Ge-
ometry Interpreter ψi by:

ψi =



pci = x, y, z; pci ∈ Rn,
−→v1 = pcj1 − pci; −→v1 ∈ Rn,
−→v2 = pcj2 − pci; −→v2 ∈ Rn,

|−→v1| = ℓ2(
−→v1); |−→v1| ∈ R1,

|−→v2| = ℓ2(
−→v2); |−→v2| ∈ R1,

n̂ = −→v1 ×−→v2; n̂ ∈ R3.

(1)

where (−→v1,−→v2) represents edge (1, 2 ) respectively of
given point pci, (|−→v1|, |−→v2|) represents edge lengths and
n̂ represent normals of pointcloud pci. Unlike Geometric
Backpropagation Net [19], we propose utilizing ψi beyond
three dimensions, with the exception of excluding n̂, as the
cross-product has the orthogonality characteristic only in
three and seven dimensional spaces. The set of per-point
geometry aids in the robustness of our hypothesis, since nor-
mals and edge length would immediately reveal outliers in
the supplied point set.

Towards interpretability and hierarchical learning of lo-
cal to global geometric signatures, we propose to utilize Ge-
ometric Proximity Correlator in a dolly chain fashion mul-
tiple times. The intermediate Gi’s and Gi’s correspond to
local to global geometric signatures.

2.2. Variational Sampling

The hierarchical global symmetricity S is captured by
pooling the global geometric features X through a weight
shared mlp inspired by PointNet [17]. The variational sam-
ple space z captures the extrinsic geometry of the point-
cloud space through reparametrization technique and EL-
BOW loss [11].

Variational Autoencoders (VAE) are generative mod-
els capable of learning approximated data distributions via
variational inference. We consider the stochastic latent
space z and optimize the upper-bound on the negative log-
likelihood of x:

Ex∼pd(x)[− log p(x)] < Ex[Ez∼q(z|x)] + Ex

[
D
]

D = KL
(
q(z|x)||p(z)

)

where KL(·||·) is Kullback-Leibler divergence [8],
pd(x) is empirical distribution, q(z|x) is variational pos-
terior (the encoder), p(x|z) is generative model (the gen-
erator) and p(z) is the prior. Sampling of q(z|x) is per-
formed via reparametrization trick facilitated by optimizing
a neural network’s weights for obtaining p(x|z) and q(z|x).
Total loss used to tune VAE are represented by two terms re-
constructions loss (ℓ2 norm taken from difference between
sampled and reconstructed) such that p(x|z) is assumed to
be normal-distribution and regularization term that compels
z to be produced from q(z|x) from a prior distribution p(z).

We emphasise on variational sampling for two main rea-
sons

• To generalize the extrinsic geometric signatures over
the data distribution unlike Vanilla Autoencoder.

• Towards generations of synthetic pointcloud by sam-
pling the geometric aware feature space unlike 3D-
AAE [31].

Towards tuning of geometric features by optimizing the
weights of encoder fθ and decoder gθ as shown in Figure
2, we propose to utilize chamfer distance as reconstruction
loss given by,
Chamfer pseudo Distance (CD): measures the squared two
norm ℓ22 between each point in one set S1 to its nearest
neighbour in the other set S2 as shown below.

CD (S1, S2) =
∑
x∈S1

min
y∈S2

∥x− y∥22 +
∑
y∈S2

min
x∈S1

∥x− y∥22 (2)

and KL Divergence as a regularizor.

KL(p, q) = log
σ

σe

+
σ2 + (µe − µ)2

2σ2
−

1

2
(3)

where (µ, σ) are empirical mean and standard deviation as
shown in Figure 2. (µe, σe) are expected mean and stan-
dard deviation for a given pointcloud.

The proposed decoder is feature extrapolation net com-
prised of mlp’s similar to an image based VAE [11].

2.3. Pointcloud Classification

We incorporate the produced unsupervised geometric
signatures G to the input pointcloud and feed it through
the PointNet architecture to demonstrate the impact of our
proposed methodology. We demonstrate our analysis of the
impact made by hierarchical local and global geometric sig-
natures on ModelNet40 [30] a benchmark dataset and com-
pare them with state-of-the-art techniques.

3. Results and Discussions
In this section, we discuss about the dataset used, evalua-

tion metrics and comparison of our methodology with state-
of-the-art methods.
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3.1. Datasets

To evaluate the performance of the proposed method-
ology we use benchmark ModelNet40 dataset and com-
pare the classification accuracy with state-of-the-art meth-
ods PointNet [17], PointNet++ [18], KCNet [6], MRT-
Net [3], SpecGCN [27], DGCN [28], PCNN [1], ABD-
Net [9], PointConv [29]. PointDCCNet [10], PointTrans-
former [32], RSCNN [13], PCT [4]. We compare our geo-
metrical results with ABDNet [9].

• ModelNet 40 [30]: dataset consists of CAD models
belonging to 40 categories. These CAD models are
sampled to 2048 points to form a pointcloud.

• ShapeNet [2]: ShapeNet is a single clean 3D models
and manually verified category and alignment anno-
tations. It covers 55 common object categories with
about 51,300 unique 3D models.

3.2. Experimentation Details

In this section, we discuss the experimental setup as two
major parts.

• Architectural Details: The details for architecture of
VG-VAE, GPC, and variational sampling decoder are
shown in Table 1. To make it more understandable
table is colour coded with respect Figure 2. The archi-
tecture of GPC is elaborated in Algorithm 1.

• Training Setup VG-VAE: Initially during training the
weights of VG-VAE’s Encoder fθ and Decoder gθ
set to uniform distribution and expected mean µe and
standard deviation σe from Equation 3, is set to (0,
0.02) respectively. The weights θ of VG-VAE are
tuned using proposed variational loss given in Equa-
tion 3 and chamfer pseudo distance as reconstruction
loss given in Equation 1. The variational sampling is
explained in Section 2.2. We train VG-VAE for 2000
epochs until KL divergence has reached to minima.
The intermediate geometric signatures Gi are saved
for computing geometric labelsGi using KMeans clus-
tering. We find number of cluster K = 4 yields better
results visually and also facilitates pointcloud classifi-
cation.

• Training Setup VG-VAE + PointNet: We train a ge-
ometry aware 3D classifier by merging geometric fea-
tures of VG-VAE with pointcloud, we concatenate the
pointcloud and geometric feature and train PointNet,
the hyperparameters for classification are set as per
PointNet [17] with an exception of replacing in chan-
nels of 1st layer to dimensional of geometric features
and pointcloud together. During training VG-VAE’s
weights are freezed so that the discriminative loss wont
affect extracted geometric features.

Table 1. Architectural Details of VG-VAE. Here represents Ge-
ometric Proximity Correlator (GPC) to co-relate intrinsic and em-
pirical (learnt) geometric signature and represents variational
sampling over extrinsic geometric features.

Type Configs # Keys
GPC (Cin, Cgeo, Cout,K) (14,12,64,32) GPC 1
GPC (Cin, Cgeo, Cout,K) (194,12,128,64) GPC 2
GPC (Cin, Cgeo, Cout,K) (386,12,512,128) GPC 3

Conv1d (Cin, Cout) (512,512) Shared MLP
Linear (in, out) (512,1024) µ, σ

Sampling NA NA z
Linear (in, out) (1024,128) -
Linear (in, out) (128,512) -
Linear (in, out) (512,1024) -
Linear (in, out) (1024,2048*3) pc

Table 2. The classification accuracy of proposed methodology
with comparison with state-of-the-art method on ModelNet40 with
1024 point density. Highest values are represented in Bold, second
highest values are represented in Underline and the third highest
values are represented in Bold and Underlined format

Methods Input Accuracy
PointNet [17](2017) xyz 89.2

PointNet++ [18](2017) xyz 90.7
MRTNet [3](2018) xyz 91.2

Spec-GCN [27](2018) xyz 91.5
Spec-GCN [27](2018) xyz, nor 91.8

PCNN [1](2018) xyz 92.3
PointConv [29](2018) xyz,nor 92.5

DGCNN [28](2019) xyz 92.2
RSCNN [13](2019) xyz 92.9

3D-GCNN [26](2019) xyz 83.5
Point Transformer [32](2020) xyz 93.7
Point Transformer [32](2020) xyz,nor 92.8

KCNet [6](2021) xyz 91.0
PointDCCnet [10](2021) xyz,nor 92.5

ABD-Net [9](2021) xyz 92.2
ABD-Net [9](2021) xyz,nor 92.8

PCT [4](2021) xyz 93.2
Ours VG-VAE + PointNet xyz 92.9

Ours VG-VAE + Linear SVM xyz 84.5

3.3. Results

In this section, we analyse the inference of our exper-
iments. Initially we discuss the implications of unsuper-
vised hierarchical geometrical signatures as shown in Fig-
ure 1. We can infer that the Geometrical Signatures G of
VG-VAE change due to unsupervised hypothesis. Towards
this, we propose to the cluster the Geometrical signatures G
to attain inferable Geometrical Labels G as shown in high-
lighted regions in Figure 1. The Geometrical labels are the
obtained from KMeans [7], where cluster indexes are com-
puted using distance rather than density. The Geometric
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Figure 4. Visual supremacy of our proposed VG-VAE’s unsupervised geometric labels G3 achieved over supervised Attention Based
Decomposition Network (ABD-Net) labels. Left side shows the results of ABD-Net and VG-VAE towards right side. We highlighted
area of the given pointclouds (“Bottle, Knife and Chair”) at the specific area with maximal change in geometric signatures. We compare
ours against ABD-Net therefore green colour boxes represents better performance of VG-VAE over ABD-Net and red colour indicates
vice-versa.

Features of VG-VAE utilise the property of KMeans, as G
is distance function in a higher dimensional space.

We compare our geometric features with state-of-the-art
decomposition network ABD-Net [9]. We find that super-
vised methodology do not generalize to capture geometric
signatures across various datasets. The issue lies with over-
fitting of supervised methods on a single dataset, and finds
challenges with other data distribution. We show similar
scenario where, ABD-Net achieve state-of-the-art 99% de-
composition accuracy on ANSI [21] dataset, but fail to cap-
ture basic geometric signature, when tested on ShapeNet
[2]. In Figure 4, we analyse the performance of both al-
gorithms. We compare ours against ABD-Net therefore
green colour highlights in Figure 4, represents better per-
formance of VG-VAE over ABD-Net and red colour indi-
cates vice-versa. By considering results of ABD-Net as ref-
erence, as it is supervised method, we highlight specific re-
gions of 6 pointclouds (“Bunny”, “Chair”, “Bottle”, “Ta-
ble”, “Knife”, and “Airplane”) where maximal geometric
change could be observed. Comparing ABD-Net we ob-
serve:

• VG-VAE captures better Geometric Signatures
(“Tail”,“Wings”, and “Engine””) on Airplane as
shown in Figure 4, compared to ABD-Net.

• On observing Bottle VG-VAE is able to capture the
change in geometry at bottle-head and at base of bottle,
unlike ABD-Net.

• Even comparing Knife ABD-Net fails to capture the
required geometric features unlike VG-VAE.

• Comparing Table, Both the methods yield similar re-
sults.

• On Chair ABD-Net is more generalized compared VG-
VAE in capturing flat surfaces.

• On Bunny its hard to infer, tho VG-VAE captures
change in geometries at ears.

Comprehensively VG-VAE is more robust in capturing geo-
metrical features. We do not perform evaluation on obtained
features as they are unsupervised trained.

2983



We evaluate the effect of geometric signature by merg-
ing these as a clue to PointNet classifier and a Linear SVM.
We compare the classification accuracy of our method with
state-of-the-art supervised pointcloud classification method
as shown in Table 2. We can infer that our method compared
to discriminative methods such as ABD-Net and PointDC-
CNet, our method outperforms the both.

The experiments are conducted on NVIDIA RTX 3090
GPU with 24GB RAM and AMD RYZEN threadripper
3970x CPU using PyTorch framework.

4. Conclusions
In this work, we have proposed VG-VAE: Venatus Ge-

ometric Variational Auto-Encoder for capturing unsuper-
vised hierarchical local and global geometric signatures in
pointcloud. The extraction of local geometric signatures is
facilitated by the Geometric Proximity Correlator, whereas
the extraction of global geometry is facilitated by varia-
tional sampling. We have provided statistical analyses of
local and global geometric signatures. The impacts of our
geometric features are demonstrated on pointcloud classifi-
cation as downstream task using the classic pointcloud fea-
ture extractor PointNet. We have demonstrated our analy-
sis on ModelNet40 a benchmark dataset and compare them
with state-of-the-art techniques.
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