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Figure 1. Having a partial point cloud as input, our method is capable of producing diverse complete outputs.

Abstract

Shape completion is the problem of completing partial
input shapes such as partial scans. This problem finds
important applications in computer vision and robotics
due to issues such as occlusion or sparsity in real-world
data. However, most of the existing research related to
shape completion has been focused on completing shapes
by learning a one-to-one mapping which limits the diversity
and creativity of the produced results. We propose a novel
multimodal shape completion technique that is effectively
able to learn a one-to-many mapping and generates diverse
complete shapes. Our approach is based on the conditional
Implicit Maximum Likelihood Estimation (IMLE) technique
wherein we condition our inputs on partial 3D point clouds.
We extensively evaluate our approach by comparing it to
various baselines both quantitatively and qualitatively. We
show that our method is superior to alternatives in terms of
completeness and diversity of shapes.

1. Introduction
As 3D scanning devices are now widely available, scenes

and objects in the form of point clouds are rapidly becoming
more and more prevalent. However, many such objects are
not fully scanned due to occlusion; as a result, the scanned
shapes may be missing substantial portions of the complete
shape. Therefore, the ability to complete such shapes by

generating the missing portions is desired. More precisely,
the objective of shape completion is to meaningfully com-
plete a partial shape and obtain a complete shape without
violating the geometry of the partial shape.

Early work has focused on generating a single complete
shape; the mapping from the input and output is one-to-
one. However, shape completion is ill-posed by nature as
the target shape is not unique – given a partial shape, there
are multiple ways to generate the missing portions, espe-
cially when the input point cloud is noisy and coarse, which
is the case in real-world scanned data. Therefore, given a
partial shape, it is desired to generate a set of many possi-
ble complete shapes, all of which respecting the given input
partial shape. Not only is multimodality a way to resolve
ill-posedness, but it also adds more diversity and creativity
to the final outputs.

Recently, Wu et al. [37] proposed the task of multimodal
shape completion, where the goal is to generate various
complete shapes for a single partial shape. This is chal-
lenging, because the training data only contains one ground
truth complete shape for each partial shape. In [37], a con-
ditional GAN-based model was proposed to learn a one-to-
many mapping from partial shapes to complete shapes.

While [37] took a step towards multimodal shape com-
pletion, the different shapes it generates for a given partial
point cloud tend to be similar in structure. For example, for
an incomplete chair, the different complete planes it gen-
erates are of a similar style and vary mostly in width and
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Figure 2. Our network receives a partial point cloud Xi and a complete point cloud (in training time) Yi. The latent code generated from
the incomplete shape, xi along with a noise, zj is given to generator G to be mapped to ỹi,j . Closest ỹi,j to the latent code yi of the
complete point cloud is found and passed to decoder D to produce a novel and complete shape X̃i,j .

height, as shown in Figure 5. In this paper, our goal is to
generate structurally diverse complete shapes for the same
incomplete shape. In particular, consider the case where
a part of the object is entirely missing, the different gen-
erated complete shapes should ideally vary in the style of
the missing part while remaining compatible with the other
parts that are present.

Our key insight is that structural similarity between the
generated complete shapes comes from the tendency of
GANs to collapse modes. To achieve structural diversity,
we must therefore get around mode collapse. To this end,
we propose a novel method by devising a model formulation
that allows for training with the method of Implicit Max-
imum Likelihood Estimation (IMLE). Prior to our work,
IMLE has never been successfully used for point cloud gen-
eration. In this paper, we show how to do so, which results
in a simple and elegant model with fewer parameters than
[37]. Yet, despite this simplicity, we demonstrate that our
method is capable of generating structurally diverse results.
Quantitatively, our method achieves superior performance
than prior methods in terms of Total Mutual Difference, and
comparable or superior performance than prior methods in
terms of Unidirectional Hausdorff Distance (UHD). More-
over, we demonstrate the capability of our method to gener-
alize to new kinds of incomplete shapes. Despite not having
part-level supervision, our method can produce complete
shapes for incomplete shapes with an entire part missing.

2. Related Work

Since the missing regions of an incomplete point cloud
are unknown and might be geometrically complex, simple
surface repair algorithms are not fully effective in repro-
ducing parts and geometric features. In fact, missing re-
gions should be better generated after observing many rel-
evant shapes to learn their geometric properties. Therefore,
here, we mostly provide a review of deep generative models

that are reasonable solutions for shape completion. In addi-
tion, since our input is a point cloud, we provide a review
of deep learning models designed for point clouds, and we
particularly discuss point cloud completion methods. Point
cloud completion may have similarities with other prob-
lems, including point upsampling, 3D part assembly, 3D
reconstruction, and single view reconstruction. However,
since the focus of our paper is multimodal point cloud com-
pletion, we refrain from discussing works related to those
areas and refer the interested reader to the available survey
papers such as [1, 3].

2.1. Generative Models

Generating new images or 3D models is an important
area in computer vision and computer graphics. One of the
most well-known techniques to generate new shapes is vari-
ational autoencoder [16] or VAE that tries to fit a known
distribution (e.g., Gaussian) to the latent space of an au-
toencoder so that by sampling the known distribution, the
decoder can produce novel data. VAEs have been used in
many applications, including generating new 3D datasets
and shape completion [3, 30].

Generative Adversarial Networks (GANs) [9] are alter-
native generative models composed of a generator and a dis-
criminator, where the generator tries to produce novel data
that can fool the discriminator, and the discriminator tries to
distinguish the produced results (i.e., fake) from real sam-
ples. There are various forms of GAN that have been de-
signed to tackle different problems, including conditional
GANs that try to generate data based on a condition such as
an incomplete image for the purpose of inpainting [13, 43]
or a partial shape for shape completion [5]. In fact, GAN-
based networks have been successful in many 3D tasks and
applications [3].

Despite the popularity and success of GANs, they have
limitations including mode collapse. This problem is more
evident when you need diversity in generated data (such as
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in the case of multimodal shape completion). This has been
the primary motivation behind IMLE, which is to avoid
mode collapse and it has been applied to various multi-
modal image generation problems including image super-
resolution [17], image synthesis from semantic layout [18]
and image decompression [24].

2.2. Deep Learning on Point Clouds

One of the possibilities is to feed a neural network by
an array of points (i.e., point clouds) capturing the geom-
etry of shapes. One of the earliest networks to deal with
point clouds is PointNet [25] that tries to learn feature points
to perform different tasks including segmentation or clas-
sification. As PointNet only learns global features, Point-
Net++ [26] is introduced to learn multi-scale features and
better abstract local patterns. Due to the effectiveness of
PointNet and PointNet++, they have been used as the main
component of many networks with various applications in-
cluding point to point translation [4, 40, 41], edge detection
on point clouds [35], learning implicit surfaces [8], denois-
ing [27] and many more [10].

2.3. Shape Completion

Classical methods. Shape completion has been stud-
ied in the area of mesh processing even before the popular-
ity of deep learning. For example, the missing region of a
mesh can be repaired by minimizing an energy function via
Laplacian or Poisson equation [14,15,21,29,46], benefiting
from shapes’ skeletal structures [38,42], or retrieving a tem-
plate from a database and deforming it into the incomplete
input point cloud [23,28]. Interested readers can refer to [1]
for a thorough study on shape reconstruction and comple-
tion for point clouds.

Deep shape completion. The missing region of a 3D
shape, however, might be so geometrically complex that it
can only be generated through a deep network trained on a
dataset with variety. As a result, deep learning techniques
have been proposed to leverage available 3D shape datasets
to learn how to reproduce the missing regions successfully.

In [7], an autoencoder structure is used to first predict
a complete distance field of the voxelized incomplete input
shape. The distance field is then contrasted against a shape
database to obtain the final shape through a multi-resolution
patch-based 3D shape synthesis. Stutz and Geiger [30]
provide a weakly supervised VAE-based method for shape
completion. They first train a denoising variational autoen-
coder on ShapeNet in a supervised manner. They then fix
and reuse the decoder to train a new encoder on incomplete
shapes where alignment of the predicted result with the in-
complete input shape is respected by applying a maximum
likelihood (ML) loss. ASFM-Net [39] maps the partial and
complete input point clouds into a common latent space to
capture detailed shape priors and better respect the input.

A series of methods have utilized a multi-stage approach
to complete a shape. Inspired by patch-match technique
in image processing, Han et al. [11] employed two net-
works to produce missing parts of an incomplete shape,
where one network tries to respect the overall structure of
the shape and the other one produces local patches to re-
pair the given incomplete shape. PCN [44] is a multi-stage
encoder-decoder network where the decoder first produces a
coarse complete shape, and then for each point of the coarse
shape, a local patch is generated and deformed to reproduce
details. Liu et al. [19] also introduced a multi-stage method
where a coarse shape is first approximated by a set of para-
metric surfaces and then it is refined by learning point-wise
residuals. Similarly, Wang et al. [34] designed a network
that performs the shape completion task in two stages (i.e.,
coarse and dense reconstruction). They have also designed
a patch discriminator to guarantee that local patches resem-
ble the same pattern as those in the ground truth. In addition
to the coarse/fine point completion techniques, TopNet [32]
has been designed as a tree structure where each branch rep-
resents a subset of the point cloud.

Detailed shape completion. There are recent works that
have focused on completing partial input shapes that attain
a great amount of detail. These works try to replicate exist-
ing features in the partial shape in the proper location of
the generated complete shape. Wen et al. [36] have de-
fined a skip-attention mechanism to avoid using a global
representation that may suffer from altering the initial ge-
ometry of the input shape. PF-Net [12] employs a multi-
resolution encoding for the shape and tries to only gener-
ate the missing parts of the partial shape to respect the in-
put’s features. Most recently, VRCNet [22] benefits from
the multi-stage completion (i.e., coarse and fine stages) and
is capable of replicating fine details when they are available.
Although these works produce nice results when the in-
puts are detailed, our work is naturally different from these
methods. Here, we focus on completing input shapes that
are relatively coarse, and therefore multiple interpretations
are possible. Only under this setting, the multimodality
is meaningful since when the partial input shape is dense
and detailed, the complete shape will be limited to only one
ground truth shape with the same features as the input.

GANs and multimodality. GAN-based techniques have
also been employed for shape completion. Wang et al. [33]
use a GAN in the form of a convolutional autoencoder to
produce a coarse shape which is then sliced into images
and passed to a recurrent convolutional network for refine-
ment. To setup an unpaired shape completion, two au-
toencoders are initially trained on complete and incomplete
shapes in [5]. The latent code of an incomplete shape is
then mapped to a complete shape’s latent code via a gener-
ator, and two discriminators are used to evaluate complete
shapes and their latent codes. The other generative method
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is proposed by Wu et al. [37] where they combine VAE and
conditional GAN to achieve multimodality. Later in this
paper, we show that although [37] is successful in point
cloud completion due to mode collapse, our IMLE-based
approach is more successful in producing shapes with more
variety. A series of experiments have been performed to ex-
amine the effectiveness of our method, which is discussed
in Section 4. In addition to GAN-based approaches that are
capable of providing multimodality, a voxel-based genera-
tive model (GCA) is introduced by Zhang et al. [45] that
produce results by gradually completing voxels. Although
we have provided a qualitative comparison with GCA , it
might not be directly relevant to our work as GCA is de-
signed for voxels instead of point clouds, and also it does
not use GAN in its structure while we try to provide an al-
ternative to GAN.

3. Method
Overview. In the shape completion problem, we want to
predict a complete point cloud based on a given partial point
cloud with missing regions or parts. In the multimodal ver-
sion of this problem, a set of complete shapes is desired
under only one given partial point cloud. Formally, given
an input x in a one-to-many problem setting, the goal is to
learn p(y|x) where y is a prediction. Here, x is our par-
tial point cloud and y is a predicted complete point cloud.
Since there are many possible complete shapes that are con-
sistent with x, we want to generate non-deterministic pre-
dictions p(y|x) instead of a single prediction. The simplest
way to generate non-deterministic predictions is to add a
random code input z ∼ N (0, I) to a deterministic function
Tθ where y := Tθ(x, z). This is also known as an implicit
generative model [20]. One way to train this implicit gen-
erative model is to use a conditional GAN, in this context,
where Tθ(x, z) is often known as generator. However, the
generator may fail to produce diverse outputs due to mode
collapse. Therefore, we use conditional Implicit Maximum
Likelihood Estimation (IMLE) to train the generative model
to overcome the mode collapse issue.

IMLE reverses the direction of how generated samples
are matched to the target data: instead of making the gen-
erated samples similar to some target data, IMLE ensures
that every target data has a similar sample being generated.
In addition, IMLE does not require an adversarial objec-
tive which simplifies training. If we denote the generator
as Tθ(·, ·), an input point cloud as xi, the corresponding
ground truth as yi, and a latent code as zi,k, then IMLE
would optimize the following equation:

min
θ

EZ

[
n∑

i=1

min
k∈{1,...,m}

d(Tθ(xi, zi,k),yi)

]
(1)

where Z = z1,1, . . . , zn,m ∼ N (0, I), d(·, ·) is a distance

metric and, m is a hyperparameter. Algorithm 1 shows the
conditional IMLE training procedure. In our case, IMLE is
conditioned on the given partial shape.

Algorithm 1 Conditional IMLE Training Procedure

Require: The set of inputs {xi}ni=1 and the set of corre-
sponding observed outputs {yi}ni=1

Initialize the parameters θ of the generator Tθ

for p = 1 to N do
Pick a random batch S ⊆ {1, . . . , n}
for i ∈ S do

Randomly generate i.i.d. m latent codes
z1, . . . , zm

ỹi,k ← Tθ(xi, zk) ∀k ∈ [m]
j ← argmink d(yi, ỹi,k) ∀k ∈ [m]

for q = 1 to M do
Pick a random mini-batch S̃ ⊆ S
θ ← θ − η∇θ

(∑
i∈S̃ d(yi, ỹi,j)

)
/|S̃|

return θ

Shape completion network’s overall structure. The
structure of our network is composed of an auto-encoder
(i.e., encoder E and decoder D) along with generator G (see
Figure 2). The auto-encoder encodes partial shape Xi and
complete shape Yi via its encoder and generates a novel and
complete shape X̃i via its decoder. Generator G plays the
role of Tθ in Algorithm 1 by mapping the latent code xi of
the partial shape, aggregated by a noise vector zj sampled
from normal distribution, to a new code ỹi,j . ỹi,j is then
passed to decoder D to produce a new shape X̃i,j . There-
fore, each partial shape Xi can be mapped to many shapes
X̃i,j .
Multi-modality and training. To train the network on the
entire data, for each input xi, m forward passes with dif-
ferent random vectors (z1,z2,...,zm) are processed. There-
fore, the output from the generator is m latent vectors
(ỹi,1,ỹi,2,...,ỹi,m) where each latent vector corresponds to
a different complete shape or mode. As also described in
Algorithm 1, we then use a nearest neighbour algorithm to
select ỹi,j which is closest to the latent vector encoded from
the corresponding complete shape yi. We compute an L1

loss between ỹi,j and yi to bring ỹi,j closer to the selected
mode (see Figure 3):

LL1
= d(yi, ỹi,j) (2)

Enforcing that every complete shape in our training data
has a similar shape in generated samples ensures that mode
collapse does not occur and we have diversity in generated
shapes. Finally, we decode ỹi,j through decoder D and pro-
duce a novel complete shape. We use Unidirectional Haus-
dorff Distance (UHD) loss between the given partial shape
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(a) Autoencoder minimizing Earth Mover’s Distance (a) Network’s losses for latent codes and shapes

Figure 3. Autoencoder is trained on both partial (blue) and complete (purple) shapes using Earth mover’s distance (a). Two losses are used
on shapes and latent codes in our network (b). Losses are highlighted in red.

and the generated complete shape to ensure that the gener-
ated complete shape encloses the partial shape effectively.
This loss can be defined as:

LUHD = max
x∈Xi

min
y∈X̃i,j

||x− y||, (3)

where x and y are single points belonging to partial and the
generated complete point clouds.

Note that our auto-encoder is trained for reconstruction
task on a point cloud dataset which includes both partial
and complete shapes. We employed Earth Mover’s Distance
(EMD) loss between input and output point clouds pin and
pout to train our auto-encoder:

LEMD(pin,pout) = min
ξ:pin→pout

∑
α∈pin

||α− ξ(α)|| (4)

Testing. During testing, our model does not require any
accompanied complete shape Yi because of which there is
no nearest neighbour selection involved. We simply pass
the partial shapes along with different randomly sampled
noise vectors to the network and decode all the produced
latent codes into complete generated shapes.

4. Experiments and Results
In this section, we provide various experiments and com-

pare our work both qualitatively and quantitatively with
baseline methods. In the end, we are providing some statis-
tics about timing along with qualitative results to show how
much our method respects the partial input shape. We have
also provided some complementary experiments on base-
lines and real-world scan data
Baselines. We compare the result of our point comple-
tion tasks against two multimodal methods: MSC [37], and
kNN-latent (a baseline introduced by [37]). kNN-latent is a
simple baseline to look for most similar complete shapes in
dataset using encoded latent vector of partial shape. MSC
uses a conditional GAN architecture to generate multiple
shapes. We perform quantitative and qualitative compar-
isons with these baselines in the following.

Datasets. We use three datasets to evaluate our work in
different settings. First, we use 3Depn dataset [6] which is
generated from ShapeNet using virtual scans. The dataset
has varied proportions of incompleteness in the samples.
We evaluate our method on three classes of this dataset
- Chair, Plane, and Table. Second, we evaluate Partnet
dataset [2] in which parts are randomly removed from a
complete shape while training/testing. In Partnet, we per-
form evaluation on Chair, Table, and Lamp because of high
number of samples for these classes. Finally, we use the re-
cently released RobustPointSet [31] dataset for evaluating
transferablity of our network. Shapes in this dataset have
missing regions synthetically created on various objects.

Evaluation. Here we provide quantitative and qualitative
results to evaluate our method against baselines. In Table
1 we compare our result using Total Mutual Difference on
3Depn (left) and Partnet (right) datasets. Total Mutual Dif-
ference (TMD) quantifies the diversity among the generated
samples. This is calculated using Chamfer distance between
every pair among generated samples. We show that we have
significant gains in terms of diversity in generated samples
in comparison with multimodal baselines. The difference
can be explained by the fact that our work tends to use all
modes in the dataset. Similarly, in Table 2 we compare our
result using Unidirectional Hausdorff Distance (UHD) on
3Depn (left) and Partnet (right) datasets. UHD is a measure
of how well the partial shape is enclosed by the generated
complete shape. We either outperform the baselines or per-
form relatively similarly. To provide qualitative results, we
show our generated samples for various shape categories in
Figure 4. It can be observed that in the generated shapes,
our method tends to produce various geometric and shape
attributes.

Figure 5 contrasts our results to conditional GAN [37]
and shows that our model has more diversity. Note that our
method respects the partial input very well as is apparent in
Figure 6. To make a better contrast, we have overlapped the
partial input highlighted in green over the generated com-
plete shape highlighted in blue.
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Figure 4. Our completion results for multiple object categories (e.g., Chair, Lamp, Plane and Bottle). It can be observed that the generated
complete shapes are diverse for every object and respects partial shapes.

Methods Chair Plane Table
kNN-latent 2.84 1.13 3.25
Multimodal-GAN 2.56 2.03 4.49
Ours 2.93 2.31 4.92
Methods Chair Lamp Table
kNN-latent 2.28 4.18 2.85
Multimodal-GAN 2.56 3.31 3.88
Ours 2.76 5.49 4.45

Table 1. Comparison between our methods and baselines in terms
of Total Mutual Difference (TMD) or diversity on two datasets -
3Depn (top) and PartNet (bottom). Higher TMD values indicate
more diversity. TMD values in the table are multiplied by a factor
of 102.

Methods Chair Plane Table
kNN-latent 8.94 9.54 10.04
Multimodal-GAN 9.14 9.59 8.74
Ours 8.51 9.55 8.52
Methods Chair Plane Table
kNN-latent 8.58 8.47 7.61
Multimodal-GAN 6.65 5.40 5.38
Ours 6.17 5.58 5.16

Table 2. Comparison between our method and baselines in terms
of Unidirectional Haussdorf Distance (UHD) or completeness on
two datasets - 3Depn (top) and PartNet (bottom). Lower UHD
values indicate better completion. UHD values in the table are
multiplied by a factor of 102.

Part-based completion. In Figure 7, we demonstrate the
ability of our method to generalize to unseen types of par-
tial shapes as input. We remove a part entirely and visual-
ize different completions generated by our method. Even

Figure 5. Qualitative Comparison of our work (left) and condi-
tional GAN [37] (right). As it is apparent, our method produces
more diverse objects.

though no part labels were used during training and so the
model has never seen an entire part taken out, the model can
generate reasonable and diverse completions. Moreover, the
model can generate a diverse range of parts in place of the
missing part that is functionally similar but structurally dif-
ferent, which suggest several interesting properties: (1) the
model has learned which parts have the same function and
are interchangeable, suggesting it has acquired an implicit
understanding of the semantics of the part in question even
though it has never seen part labels during training. (2) The
model does not necessarily generate the particular shape of
the part that was taken out in all completions, suggesting it
did not collapse to a single mode. (3) The model is able to
generate structurally diverse shapes for missing parts in dif-
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Figure 6. Partial shapes (green) and generated complete shapes (blue) are overlapped to illustrate how well our complete shape respects
the partial shape.

Figure 7. Three partial portions are taken from complete shapes for two categories (Chair and Lamp) and completed by our technique.

ferent completions, suggesting that it has learned the space
of structural variations for a part. Moreover, the variations
can be localized to a part even though global noise is in-
jected into the architecture.
Transfer Learning. To examine whether our model can
be used on other datasets, possibly with more non-uniform
missing parts and noises, we perform an experiment on Ro-
bustpointset dataset [31]. Robustpointset contains various
artifacts including missing regions, rotations, noise, etc. We
use our model trained on 3Depn dataset and fine-tune it on
this dataset. Our model successfully fills in or completes
the missing regions and parts. In Figure 8, we show that our
model can be successfully transferred to other datasets. It
is worth noting that these samples do not have much scope
for a diverse generation, so our model naturally converges
to the actual shape.
Timing Comparison. Since our network does not have
a discriminator, its training and inference times are lower
than conditional GAN. Our method needs 13 ms per shape
for training and 2 ms for inference, while conditional GAN
needs 20ms per second and 2ms for inference. [37]. On a
Geforce RTX 2080 GPU, the overall training time for con-
ditional GAN work for the main class Chair (3Depn) is 10
hours for the autoencoder, 10 hours for the VAE and 5 hours
for the generator/discriminator network. In comparison, for
the same case, our work takes total 13.5 hours (10 hours for
the autoencoder and 3.5 hours for the generator training).

Noise Tolerance. We perform noise tolerance analysis of
our work by adding Gaussian noise to input point clouds.
We perform this on 3Depn dataset for Chair category. As
it can be seen in Figure 9 , we are able to achieve rea-
sonable completion despite having noise in partial shapes.
We achieve 2.71 x 10−2 as Total Mutual Difference value
and 8.84 x 10−2 as Unidirectional Hausdorff Distance value
with noisy input point clouds.
Real-World Scans Here we show our results on ScanNet
dataset shared by [5]. This dataset comprises of real-world
scans of chairs. The scanned samples are more noisy and
sparse as compared to other datasets which makes them a
difficult dataset to evaluate on. We use the model we trained
on 3Depn dataset to evaluate on real-world scans and we
demonstrate successful completion with decent variety (see
Figure 11).
Comparison with GCA [45] We have also provided some
qualitative results with GCA [45] that is a probabilistic
model capable of performing multimodal shape completion.
As illustrated in Figure 10, both our method and GCA are
capable of producing diverse results. Note that our method
can produce various plausible bases for the two provided
tops in comparison with GCA and cGAN. It is also worth
mentioning that due to the simplicity of our network, our
inference time is only 0.02 seconds while GCA takes 0.7
seconds to complete a single inference execution since they
run their network for 100 times to generate a single out-
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Figure 8. Generator trained on 3Depn dataset is fine-tuned on RobustPointSet dataset and results are evaluated on Chair class.

Figure 9. Noisy partial shapes are fed through the network for
shape completion through our technique.

oursconditional GANGCA

Figure 10. Comparative results to highlight the difference between
GCA [45], conditional GAN [37], and our method. GCA results
are directly taken from the paper [45].

put. Quantitative results/code are not provided as the GCA’s
code is not publicly available yet.
Implementation details. We tune our hyperparameters
through experiments to have a standard set of parameters
for all classes. For the encoder and decoder model, we use
1D convolutional layers coupled with batch-normalization
layers. We train this auto-encoder network for 1000 epochs
with initial learning rate of 5e− 4 . Similarly, we use linear
layers for the generator and train it for 500 epochs with the
same initial learning rate. During testing, we set m = 10 for
the number of samples we generate for every partial shape.
Limitations. Our current network cannot generate very de-
tailed features in a multimodal manner. This is primarily
due to the network’s simple architecture and can be resolved
by adding refinement networks.

5. Conclusion and Future Work
In this paper, we tackled the problem of multimodal

shape completion problem, in which a given partial shape
can be completed in several different forms. In fact, when a
partial shape is missing a region or part, there is not a sin-
gle and fixed complete shape and the result can be subject
to interpretation. As a result, a method capable of produc-

Figure 11. Qualitative results on real-world scans from ScanNet
dataset. The model trained on 3depn dataset is used to perform
multimodal completion for real-world partial scans.

ing several plausible results is desired to expand the creativ-
ity and diversity of shape completion techniques. Here, we
used IMLE that tends to avoid mode collapse as opposed to
conditional GAN to make sure that we can deliver diverse
completed shapes. Through several experiments, we have
shown that our method is superior in respecting the input
partial shapes’ geometry while producing more diverse re-
sults. We have also shown that without direct supervision,
the network learns to respect geometric properties of shapes
such as symmetry and it learns to generate missing parts in
the right location with accurate geometry. The results of our
shape completion are also comparable with the state-of-the-
art uni-modal shape completion techniques , which shows
that IMLE is capable of respecting features when they are
present.

Several avenues can be explored related to shape com-
pletion and also IMLE. Our shape completion only adds
parts and missing pieces. However, it would be interest-
ing to study how we can add styles and fine details in a
multimodal manner. IMLE can also be used in other tasks
where a one-to-many mapping is needed. An example can
be single view reconstruction, where several objects can be
produced according to a single input image.

References
[1] Matthew Berger, Andrea Tagliasacchi, Lee Seversky, Pierre

Alliez, Joshua Levine, Andrei Sharf, and Claudio Silva. State
of the art in surface reconstruction from point clouds. In
Eurographics 2014-State of the Art Reports, volume 1, pages
161–185, 2014. 2, 3

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

2965



Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 5

[3] Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu,
and Hao Zhang. Learning generative models of 3d structures.
Computer Graphics Forum (Eurographics STAR), 2020. 2

[4] Qimin Chen, Johannes Merz, Aditya Sanghi, Hooman
Shayani, Ali Mahdavi-Amiri, and Hao Zhang. UNIST: un-
paired neural implicit shape translation network. CoRR,
abs/2112.05381, 2021. 3

[5] Xuelin Chen, Baoquan Chen, and Niloy J Mitra. Unpaired
point cloud completion on real scans using adversarial train-
ing. arXiv preprint arXiv:1904.00069, 2019. 2, 3, 7

[6] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and
shape synthesis. In CVPR, 2017. 5

[7] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and
shape synthesis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5868–
5877, 2017. 3

[8] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J
Mitra, and Michael Wimmer. Points2surf learning implicit
surfaces from point clouds. In ECCV, pages 108–124.
Springer, 2020. 3

[9] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. arXiv
preprint arXiv:1406.2661, 2014. 2

[10] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,
and Mohammed Bennamoun. Deep learning for 3d point
clouds: A survey. IEEE transactions on pattern analysis and
machine intelligence, 2020. 3

[11] Xiaoguang Han, Zhen Li, Haibin Huang, Evangelos
Kalogerakis, and Yizhou Yu. High-resolution shape com-
pletion using deep neural networks for global structure and
local geometry inference. In Proceedings of the IEEE inter-
national conference on computer vision, pages 85–93, 2017.
3

[12] Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le.
Pf-net: Point fractal network for 3d point cloud completion.
In CVPR, pages 7662–7670, 2020. 3

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In ICCV, pages 1125–1134, 2017. 2

[14] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing,
volume 7, 2006. 3

[15] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM Transactions on Graphics (ToG),
32(3):1–13, 2013. 3

[16] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[17] Ke Li*, Shichong Peng*, Tianhao Zhang*, and Jitendra Ma-
lik. Multimodal image synthesis with conditional implicit

maximum likelihood estimation. International Journal of
Computer Vision, 2020. 3

[18] K. Li, T. Zhang, and Jitendra Malik. Diverse image synthesis
from semantic layouts via conditional imle. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
4219–4228, 2019. 3

[19] Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-
Min Hu. Morphing and sampling network for dense point
cloud completion. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 11596–11603,
2020. 3

[20] Shakir Mohamed and Balaji Lakshminarayanan. Learn-
ing in implicit generative models. arXiv preprint
arXiv:1610.03483, 2016. 4

[21] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc
Alexa. Laplacian mesh optimization. In Proceedings of
the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia,
pages 381–389, 2006. 3

[22] Liang Pan, Xinyi Chen, Zhongang Cai, Junzhe Zhang, Haiyu
Zhao, Shuai Yi, and Ziwei Liu. Variational relational
point completion network. arXiv preprint arXiv:2104.10154,
2021. 3

[23] Mark Pauly, Niloy J Mitra, Joachim Giesen, Markus H
Gross, and Leonidas J Guibas. Example-based 3d scan com-
pletion. In Symposium on Geometry Processing, number
CONF, pages 23–32, 2005. 3

[24] Shichong Peng and Ke Li. Generating unobserved alterna-
tives. ArXiv, abs/2011.01926, 2020. 3

[25] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, pages 652–660, 2017. 3

[26] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 3

[27] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guer-
rero, Niloy J Mitra, and Maks Ovsjanikov. Pointcleannet:
Learning to denoise and remove outliers from dense point
clouds. In CGF, volume 39, pages 185–203. Wiley Online
Library, 2020. 3

[28] Jason Rock, Tanmay Gupta, Justin Thorsen, JunYoung
Gwak, Daeyun Shin, and Derek Hoiem. Completing 3d
object shape from one depth image. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2484–2493, 2015. 3

[29] Olga Sorkine and Daniel Cohen-Or. Least-squares meshes.
In Proceedings Shape Modeling Applications, 2004., pages
191–199. IEEE, 2004. 3

[30] David Stutz and Andreas Geiger. Learning 3d shape comple-
tion under weak supervision. International Journal of Com-
puter Vision, 128(5):1162–1181, 2020. 2, 3

[31] Saeid Asgari Taghanaki, Jieliang Luo, Ran Zhang, Ye Wang,
Pradeep Kumar Jayaraman, and Krishna Murthy Jatavallab-
hula. Robustpointset: A dataset for benchmarking robustness
of point cloud classifiers. arXiv preprint arXiv:2011.11572,
2020. 5, 7

2966



[32] Lyne P Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian
Reid, and Silvio Savarese. Topnet: Structural point cloud
decoder. In CVPR, pages 383–392, 2019. 3

[33] Weiyue Wang, Qiangui Huang, Suya You, Chao Yang, and
Ulrich Neumann. Shape inpainting using 3d generative ad-
versarial network and recurrent convolutional networks. In
ICCV, pages 2298–2306, 2017. 3

[34] Xiaogang Wang, Marcelo H Ang Jr, and Gim Hee Lee. Cas-
caded refinement network for point cloud completion. In
CVPR, pages 790–799, 2020. 3

[35] Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasac-
chi, Bin Zhou, Ali Mahdavi-Amiri, and Hao Zhang. Pie-net:
Parametric inference of point cloud edges, 2020. 3

[36] Xin Wen, Tianyang Li, Zhizhong Han, and Yu-Shen Liu.
Point cloud completion by skip-attention network with hi-
erarchical folding. In CVPR, pages 1939–1948, 2020. 3

[37] Rundi Wu, Xuelin Chen, Yixin Zhuang, and Baoquan Chen.
Multimodal shape completion via conditional generative ad-
versarial networks. In ECCV, August 2020. 1, 2, 4, 5, 6, 7,
8

[38] Shihao Wu, , Hui Huang, Minglun Gong, Matthias Zwicker,
and Daniel Cohen-Or. Deep points consolidation. ACM
Transactions on Graphics (Proc. of SIGGRAPH Asia 2015),
34(6):176:1–176:13, 2015. 3

[39] Yaqi Xia, Yan Xia, Wei Li, Rui Song, Kailang Cao, and
Uwe Stilla. Asfm-net: Asymmetrical siamese feature
matching network for point completion. arXiv preprint
arXiv:2104.09587, 2021. 3

[40] Kangxue Yin, Zhiqin Chen, Hui Huang, Daniel Cohen-Or,
and Hao Zhang. LOGAN: Unpaired shape transform in la-
tent overcomplete space. TOG, 38(6):Article 198, 2019. 3

[41] Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang.
P2p-net: Bidirectional point displacement net for shape
transform. TOG, 37(4):Article 152, 2018. 3

[42] Kangxue Yin, Hui Huang, Hao Zhang, Minglun Gong,
Daniel Cohen-Or, and Baoquan Chen. Morfit: interactive
surface reconstruction from incomplete point clouds with
curve-driven topology and geometry control. ACM Trans.
Graph., 33(6):202–1, 2014. 3

[43] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Generative image inpainting with contex-
tual attention. In CVPR, pages 5505–5514, 2018. 2

[44] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. PCN: Point completion network. In 2018
International Conference on 3D Vision (3DV), pages 728–
737. IEEE, 2018. 3

[45] Dongsu Zhang, Changwoon Choi, Jeonghwan Kim, and
Young Min Kim. Learning to generate 3D shapes with gen-
erative cellular automata. arXiv preprint arXiv:2103.04130,
2021. 4, 7, 8

[46] Wei Zhao, Shuming Gao, and Hongwei Lin. A robust hole-
filling algorithm for triangular mesh. The Visual Computer,
23(12):987–997, 2007. 3

2967


