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Abstract

Skeleton extraction is a task focused on providing a sim-
ple representation of an object by extracting the skeleton
from the given binary or RGB image. In recent years many
attractive works in skeleton extraction have been made.
But as far as we know, there is little research on how to
utilize the context information in the binary shape of ob-
jects. In this paper, we propose an attention-based model
called Context Attention Network (CANet), which integrates
the context extraction module in a UNet architecture and
can effectively improve the network’s ability to extract the
skeleton pixels. Meanwhile, we also use some novel tech-
niques including distance transform, weight focal loss to
achieve good results on the given dataset. Finally, without
model ensemble and with only 80% of the training images,
our method achieves 0.822 F1 score during the develop-
ment phase and 0.8507 F1 score during the final phase of
the Pixel SkelNetOn Competition, ranking 1st place on the
leaderboard.

1. Introduction

Skeleton extraction, also known as skeletonization, is a
task focused on providing a simple representation of an ob-
ject by extracting the skeleton pixels from the given binary
or RGB image [0]. Nowadays, skeleton extraction is widely
used in many fields, including object recognition [ 18], pose
estimation [17] and motion forecasting [14], etc. Tradi-
tional methods are usually divided into three categories:
morphological thinning methods [19], geometric methods,
and distance transform-based methods [10]. These classi-
cal methods usually provide low accuracy results and are
sensitive to noise at the edge of the shape. In recent years,
with the development of artificial intelligence, some deep
learning-based skeleton extraction approaches have been
proposed, which usually treat extracting skeleton pixels as
a classification problem. These methods take the binary or
RGB image as input and directly predict the skeleton pixels,

]

Figure 1. Badcase Analysis. For each subfigure, left is the binary
shape input and right is the predicted skeleton of a basic UNet.
Since there is no texture information in this scenario, structure in-
formation is crucial to final predictions. However, the center area
(the red boxes) of binary shape image is lacking structure informa-
tion, prone to broken and finely skeletons.

which avoids complex post-processing. But how to improve
the performance of deep learning-based methods is still a
challenge.

As shown in Figure 1, a typical skeleton extraction net-
work fails to predict skeleton pixels in the plain area of the
input shape image. On the one hand, the kernel size of con-
volutional layers is limited, thus the pixels in the plain area
can’t adopt the guidance from object shape. On the other
hand, purely shape inputs lose most structure information
in the object (except the boundaries), making it hard to de-
termine the label of pixels in the center of objects.

In this paper, we propose Context Attention Network
(CANet) to alleviate the aforementioned problems. In order
to extract contextual cues efficiently, we modify the vanilla
UNet with several vital updates, which is proved to be use-
ful to improve the accuracy of skeleton extraction. Besides,
we find that using the distance transform image that con-
tains more information about object structure as input can
ease the difficulty of skeleton extraction, further improving
accuracy. With these novel optimizations, CANet outper-
forms existing methods and other participants on the Pixel
SkelNetOn benchmark.

2. Related Work

Traditional methods of skeleton extraction are usually di-
vided into three parts. For example, Zhang et al. [19] pro-
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pose a fast parallel thinning algorithm, which iteratively re-
moves the boundary and corner pixels of the object. Af-
ter several iterations, only a skeleton of the object remains.
Lu et al. [7] improve this method by preserving necessary
and essential structures which should not be deleted. How-
ever, these classical methods usually provide low accuracy
results and are sensitive to noise at the edge.

Recently, many deep learning-based approaches have
been proposed. Shen et al. [12] propose a fully convo-
lutional network, which is designed to extract the skele-
ton in different scales from multi stages. In [2], the au-
thors use a vanilla pix2pix model with distance transfor-
mation preprocessing to extract the skeleton pixels. This
preprocessing can reduce the learning difficulty of the net-
work. Panichev et. al [10] introduce a U-Net based ap-
proach for direct skeleton extraction and get high perfor-
mance. In [13], the authors continue to study preprocess-
ing methods and propose to use Smooth Distance Estima-
tion (SDE) and Edge Transformation to preprocess the in-
put data, which wins the 1st place in the Pixel SkelNetOn
2021 Challenge. Nguyen [9] makes improvements to the
original U-Net architecture using the attention mechanism
and exploiting the auxiliary tasks, which also got excellent
performances.

3. Method

In this section, we will introduce our main method and
the tricks used to improve model performance, which con-
tains network design, data processing, and loss strategies.

3.1. Network Design

Following [2], we treat the skeleton extraction as a pixel-
wise binary classification problem. The input is binary im-
ages without texture, which contains less information and
can be regarded as a low-level task. Therefore, we use UNet
network [11] as the baseline model. Based on this vanilla
architecture, we make several optimizations to improve its
learning capabilities. The model structure is shown in Fig-
ure 2.

Residual Block. In order to improve the effectiveness of
the model, we replace the dual convolutional block (Dual-
ConvBlock) in UNet with the residual block (ResBlock) [3]
since the residual structure can integrate semantic features
of different convolutional layers while preventing the model
from over-fitting. Specifically, we replace each DualCon-
vBlock with 3 ResBlocks in all stages of encoder and de-
coder.

Context Attention Block. In the neural network design,
the attention module has become a powerful architecture to
improve the model effect. SENet [4] adaptively recalibrates
channel-wise feature responses by explicitly modeling in-
terdependencies between channels. Non-local [15] adopt
spatial attention module to acquire the correlation between

every position of the feature map. Inspired by these ideas,
the Context Attention block contains spatial and channel at-
tention simultaneously. As shown in Figure 3, the long-
range space dependence is captured by matrix multiplica-
tion [15]. Then we use channel attention to reassign chan-
nel weight. ReLU function is added to increase the non-
linear of the model [4]. At the same time, in order to reduce
the calculation of the model, the number of channels in the
middle convolutional layer is reduced to 1/16. Applying
Context Attention Block at the beginning of the network
hurts the performance, thus we only deploy it in the higher
stages(3-9).

3.2. Data Processing

Initially, the binary shape image of the object is used as
the input. However, as shown in Figure 4, we find that the
output of the distance transform applied to the shape image
contains more intuitive information closer to the skeleton
of the object and can reduce the learning difficulty of the
network. Meanwhile, we find that there are some holes in
the output of the distance transform. The prediction has
been significantly improved after filling the holes in the im-
age. Then we try to concatenate the original image, the
image with distance transform and the outline extracted by
canny algorithm [1], but unfortunately, the score is lower
than expected. Following [13], We also try to replace dis-
tance transform with soft distance transform (SDE) but do
not have a good result.

3.3. Loss Design

Following [9], Auxiliary loss is adopted to boost the per-
formance of the model. Feature maps with different resolu-
tions extracted from each stage of the decoder are fed into
a1 x 1 convolutional layer to get low-resolution prediction
results. The losses calculated from low-resolution skeletons
with down-sample ground truth are added to the final loss.

In terms of the loss function, we use the combination
of Dice Loss [8] and Focal Loss [5] in our experiments to
optimize the network because skeleton extraction is a data-
imbalanced task.

Dice Loss is commonly used in semantic segmentation
tasks, which is defined as below:

_9 Zl Yipi + €
Dyt ipite
where y; is the target label, p; is the predict result and € is a
small constant to avoid division by zero (We set ¢ = 1.0 in
all experiments).
Besides, we use weighted focal loss, which is defined as
below:

Ldice =1 (1)

Lfocal = Wpospwlog(p) + Wneg(l - p)ﬂ/l()g(l - P)7 (2)
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Figure 2. Context Attention Network: Our network is based on an encoder-decoder structure. Each stage of the encoder and decoder has a
sequence of 3 ResBlocks. We add context attention block at stages 3-5 of the network. At the end of each encoder stage, max pooling is
applied. The decoder stage contains a transposed convolutional layer, concatenated with a corresponding output of the encoder stage. At
the end of the encoder stage, a 1 X 1 convolution is applied to generate skeleton predictions.
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Figure 3. Context Attention Block: This Block is combined with
spatial attention and channel attention. Firstly, matrix multiplica-
tion is adopted to acquire the correlation between every position of
the feature map. Then we use channel attention to reassign chan-
nel weight.

where W, and W, are the weights of positive and neg-

ative class respectively, p is the probability that the sample

belongs to positive class and +y is the focusing parameter.
The final loss formula is:

Ltotal = )\diceLdice + AfocalLfocaly (3)

Where Agice and Afocq are hyperparameters to balance

-

Figure 4. Comparison of the binary shape image and the output of
the distance transform. Pixels in the latter are more distinguish-
able, making the skeleton extraction easier.

the value of losses. We set Agice = 1.0 and A pocq; = 100.0.

4. Experiments

In this section, we first detail our experimental settings,
followed by a comparison between our method and other
methods. Then we conduct the ablation studies with dif-
ferent parameters. Finally, we visualize the results of our
approach.

4.1. Experimental Settings

Datasets. Our model is trained on the Pixel SkelNetOn
Dataset provided by the SkelNetOn 2022 Challenge [2].
Pixel SkelNetOn Dataset contains 1,725 binary images with
resolution 256 x 256, which splits into 1,218 training im-
ages, 241 validation images and 266 test images. We divide
the training dataset into the training set and the split-test set
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as a ratio of 80%:20%.

Implementation Details. The SGD optimizer with a learn-
ing rate of 0.02 and cosine annealing algorithm is used. We
also use the F1 score to evaluate the model performance.
Following [9], adaptive threshold selection is adopted to se-
lect the best threshold on the split-test set.

4.2. Main Results

Our method is compared with participants shown on the
Pixel SkelNeton leaderboard. As shown in Table 1 and in
Table 2, whether in development or final phase, our method
outperforms current methods with a large margin.

Table 1. Leaderboard of Pixel SkelNetOn Challenge (Develop-
ment phase).

Rank Team name F1 score
1 huangzixuan0508(Ours) 0.8220
2 neptuneai 0.7972
3 lv.zf 0.7935
4 _likyoo 0.7846
5 Young_Ji 0.7400
6 kyriemelon 0.6745

- 1st Place of Pixel SkelNetOn, 2021 \ 0.8129

Table 2. Leaderboard of Pixel SkelNetOn Challenge (Final phase).

Rank Team name F1 score
1 huangzixuan0508(Ours) | 0.8507
2 Young_Ji 0.8359
3 Iv.zf 0.8333
4 jiliushi 0.8299
5 _likyoo 0.8289
4.3. Ablation Study

In this part, we record our attempts to improve model
performance in different ways, including network design,
input format, and loss design.

4.3.1 Network design

Table 3 shows the results of different network architectures.
After adding ResBlock, the representation ability of the
model is improved, thus the F1 score is raised from 0.788
to 0.801. When Context Attention Block is added to the
deep stages of the model, high-level semantic features can
be weighted in spatial and channel dimensions, which im-
proves the skeleton extraction score. At the same time, we

find that the results get worse when adding Context Atten-
tion Block to the shallow stages of the model. Usually, the
shallow layers are used to extract low-level features with-
out high-level semantic information, and this ability may be
adversely affected by attention modules.

Table 3. Ablation experiments on network architectures. “RB”
means ‘“ResBlock”, “CA” means “Context Attention”. “I-5”
means stagel to stage5, “3-5” means stage3 to stage5.

Network Architecture | F1 score
UNet 0.788
UNet + RB 0.801

UNet+RB + CA 1-5 0.801
UNet + RB + CA 3-5 0.806

4.3.2 Data Processing

Table 4 shows the results of different input formats. Ini-
tially, we use 80% training data of binary shape image and
get a score of 0.806. We try to use the instance segmenta-
tion network [16] to predict the shapes of RGB images in
Image SkelNetOn Challenge. 2630 images were selected
and added to the training set. Unexpectedly, the score is de-
creased, due to the inconsistent data distribution from dif-
ferent datasets. In terms of the input data format, images
processed by distance transform are used as the input with
a score of 0.803. After the hole areas are repaired, the score
is further improved to 0.822. Furthermore, we also try to
concatenate binary images and the outputs of distance trans-
form as input data, but the score is not improved. We also
implement the Soft Distance Transform used in [13], but the
results get worse.

Table 4. Ablation experiments on the input data format of the
network.

Input data F1 score
Shape 0.806
Shape + RGB 0.777
Distance 0.803

Shape + Distance 0.794
Repaired distance | 0.822
Soft distance 0.799

4.3.3 Loss

In this part, we show the influence of different loss func-
tions. From Table 5 we can find that combining Focal Loss
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and Dice Loss improves networks’ accuracy. Besides, we
find that the weights of positive and negative samples are
important for skeleton extraction. Specifically, adjust W,
from default 50 to 0.01, W,,¢, from 0.1 to 0.99 can further
improve F1 score from 0.782 to 0.788.

Table 5. Ablation experiments on loss strategies.

explore the model structure and data processing method to
reduce line breaks in the prediction process.

References

(1]

[2

—

Loss F1 score

Focal Loss (Wps=50.0, W,4=0.1) 0.778
Dice Loss 0.770
Dice Loss + Focal Loss (W,s=50.0, W;,¢4=0.1) 0.782
Dice Loss + Focal Loss (W},,,=0.01, W,,.,=0.99) 0.788

4.4. Visualization

We visualize the predicted skeletons of our method and
the baseline method in Figure 5. With the help of tech-
niques proposed in CANet, the skeletons of plain area can
be recovered successfully.

Input (a) Baseline  (b) CANet

Figure 5. Qualitative comparison. Here, we compare CANet with
the baseline on the validation dataset.

5. Conclusion

In this paper, we propose the Context Attention Network
for skeletonization. With only 80% of the training data
and a single model, our method achieves 0.822 and 0.8507
on the F1 score metric during the development and final
phase of Pixel SkelNetOn Challenge, ranked as top-1 on the
leaderboard. But in some cases, the problem of line breaks
has not been well solved. In the next step, we will further
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