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Abstract

Skeletonization is an important process of extracting the
medial axis of the object shape while maintaining the orig-
inal geometric and topological properties. Some recent
studies have demonstrated that deep learning-based seg-
mentation models can extract the main skeleton from ob-
jects more robustly. However, we find that the skeleton ex-
tracted by a vanilla segmentation process is always discon-
tinuous and not accurate enough. In this paper, we pro-
pose a general cascade deep learning pipeline that achieves
competitive performance only using a simple U-shape net-
work. The semantic information contained in the shapes is
limited, so we introduce a ConvNet with multi-source in-
put and multi-task output, CAMION for short, on top of
the basic shape-to-skeleton network. With the multi-source
inputs, CAMION can converge faster than using only bi-
nary shapes; and with the introduction of multi-task learn-
ing, relevant and suitable auxiliary tasks (e.g., feature point
detection and contour extraction) bring considerable gains
for the extraction of skeleton. Our code used in Pixel Skel-
NetOn - CVPR 2022 challenge will be released at https:
//github.com/likyoo/CAMION-CVPRW2022.

1. Introduction
Skeletonization can reduce the dimensionality of an im-

age object to a ”medial axis”, providing an efficient and
compact ”skeleton” of the image object representation. An
accurate medial axis transformation can remove redundant
information while maintaining critical topological and ge-
ometric properties of the object, which facilitates the ex-
traction of object features in subsequent tasks, e.g., human
action recognition [9, 13, 28], segmentation [10], etc.

Some traditional skeletonization algorithms make the
object ”thinner” by ”peeling” layer by layer, using geo-
metric properties. They progressively remove points from
the original object, but keep the original morphology, until
they get the skeleton of the target [7, 29]. Their results are
smooth and continuous on the whole, but always miss some
smooth corners or generate burrs lines at curved shapes,

such as the shape of a bird’s head. Different from tradi-
tional skeleton extraction algorithms, deep learning-based
skeleton extraction methods exhibit significant discontinu-
ous lines and false-negative pixels in the extracted skeleton
due to the impact of sample imbalance in the supervised sig-
nals. In addition, although the shape of the object directly
contains the geometric information of the object, it contains
limited semantic features.

In this paper, we propose our solution for the Pixel Skel-
NetOn challenge in the Deep Learning for Geometric Com-
puting - CVPR 2022 Workshop and Challenge, which in-
cludes:

• We propose CAMION, a CAscade Multi-Input multi-
Output Network that can obtain better performance from
several auxiliary tasks such as feature point detection and
contour extraction. The auxiliary tasks enrich the potential
semantics and the supervision of feature points emphasizes
the key features of the skeleton.

• We further show that our model, a general cascade man-
ner, is able to generate refined predictions in a coarse-to-fine
manner without changing the original formulation. The dis-
continuous skeleton phenomenon is alleviated without us-
ing any post-processing.

2. Related Works
In recent years, most of the outstanding solutions in

SkelNetOn competition were based on deep learning ap-
proaches, more specifically on dense prediction models,
such as semantic segmentation. Some well-established seg-
mentation models, e.g., FCN [14], U-Net [18], PSPNet [30],
Deeplab series [2], HRNet [22], Segformer [27], etc., can
be naturally applied to the skeleton extraction task. Among
them, U-Net is the most commonly used [16, 17, 21]. The
semantic features of shape images are relatively simple,
and U-Net can maintain low-level semantic features by skip
connection between encoder and decoder. Moreover, the
model complexity of U-Net is relatively low and does not
easily lead to overfitting for skeleton extraction tasks with
limited training data. At the same time, the limited amount
of data also makes the vision transformer model does not
show competitiveness in skeleton extraction [21].
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Figure 1. Illustration of the CAMION. Due to space constraints
only three skip connections and up-sampling are drawn. PPM de-
notes pyramid pooling module.

Figure 2. Ensemble attention module. ”Up-Sample” module indi-
cates up-sampling all input features to the original size.

Multi-task learning [25] allows the network to complete
multiple tasks simultaneously and can also facilitate the per-
formance of the main task through the learning of auxiliary
tasks. [16] introduces auxiliary tasks in skeleton extraction
but not multi-task. It embeds auxiliary heads in different
layers of the decoder, but uses only the skeleton as the su-
pervised signal, i.e., deep supervision. Different from [16],
we really construct supervision from different tasks. Cas-
cade networks can generate refined predictions in a coarse-
to-fine manner and have competitive performance in fields
such as semantic segmentation [3], object detection [1], and
point cloud completion [26]. In the skeleton extraction task,
the motivation is to generate fine and accurate skeletons,
and adding the coarse outputs as input for the next level
does not change the original formulation, so the same net-
work can be used recursively to obtain finer skeletons.

3. Methods
3.1. Network Architecture

The skeleton extraction task can be viewed as a pixel-
to-pixel dense prediction task, and U-shape networks can
usually obtain competitive performance, as in some impres-
sive skeleton extraction methods in recent years. Therefore,
we construct a simple baseline with U-shape network. Ini-
tially, we use some mature backbone networks as encoder,
e.g., ResNet [8], Efficientnet [24], Swin-transformer [11]
and ConvNext [12], but unfortunately, their performance is
inferior. This seems to be caused by the excessive down-
sampling in their stem layers, the thin skeleton features

Figure 3. The basic block of CAMION. GAP denotes global aver-
age pooling. MLP denotes multilayer perceptron.

in deep decoder layers cannot effectively benefit from the
high-resolution encoder features. Therefore, we manually
design the encoder and decoder based on the available ex-
perience, as shown in Fig. 1. At a macro level, we design
a basic U-shape network which performs skip-connections
between the encoder and decoder at resolutions of (1, 1/2,
1/4, 1/8) of the original resolution. In our decoder, multiple
auxiliary heads are designed to perform multi-scale deep
supervision to speed up the convergence of the network.

At a micro level, we embed a concurrent spatial-channel
attention mechanism in the basic block, referring to the con-
current spatial and channel Squeeze & Excitation (scSE)
module [19], as shown in Fig. 3. To more adequately ex-
tract features at different scales and obtain more accurate
global and local skeleton representations, we introduce the
spatial pyramid pooling module (PPM) at the bottom of U-
Net [3, 30]. Moreover, it is natural that for the multi-scale
output of the feature pyramid in the decoder, we introduce
an ensemble attention module that automatically accom-
plishes the integration of the multi-scale output and weights
them in a learnable way [6].

Multi-task Learning for Skeletonization. As men-
tioned above, most of the deep learning-based approaches
for skeleton extraction follow the shape-to-skeleton seg-
mentation paradigm. Although the shape of the object di-
rectly contains the geometric information of a real object,
it contains limited semantic information, i.e., without the
texture features of the object. Therefore, we believe that
introducing multi-task learning can help the network to ob-
tain more general feature representation with limited input
signal.

Specifically, for the skeleton extraction task, we intro-
duced two auxiliary tasks: feature point detection [20] and
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Figure 4. Visualization results. The first and second rows are the shapes and skeletons provided in Pixel SkelNetOn dataset. The third row
is the results generated by CAMION.

contour extraction [23]. The motivation of using feature
points as training signal is that we observe the skeleton in
some non-trunk regions are frequently missed by the model,
e.g., the fingertips of bats. The supervision from feature
points is more like emphasis on making the model track the
”good features”, i.e., the corner points of the skeleton, and
thus allowing the extraction of skeletal lines to benefit from
these corner points. In other words, some of the skeletal
lines that had been discarded are recovered. On the other
hand, contour extraction can also bring improvement to the
skeleton extraction, although this gain is relatively slight,
but more importantly, it improves the robustness of skele-
ton extraction. The supervision of contours constrains the
range of skeleton and can avoid false positive pixels to some
extent. In CAMION, all tasks share the backbone network,
and generate their own masks through several lightweight
heads. The ground truth of feature point detection and con-
tour extraction are generated by the algorithms from [20]
and [23].

Cascade Network with Multi-input. Compared with
traditional methods, deep learning-based skeleton extrac-
tion is more accurate and stable. However, we observed
that some skeletal lines extracted using deep learning meth-
ods are discontinuous obviously, which impairs the recall
of the skeletal pixels. Some post-processing algorithms
can connect the discontinuous lines for better visual per-
formance, but usually with loss of pixel accuracy. From the
perspective of processing pipeline, cascade network scheme
can alleviate this problem to some extent. Recently, some
excellent cascade schemes have been used to optimize the
network output of the previous step to get finer segmenta-
tion or detection. As shown in Fig. 1, we get the skele-

ton, feature points and contour of the shape image, through
forward propagation. In the first stage, the skeleton is rel-
atively coarse and discontinuous. Then, we concatenate
the coarse skeleton with the original shape image and feed
them into the network again. In this stage, we obtain a
more refined skeleton than the previous one. After several
refinements recursively, the final skeleton result is gener-
ated. For the skeleton input of the first stage, we use the
ZHANGSUEN thinning algorithm, a traditional morpho-
logical method, which also allows our network to converge
quickly in the early epochs [29].

3.2. Loss Function

Our optimization target is to minimize the overall loss,
which can be formulated as:

L = Ls + λpLp + λcLc (1)

where Ls, Lp and Lc represent the supervised loss of
skeleton extraction, feature point detection and contour ex-
traction, respectively. λp and λc denote the weights of Lp

and Lc, and both are set to 0.1.
To alleviate the impact of sample imbalance, Ls, Lp and

Lc are all the hybrid loss, i.e., the combination of focal loss
and dice loss:

Ls = Ls focal + Ls dice (2)

Lp = Lp focal + Lp dice (3)

Lc = Lc focal + Lc dice (4)
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PPM scSE ensemble att. F1-score

0.7903
✓ 0.7951
✓ ✓ 0.8023
✓ ✓ ✓ 0.8051

Table 1. Ablation study of several modules of basic network.

The Lfocal and Ldice are defined as:

Lfocal =
∑
i

−α(1− pi)
γ log(pi)− (1− α)pγi log(1− pi)

(5)

Ldice = 1−
2
∑

i yipi + ϵ∑
i yi +

∑
i pi + ϵ

(6)

where α and γ denote the balanced variant and focusing
parameter of the focal loss. yi and pi denote the target la-
bels and predicted probabilities, respectively. ϵ is a small
constant to avoid division by zero.

4. Empirical Evaluations on Pixel SkelNetOn
4.1. Dataset and Evaluation Metrics

The dataset provided by the CVPR 2022 ”Deep Learn-
ing for Geometric Computing” workshop consists of 1725
binary images with a size of 256 × 256 pixels. Among them,
1218 images are used as the training set, 241 images as
the validation set, and 266 images for testing. As shown
in Fig. 4, in the shape images and the ground truth skele-
tons, the white area represents the foreground and the black
area represents the background.

F1-score is used for quantitative metric evaluation and is
expressed as:

F1− score =
2 · precision · recall
precision+ recall

(7)

where the precision and recall are defined as:

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

TP, FP, FN respectively indicate the number of true pos-
itive, false positive and false negative.

4.2. Setting

We train CAMION for 240 epochs using SGD with a
learning rate of 5e-2. There is a 30-epoch linear warm up
and a cosine decaying schedule afterward. All the results

skeleton feature point contour cascade F1-score

✓ 0.8051
✓ ✓ 0.8162
✓ ✓ ✓ 0.8188
✓ ✓ ✓ ✓ 0.8285

Table 2. Ablation study of multi-task learning and cascade manner.

are obtained by training on single Tesla T4 GPU, with batch
size set to 8.

For data augmentations, all possible flips and rotations
multiple 90° are used. In addition, we randomly remove
some lines from the input skeletons in order to better enable
the cascade network to learn the potential task of ”connect-
ing discontinuous skeletons”. In the specific implementa-
tion, we use a coarse Cutout [4] only for the skeletons, be-
fore feeding into the network.

4.3. Results

We split the original training set into a new training and
testing set in the ratio of 4:1 to avoid overfitting the original
validation set. Tab. 1 shows the ablation experiments of sev-
eral modules of our basic network. Our U-Shape Network
baseline can achieve 0.7903 F1-score. With the pyramid
pooling module, our network benefits from the global shape
information. The scSE attention module improves the per-
formance to 0.8023 by adaptive adjustment of features on
channel and spatial dimension, with a negligible increase
in model complexity. The ensemble attention mechanism
reweights multi-scale features in a learnable manner. And
finally, our basic model achieves 0.8051 F1-score on the
split-test data.

Tab. 2 presents the results after using the multi-task
learning and cascade manner, where ”cascade” indicates
that only one additional cascade process was performed.
The feature point detection task brings a surprising im-
provement for skeleton extraction, with the score increas-
ing from 0.8051 to 0.8162. The improvement from the con-
tour extraction task, although slight, further demonstrates
that the multi-task learning is feasible in skeleton extrac-
tion. After using the cascade manner, CAMION achieves a
performance of 0.8285 on the split-test data and 0.8289 on
the official testing set (achieve state-of-the-art result com-
pared to the results of previous Pixel SkelNetOn competi-
tions), without using extra tricks, e.g., multi-model ensem-
ble, pseudo label, exponential moving average (EMA), fine
tuning of hyper-parameters, etc. The visualization results
and descriptions are presented in Fig. 4 and Fig. 5.
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Figure 5. Visualization results of basic U-Net and CAMION. The
first and second columns are the shapes and skeletons provided in
Pixel SkelNetOn dataset. The third column is the results generated
by our basic U-Net. The fourth column is the results generated by
CAMION. Some discontinuous lines and false-negative pixels are
indicated by red frames.

Mehond Validation (242) Test (266)

SkeletonNet [15] 0.7480 0.7711
Panichev et. al. [17] 0.7500 0.7846
Subpixel [5] 0.7708 -
CAMION - 0.8289

Table 3. Comparison of results on Pixel SkelNetOn validation and
testing data.

5. Conclusion
In this paper, we propose CAMION which demonstrates

the feasibility of multi-task learning and cascade manners in
skeleton extraction tasks. Furthermore, CAMION is poten-
tial and generalizable. For multi-task learning in CAMION,
more relevant tasks can be introduced, such as the classifica-
tion of shapes (categories are indicated in the image names).
And the cascade manner in CAMION can be generalized to
future models with better performance.
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