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Abstract

Until now, there has not been much research in exploiting
geometric reasoning on object shape and keypoints in object
pose estimation. First, the current RGB image and quater-
nion representing rotation in the previous frame are fed to
a multi-branch neural network responsible for regressing
sparse object keypoints. The initial object pose is estimated
using PnP, which is adjusted in a least-square optimization.
The weights of boundary and keypoints components are de-
termined in each iteration via geometric reasoning on the
projected and segmented 3D object boundary, object shape
extracted by a pretrained neural network and keypoints ex-
tracted by our network. Different from previous methods,
our voting scheme is object boundary-based. We demon-
strate experimentally that the accuracy of pose estimation
is competitive in comparison to the accuracy of SOTA algo-
rithms achieved on challenging YCB-Video dataset.

1. Introduction

Recent studies [13] show that human observers apply the
same inferential rule from all viewpoints, leveraging the ge-
ometrically derived back-transform from retinal images to
actual 3D scenes. Both in picture perception and 3D scene
understanding the observers mentally apply projective ge-
ometry to retinal images. In computer vision, geometry de-
scribes the structure and shape of the world. One of the aims
of geometric perception is to infer a relationship between
the world and a robot [3]. Such a relationship is commonly
modeled by 6DoF (degrees-of-freedom) pose, i.e. position
and orientation. Estimation and tracking of object pose in
real scenes is crucial for machine vision systems to enable
robots’ interaction with real environments and objects [8].

The sensor data from which the pose of an object is es-
timated can be either a single RGB image, a stereo image
pair/depth map, or an image sequence. Estimation of 6D ob-
ject pose from RGB images is not easy due to the intrinsic
ambiguity caused by objects’ visual appearance under dif-

ferent viewpoints and occlusion [8]. The object symmetry
might induce visual ambiguities resulting in multiple visual
appearances for the same pose, i.e. multiple pose estimates
for the same visual appearance. The object pose estimation
is an inherently 3D problem, where one of the main diffi-
culties is recovering object scale from single RGB images.
The essential difficulties stem from the fact that estimating
3D attributes of the objects from 2D measurements is an
ill-posed problem.

Deep learning-based models have surpassed classical
machine learning-based approaches in various computer
vision tasks [2], including object pose estimation. The
most straightforward way of recovering the object pose
can be achieved by estimating the pose parameters directly
[12,15,18,25,31]. Recent work demonstrates that pose esti-
mation approaches, which combine deep learning with geo-
metric optimization (PnP) are capable of achieving superior
results [10, 17]. Such methods first learn a model to predict
the 2D landmarks or fiducial points from the input image,
then perform pose estimation by executing a PnP algorithm
on the 2D-3D correspondences.

Object pose tracking approaches leverage information
from the previous frame to enhance recovering object pose
[8, 22]. While a large number of studies have been con-
ducted in the field of 6DoF pose estimation, there is a
comparatively small number of studies concerning 6D ob-
ject pose tracking [8], in particular from RGB image se-
quences. In this work, we present an approach for object
pose tracking, where a current RGB image and quaternion
representing pose in the previous frame are fed to a multi-
branch neural network, see Fig. 1, which delivers blobs rep-
resenting object fiducial keypoints. Given a current pose
guess, a 3D object boundary is segmented and then pro-
jected onto the 2D image plane. Object shape that is de-
termined by a pretrained shape network is matched with
the segmented object shape and then used to vote for con-
fidences (weights) of the 3D keypoints. The final pose is
determined via optimization-based pose refinement. The
initial pose for the optimization algorithm is estimated on
the basis of the object keypoints and a PnP algorithm. The
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Figure 1. Shape enhanced keypoints learning with geometric prior.

value of the objective function is determined via matching
the coarse 3D geometric model with keypoints estimated by
our neural network and projected 3D shape with the object
shape.
Our contribution. The main shortcomings of the current
two-stage methods are due to that networks predict land-
marks independently and consistency is only imposed by
the pose solver, which is not part of the landmark regres-
sor. To mitigate this effect, many top performing two-stage
approaches are either based on pixel-vise voting [20] or
on generating an ensemble of predictions from each image
pixel or patch [17], and then aggregating them to improve
final predictions. However, regressing landmarks is done
independently without coherence with the object shape. In
order to address the shortcomings mentioned we propose
an approach for geometric reasoning on keypoints and ob-
ject shape. The initial object pose is determined by a PnP,
whereas the final pose is determined by the Levenberg-
Marquardt algorithm. The pose estimation model at this
stage utilizes object’s distinct topological information, i.e.
sparse 3D keypoints that are projected onto 2D image plane,
distance transform representing object shape, and shape-
based voting for keypoint confidences. The object rotation
determined at this stage is then fed in the next frame to one
of the inputs of the neural network responsible for the re-
gression of object keypoints.

2. Relevant Work
Top-performing methods on existing benchmarks, rather

than directly regressing the object pose, are based on two-
stage approaches [12, 16, 17, 20, 21, 24, 25, 31, 33], which
first predict landmarks of the object (intermediate features)
with established 2D-3D correspondences, and then utilize a
PnP like algorithm to determine the pose. Direct regression
of the keypoints is performed in [11, 21, 25], while [12, 17]
employ heatmaps to represent the keypoints. Recent exper-
imental results [10, 17] indicate that two-stage methods are
generally superior in comparison to methods directly esti-
mating object pose. This two-stage mechanism is promising
because learning intermediate features permits more flex-
ibility for potential improvements during both the feature
discovering and pose refinement with the help of scene ge-
ometry. A method proposed in [16] first utilizes a CNN to
regress stable 3D object properties and then combines these

estimates with geometric constraints provided by a 2D ob-
ject bounding box. In [17], image patches are utilized to
learn a landmark predictor. It has been assumed that at least
some patches are not occluded and thus they could deliver
more accurate landmark heatmaps. The final landmarks are
determined via an ensemble of heatmaps representing ob-
ject patches. To better cope with occluded objects, [20]
proposed a neural network for pixel-wise voting for the 2D
keypoints location. The distribution of the keypoints is de-
termined using a generalized Hough voting scheme [1].

There are other notable approaches tackling object
pose estimation on the basis of intermediate features.
Segmentation-driven method [11] first predicts landmark
locations for each small patch of the input image and then
aggregates all patch predictions to establish 2D-3D corre-
spondences needed for solving the pose. In order to utilize
the advantages of end-to-end methods, Chen et al. [5] devel-
oped a differentiable PnP. In [28], color cue with the edge
cue have been utilized in order to diminish the domain gap
between synthetic images for training and real ones for in-
ference. Edge cues have previously been used to identify
object boundaries for 3D object detection and pose estima-
tion [19, 23]. Edge features or object boundary features are
rarely used in recent CNN-based approaches to object pose
recovery.

Keypoint-based representations are commonly used to
encode 3D geometric structure in objects. While [21, 25]
utilize bounding box corners as keypoints, more recent ap-
proaches [20] use designated surface keypoints. The rea-
son is that such bounding box corners are virtual landmarks,
which can be far away from the object’s shape.

Tracking of object pose is achieved with the help of in-
formation from the previous frame [8]. A recently proposed
PoseRBPF (Rao–Blackwellized particle filter) [6] permits
estimating the 3-D translation of an object and its full dis-
tribution over the 3-D rotation. This distribution captures
the uncertainty in the object’s pose, and owing to tracking
the algorithm can better disambiguate the pose of the ob-
ject. This means that after temporal occlusion the algorithm
can recover the pose by tracking it from previous frames.
In a recently proposed DeepIM [14] an optical flow is ex-
ploited to adjust initial pose estimates through minimization
of differences between the 2D re-projection of the 3D model
and the object appearance. While learning a deep neural
network gradually learns to match the pose of the object
via re-rendering the target such that the two input images
that are fed to the network become more and more simi-
lar. Because of using a pretrained FlowNet [7], which takes
two images and generates optical flow between them the
DeepIM has substantial computational requirements. More-
over, DeepIM requires a large number of real-world images
for training it.
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3. Method
Our network is a two-branch architecture that takes in

time t:

• RGB image as a first input
• quaternion representing object rotation in time t−1 as

the second input

and generates k-channelled heatmaps with object keypoints.
Each channel is a gray mask with active pixels forming
heatmaps, whose centers represent keypoint locations. Each
keypoint is regressed on a channel assigned to it in order to
establish 2D-3D correspondences. The keypoints are then
fed to a PnP that determines the initial object pose. It is uti-
lized as an initial pose guess for the Levenberg-Marquardt
(LM), which iteratively refines the object pose, see Fig. 2.

Figure 2. Visualization of data flow in the proposed approach to
6D object pose tracking on sequences of RGB images.

The objective function of LM contains two components:
object shape component and keypoint component. Given
the actual pose guess, the 3D object shape is determined
and then split into k segments. The 3D keypoints and 3D
shape segments are then projected onto 2D image plane us-
ing the camera matrix. The object shape is calculated using
a pretrained neural network, which operates on RGB im-
ages. The values of distance transform (DT) on projected
boundary segments are used to determine the weights for
the shape component. The labeled shape segments are also
used to calculate the weights of the keypoints. The shape
segments are thickened and then used to mask object shape
pixels. Each non-zero shape pixel votes for the nearest key-
point. The weights are used to weight matching results be-
tween the projected 3D points and keypoint heatmaps. In
this way, we can potentially determine the occluded parts of
the object and minimize the effects of occlusions.

In contrast to [20] which predicts dense vectors point-
ing to 2D keypoints, our algorithm votes for keypoint confi-
dences on the basis of the (segmented) object shape. More-
over, our algorithm utilizes also a distance transform. There
are two advantages of our method: i) it enables locating in-
visible or occluded keypoint(s) from segments of the object
shape, ii) it iteratively calculates votes for the keypoints and
shape weights, and then uses them in the objective function.

Figure 3 details the calculation of the objective func-
tion and pose refinement with the help of geometry. Given
the current pose guess, the 3D object model is transformed
to determine 3D object boundary. Afterwards, the 3D ob-
ject boundary is split into k segments, which are projected
onto 2D image plane, where each shape segment has as-
signed k-th label, see upper row on Fig. 3. Next, the ob-
ject shape is calculated using a pretrained neural network.
The labeled shape segments are used to mask the object
shape pixels. Each non-zero shape pixel votes for the near-
est keypoint. This means that occluded boundary pixels,
which usually have zero or small values are masked with
segmented boundary of the 3D model in the current pose.
The confidences of keypoints are calculated on the basis
of such votes. Thus, occluded parts of the object shape
contribute less to the confidence of the nearest object key-
points. The confidences are used to calculate the weights of
the projected 3D keypoints. The values of the heatmaps at
the locations of the projected 3D keypoints are multiplied
by weights (confidences) of the keypoints, see bottom row
on Fig. 3. Finally, the values of DT on projected boundary
segments are used to determine the weights of k boundary
fragments. As values of distance transform on occluded ob-
jects parts are usually high, the corresponding labeled seg-
ments of the shape can be identified easily. In the current ap-
proach, the object segments with distance transform higher
than a predefined threshold are not included in the calcula-
tion of the shape component in the objective function. The
remaining shape segments are weighted such segments with
higher average values of distance transform assume smaller
weights, see middle row on Fig. 3.

Figure 3. Calculation of objective function for pose refinement.

The objective function assumes the following form:

L = min
p

((1− γ)Lkey(p) + γLBound.(p)) (1)

Lkey(p) =

9∑
n=1

V otingpn ∗ ||yn
Pose − yn

Net||22 (2)

LBound.(p) =
1

|E|
∑
e∈E

Edgepe ∗D(e)2 (3)
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where yn
Pose is the projected keypoint of the 3D model in

the actual pose p, rescaled to a reference plane, yn
Net is 2D

position of the corresponding n-th keypoint that is detected
by our network and then rescaled to the reference plane,
whereas E is a set of pixels representing the boundary of
the object in the actual pose and rescaled to the reference
plane, e is boundary segment, D(e) is a function which re-
turns the value of the distance transform for pixels in e, and
γ is a factor that was determined experimentally. V otingpn
is a weight of n-th keypoint, which is calculated on the ba-
sis of the voting, whereas Edgepe stands for the weight of
boundary segment e. yn

Pose = K(q[0 yn
Model]q

−1 + z),
where K is matrix of camera’s intrinsic parameters, yn

Model

is a keypoint from the 3D model, q is quaternion, and z is
the translation. Edgepe is calculated analogously. The initial
pose was used to resize the object to the reference frame.

Figure 4 depicts architecture of our network. It operates
on RGB images of size 128 × 128. The location and di-
mensions of object sub-window are determined on the basis
of gravity center and height/width of 3D object boundary
in the previous frame. The object sub-window is cropped
using the camera model and the distance between the object
and the camera in the previous frame.

Figure 4. Architecture of neural network for object pose tracking.

4. Experiments
4.1. Dataset

The YCB video dataset [29] is one of the largest and
most challenging datasets for benchmarking 6D object pose
estimation. This dataset is also suited well for object pose
tracking, c.f. [6, 14]. It contains 21 everyday life objects.
It consists of 92 video sequences with a total of 133 827
frames. For each object, a 3D model is provided in the
point cloud format. According to recommended train/test
split, 80 video sequences are for training, whereas 2 949
keyframes chosen from the remaining 12 sequences are for
testing. Additional 80 000 frames of synthetic data are pro-
vided in the training set.

4.2. Evaluation Metrics

The error of 6D object pose estimation was determined
on the basis of Average Distance Metric (ADD) [9]. Given
the object modelM and its points x, the ADD metric ex-
presses the average distance of all model points’ estimated

pose P̂x to their ground truth pose Px:

eADD(P̂,P,M) = avg
x∈M
||Px− P̂x||2 (4)

The eADD is evaluated with respect to the model diame-
ter dM. The estimated pose is assumed to be correct if
eADD ≤ θdM, where θ is usually set to 0.1. The ADD-S
metric [9], in which the distance to the closest ground truth
point is measured:

eADD−S(P̂,P,M) = avg
x1∈M

min
x2∈M

||Px1 − P̂x2||2 (5)

can handle symmetric objects. The AUC metric [29] is de-
fined by the area under the accuracy-threshold curve when
using the ADD/ADD-S metric. The curve is built by vary-
ing the threshold, to a maximum threshold of 10 cm. Rou-
tinely, the AUC for ADD/ADD-S is calculated with a dis-
tance threshold. For YCB-Video the 6D pose estimates are
approved if ADD/ADD-S are smaller than 0.1 m threshold.

4.3. Experimental Results

Table 1 presents reprojection errors in terms of 5px
scores [4] that were obtained on the YCB-Video dataset for
keypoints estimated by our network. The 5px errors express
how close the 2D projected vertices are to the ground-truth.
As we can observe, the use of geometric prior in the form
of object rotation from the previous frame permits achiev-
ing far better results in comparison to results achieved by
an ordinary network for keypoints regression. For all YCB
objects except two objects the 5px error scores achieved
by our network are far better in comparison to error scores
achieved by algorithms discussed in [17] and [11].

Table 1. Reprojection errors, 5px scores [%] achieved by our net-
work and recent algorithms on the YCB-Video dataset.

Object [17] [11]
Our Net
w/o quat

Our Net
w/ quat

002 master chef can 29.7 21.0 79.4 82.4
003 cracker box 64.7 12 79.1 86.9
004 sugar box 72.2 56.3 73.0 77.1
005 tomato soup can 39.8 46.2 54.9 73.8
006 mustard bottle 87.7 70.3 75.7 82.3
007 tuna fish can 38.9 39.3 67.0 72.2
008 pudding box 78.0 17.3 68.2 84.8
009 gelatin box 94.8 83.6 0.1 87.6
010 potted meat can 41.2 60.7 87.7 90.8
011 banana 10.3 22.4 59.5 63.0
019 pitcher base 5.43 33.5 74.2 78.8
021 bleach cleanser 23.2 43.3 60.9 66.8
024 bowl* 26.1 13.3 38.2 62.7
025 mug 29.2 38.1 51.1 66.7
035 power drill 69.5 43.3 64.1 73.0
036 wood block* 2.06 2.5 34.9 51.2
037 scissors 12.1 8.8 36.4 45.7
040 large marker 1.85 13.6 72.3 83.0
051 large clamp* 24.2 7.6 45.9 51.6
052 extra large clamp* 1.32 0.6 55.8 73.1
061 foam brick* 75.0 13.5 65.6 78.2
Avg. 39.4 30.8 59.2 72.9
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Table 2 presents ADD and ADD-S that have been
achieved on the YCB-Video dataset by PnP using keypoints
determined by our network and our algorithm for 6D ob-
ject pose tracking. In the PnP version of the algorithm, the
keypoints have been determined by our network using rota-
tion estimates from the previous frame. As we can see, the
results achieved by our algorithm are much better.

Table 2. ADD scores [%] achieved by our algorithm. ADD is cal-
culated for non-symmetric objects, whereas ADD-S is determined
for symmetric objects, and * stands for symmetric objects.

Object PnP Our
002 master chef can 82.6 95.6
003 cracker box 77.1 88.8
004 sugar box 77.6 92.6
005 tomato soup can 45.0 52.7
006 mustard bottle 84.5 94.0
007 tuna fish can 62.7 69.2
008 pudding box 73.7 89.1
009 gelatin box 90.6 95.6
010 potted meat can 45.5 57.5
011 banana 56.9 61.5
019 pitcher base 91.6 98.6
021 bleach cleanser 78.2 85.5
024 bowl* 69.0 78.3
025 mug 63.3 74.5
035 power drill 66.7 82.3
036 wood block* 80.5 85.5
037 scissors 46.3 62.0
040 large marker 43.1 51.6
051 large clamp* 69.5 89.8
052 extra large clamp* 66.0 74.0
061 foam brick* 54.3 59.3
Avg. 67.8 78.0

Figure 6 presents example qualitative results, which have
been achieved by our algorithm on the YCB-Video dataset.
These sample images depict that our algorithm can cope
with scene clutter, severe occlusions, reflection, different il-
lumination, and various movements of objects. As shown,
the large errors can occur for symmetrical objects, see also
bowl object (2nd row, 6th from left).

Figure 5 contains plots of ADD scores vs frame number
for the power drill. These sample plots illustrate the ADD
scores that have been achieved using voting in object pose
refinement (upper plot), using boundary in object pose re-
finement (middle plot), and with both voting and boundary
used in pose refinement (bottom plot). As we can observe,
our proposed pose refinement method achieved the average
ADD score equal to 73%, whereas the average ADD scores
for voting-based and boundary-based algorithms have been
equal to 70% and 71%, respectively.

4.4. Comparison with SOTA

Table 3 compares AUC ADD scores achieved by our al-
gorithm with AUC ADD scores achieved by recent algo-
rithms. As we can observe, our algorithm achieves compet-
itive results on challenging YCB-Video dataset. It achieved

Figure 5. ADD scores vs time for power drill from YCB-Video
dataset: using voting in object pose refinement (upper plot), using
boundary in object pose refinement (middle plot), and with voting
and boundary used in pose refinement (bottom plot).

better results in comparison to PoseRBPF [6] and similar
average AUC ADD score with DeepIM [14], which simi-
larly to our algorithm have been developed for tracking 6D
object pose in sequences of RGB maps. For seven objects
the AUC ADD scores achieved by our algorithm were bet-
ter, whereas for one object the AUC ADD score achieved
by DeepIM was better than the score achieved by our al-
gorithm. For seven objects our algorithm achieved second
best results. The recently proposed GDR-Net [27] achieved
better AUC ADD scores for twelve objects. As we can no-
tice, the average AUC ADD score for all objects is smaller
in comparison to the average AUC ADD score achieved by
our algorithm. For several objects, including pudding box
and scissors the discussed results were considerably worse
in comparison to results achieved by our algorithm. Most of
the recent methods estimate the object pose on single RGB
images without taking advantages of the temporal consis-
tency among video frames. Temporal consistency is a very
important cue, and we demonstrated that better results can
be achieved using it in object tracking. Our pose refinement
strategy permitted us to achieve competitive results.

4.5. Implementation Details

The system has been implemented in Python using
Keras. The neural networks have trained in 500 epochs,
batch size set to four, learning rate equal to 0.001, MSE
loss function, using RMSprop. For eps = 0.0001 the aver-
age number of evaluations of the objective function by the
LM is about eleven. The maximum number of iterations
was set to twenty. The object boundary has been extracted
using a pretrained HED network [30].
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Figure 6. Qualitative results on YCB-Video. Example images demonstrate how our algorithm handles occlusions, differ-
ent arrangement, lighting in ordinary shots for the following objects: 002 master chef can, 003 cracker box, 004 sugar box,
005 tomato soup can, 006 mustard bottle, 007 tuna fish can, 008 pudding box, 009 gelatin box, 010 potted meat can, 011 banana,
019 pitcher base, 021 bleach cleanser, 024 bowl, 025 mug, 035 power drill, 036 wood block, 037 scissors, 040 large marker,
051 large clamp, 052 extra large clamp, and 061 foam brick. The green bounding boxes show the ground truth poses, while the blue
ones correspond to the estimated poses. For better visualization we cropped regions of interest.

Table 3. AUC ADD scores [%] (max. th. 10 cm) achieved by algorithms on the YCB-Video dataset. AUC ADD is calculated for
non-symmetric objects, whereas AUC ADD-S [29] is determined for symmetric objects. ”-” denotes unavailable results, ’*’ stands for
symmetric objects, best results are marked in bold, second best results are underlined.

Pose recovery on single RGB images Pose tracking

Object
PoseCNN
[29]

DOPE
[26] [17] [32]

GDR-Net
[27]

PoseRBPF
[6]

DeepIM
[14] Our

002 master chef can 50.9 - 81.6 49.9 65.2 63.3 89.0 90.5
003 cracker box 51.7 55.9 83.6 80.5 88.8 77.8 88.5 89.1
004 sugar box 68.6 75.7 82.0 85.5 95.0 79.6 94.3 90.0
005 tomato soup can 66.0 76.1 79.7 68.5 91.9 73.0 89.1 80.0
006 mustard bottle 79.9 81.9 91.4 87.0 92.8 84.7 92.0 92.0
007 tuna fish can 70.4 - 49.2 79.3 94.2 64.2 92.0 89.2
008 pudding box 62.9 - 90.1 81.8 44.7 64.5 80.1 84.1
009 gelatin box 75.2 - 93.6 89.4 92.5 83.0 92.0 94.6
010 potted meat can 59.6 39.4 79.0 59.6 80.2 51.8 78.0 85.0
011 banana 72.3 - 51.9 36.5 85.8 18.4 81.0 77.2
019 pitcher base 52.5 - 69.4 78.1 98.5 63.7 90.4 92.3
021 bleach cleanser 50.5 - 76.1 56.7 84.3 60.5 81.7 82.5
024 bowl* 69.7 - 76.9 23.5 85.7 85.6 90.6 89.2
025 mug 57.7 - 53.7 54.0 94.0 77.9 92.0 85.9
035 power drill 55.1 - 82.7 82.8 90.1 71.8 85.4 82.1
036 wood block* 65.8 - 55.0 29.6 82.5 31.4 75.4 84.1
037 scissors 35.8 - 65.9 46.0 49.5 38.7 70.3 70.5
040 large marker 58.0 - 56.4 9.8 76.1 67.1 80.4 81.8
051 large clamp* 49.9 - 67.5 47.4 89.3 59.3 84.1 86.9
052 extra large clamp* 47.0 - 53.9 47.0 93.5 44.3 90.3 90.8
061 foam brick* 87.8 - 89.0 87.8 96.9 92.6 95.5 93.9
Avg. 61.3 65.8 72.8 61.0 84.4 64.4 86.3 86.3

5. Conclusions

In this paper, we presented a novel algorithm for 6D ob-
ject pose estimation on RGB images. We demonstrated ex-
perimentally that our network that takes the current RGB
image on the first input and quaternion representing object
rotation in the previous frame in the second input permits
achieving better results in comparison to the network oper-
ating on RGB images only. We presented a pose refinement

algorithm that on the basis of geometry between keypoints
and objects shape permits improvement of accuracy in 6D
object pose estimation.
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