
MAPLE: Microprocessor A Priori for Latency Estimation

Saad Abbasi
Waterloo AI Institute

University of Waterloo
Waterloo, Ontario, Canada

Alexander Wong
Waterloo AI Institute

University of Waterloo
DarwinAI

Waterloo, Ontario, Canada

Mohammad Javad Shafiee
Waterloo AI Institute

University of Waterloo
DarwinAI

Waterloo, Ontario, Canada

Abstract

Modern deep neural networks must demonstrate state-
of-the-art accuracy while exhibiting low latency and energy
consumption. As such, neural architecture search (NAS)
algorithms take these two constraints into account when
generating a new architecture. However, efficiency metrics
such as latency are typically hardware dependent requiring
the NAS algorithm to either measure or predict the archi-
tecture latency. Measuring the latency of every evaluated
architecture adds a significant amount of time to the NAS
process. Here we propose Microprocessor A Priori for La-
tency Estimation (MAPLE) that leverages hardware char-
acteristics to predict deep neural network latency on pre-
viously unseen hardware devices. MAPLE takes advantage
of a novel quantitative strategy to characterize the underly-
ing microprocessor by measuring relevant hardware perfor-
mance metrics, yielding a fine-grained and expressive hard-
ware descriptor. The CPU-specific performance metrics
are also able to characterize GPUs, resulting in a versa-
tile descriptor that does not rely on the availability of hard-
ware counters on GPUs or other deep learning accelera-
tors. We provide experimental insight into this novel strat-
egy. Through this hardware descriptor, MAPLE can gener-
alize to new hardware via a few shot adaptation strategy,
requiring as few as 3 samples from the target hardware to
yield 6% improvement over state-of-the-art methods requir-
ing as much as 10 samples. Experimental results showed
that, increasing the few shot adaptation samples to 10 im-
proves the accuracy significantly over the state-of-the-art
methods by 12%. We also demonstrate MAPLE identifica-
tion of Pareto-optimal DNN architectures exhibit superla-
tive accuracy and efficiency. The proposed technique pro-
vides a versatile and practical latency prediction methodol-
ogy for DNN run-time inference on multiple hardware de-
vices while not imposing any significant overhead for sam-
ple collection.

1. Introduction

In the previous decade, deep neural networks (DNNs)
have been widely used with great efficacy for a variety
of tasks including computer vision [14, 17, 27, 30], nat-
ural language processing [28, 33], and speech recogni-
tion [13]. However, designing state-of-the-art DNNs is a
time-consuming process, often requiring iterative training
and validation to ensure the model meets the target accu-
racy requirements. Furthermore, applications which require
on-device inference (e.g. privacy-preserving facial recog-
nition, autonomous driving) exacerbate this process as the
task-specific DNNs must now satisfy multiple constraints
of energy consumption, inference latency or memory foot-
print, in addition to just the accuracy. In recent years,
algorithmic solutions such as neural architecture search
(NAS) [3, 8, 20, 22, 26, 38, 41] have received significant at-
tention to automatically find Pareto-optimal architectures
that achieve superlative efficacy and accuracy simultane-
ously [4, 6, 7, 10, 31, 34, 37, 39, 40]. The model efficiency is
typically measured via hardware dependent metrics such as
architecture latency, memory or energy consumption, which
are computationally expensive to acquire.

Nonetheless, achieving low latency is paramount for ap-
plications that require real-time feedback or need to pre-
serve privacy. Since DNN latency is dependent on the net-
work architecture as well as the underlying hardware, dis-
covering Pareto-optimal architectures becomes highly chal-
lenging due to the diverse number of hardware devices, ac-
celerators and frameworks available for servers and edge
devices. To mitigate this issue, some NAS approaches ex-
ecute the evaluated architectures on the target device to
measure the true architecture latency [31]. However, this
approach quickly becomes challenging to scale due to i)
the large number of architectures that need to be evaluated
(e.g. ProxylessNAS evaluates 300,000 architectures in its
first round) and ii) the diversity of available hardware (e.g.
CPUs, GPUs, ASICs). As an example, if we assume the

2747

average latency of a DNN architecture is 50 ms and we
take 50 measurements to reduce variance, Proxyless NAS
would need 750 hours, or nearly a month of continuous
data collection, to evaluate 300,000 architectures. This is
clearly prohibitive for even earlier NAS approaches which
required immense computational resources. More recent
NAS approaches, such as DARTS, are able to discover op-
timal architectures in a few hours [22]. The efficiency of
recent NAS approaches necessitates a need for a practical
hardware-aware NAS that can mitigate the large sample re-
quirement and enables rapid adaptation to different hard-
ware devices.

Motivated by these challenges, we propose Microproces-
sor A Priori for Latency Estimation (MAPLE). As shown
in Figure 1, MAPLE is a hardware-aware latency predic-
tor based on a novel processor prior modeling strategy for
quantitatively characterizing the underlying processor. This
hardware descriptor characterizes the target devices’ main
processor through vendor-provided hardware performance
counters. Performance counters monitor events related to
process execution, such as the number of instructions, cy-
cles, branch predictions or cache hits and misses, among
hundreds of other similar events. An important considera-
tion here is the availability of performance counters on dif-
ferent hardware. CPU vendors have included performance
monitoring units on a wide variety of devices for over a
decade [23, 24, 32]. CPU-based performance monitoring is
widely used to analyze software performance. In contrast,
GPU vendors only support performance monitoring units
on a few devices. To avoid being limited by performance-
counter availability, MAPLE only relies on microprocessor
performance monitoring units. More specifically, MAPLE
uses CPU performance monitoring events to characterize
GPU hardware by taking advantage of the tight I/O cou-
pling between the CPU and GPU, particularly in latency-
oriented applications. This yields a versatile technique that
can characterize a wide variety of hardware.

MAPLE measures performance counters while execut-
ing all possible operations in the NAS search space. We
postulate that characterizing the system hardware at the
operator level (rather than at the architecture level) leads
to two main benefits. First, even though a NAS search
space can create a large number of distinct architectures, the
search space is usually comprised of only a few fixed, sta-
ble primitive operators with only a few possible parameter
choices. The small number of primitive operators results in
a relatively small but expressive hardware descriptor, inde-
pendent of the possible number of architectures in the target
search space. Second, since all architectures are comprised
of operations from the search space, operator-level charac-
terization would be expressive enough to generalize more
effectively to unseen architectures and hardware, yielding
higher accuracy while requiring less samples.

Through such operator-level characterization of the
hardware, we demonstrate that the proposed MAPLE algo-
rithm adapts to new computing hardware with as few as 3
samples collected from the device. The effectiveness of the
hardware descriptor also precludes the need for model adap-
tation techniques such as meta-learning or transfer-learning.
Instead, MAPLE simply relies on mixing the measurements
from the new hardware during training.

We demonstrate the adaptive strength of MAPLE on
eight different devices (3 CPUs and 5 GPUs). To summa-
rize, the key contributions of this study are as follows:

• We introduce a hardware-aware latency predictor
based on a novel microprocessor prior modeling strat-
egy for quantitatively characterizing the underlying
processor through hardware performance monitoring
events.

• By taking advantage of the tight-coupling between a
CPU and GPU, we characterize GPU behavior using
CPU-based hardware performance counters.

• We propose a simple latency prediction technique that
is able to generalize to new hardware with only 3 mea-
surements.

• By characterizing the hardware effectively via the
novel approach, we are able to infer latency with
higher accuracy while requiring a less diverse hard-
ware pool compared to the state-of-the-art algorithms.

2. Related Works
Several research ideas have aimed to alleviate the time

and engineering effort required to predict DNN architecture
latency on a target computing device. One of the simplest
ways to exploit hardware characteristics and use hardware-
aware NAS is by employing FLOPs as a proxy for on-device
latency estimation [15,19]. However, FLOPs are in general,
too simple of a measure as most deep learning operations
are not compute-bound. FLOPs typically lead to inaccurate
estimation of on-device latency. Another simple technique
of estimating the latency is by building an on-device latency
look-up table (LUT) of all possible operations in a given
search space [6, 7, 10, 37]. The NAS then sums the relevant
operator latency to estimate the execution time of a given
architecture. However, a latency LUT fails to capture the
intricacies of architecture optimization (such as layer fusion
or I/O optimization) and thus typically exhibits a deviation
of 10-20% from the actual end-to-end latency, depending
on the underlying hardware and architecture.

A promising approach is to train a regression model on
a dataset of architecture and latency pairs, collected from
the target device [12, 21, 35]. The regression model can
predict the latency of unseen architectures and removes the

2748

CONVNONE

SKIP POOL

Hardware
Perf. Counters

DN
N
Arc

h.
&
Lat

enc
y

Collection of Initial Set

Typically 900
pairs per device

1 measurement
per device

Search Space

DNN Arch. DNN Arch.

Hardware
Perf. Counters

DNN
Arch. &

Latency

CONVNONE

SKIP POOL

Collection of Adaptation SetRegression Model Training
Search Space

Unseen
Device

As few as 3 pairs

…

…

+

Hardware
Descriptor

DNN Arch.

Training Set

Pred. DNN Latency

Initial Device Pool

Latency
Predictor

Figure 1. MAPLE overview; MAPLE is a hardware-aware latency predictor capable of inferring DNN architecture latency on new (previ-
ously unseen) devices. MAPLE relies on a novel quantitative characterization of the device microprocessor through hardware performance
counters. These quantitative metrics characterize the target device based on CPU cache efficacy, computational speed, and memory I/O
among other events. MAPLE collects these metrics while executing the NAS search space operations yielding a fine-grained descriptor
capable of discerning between different hardware. MAPLE also measures the latency of an initial set of DNN architectures on a set of
known devices, enabling generalization on unseen DNN architectures. To adapt to previously unseen hardware, MAPLE characterizes the
new hardware through the fine-grained performance metric-based hardware descriptor and measures the latency of just 3 randomly chosen
architectures. The few shot adaptation sample efficacy is primarily due to the effectiveness of the quantitative strategy to characterize
hardware. The training set is formed by mixing the three adaptation samples into the initial set. The latency predictor is implemented as a
neural network-based regression model which is fed DNN architecture encodings and hardware descriptors.

need to measure the latency of every architecture during the
NAS process; significantly decreases the amount of time
spent on acquiring latency measurements. This approach
results in significantly lower error compared to LUT-based
or FLOP-based approaches. However, the regression-model
approaches quickly becomes difficult to scale since it re-
quires the NAS algorithm to train a new model for every
target hardware, necessitating the collection of a large num-
ber of architectures and latency pairs from all target devices.

Building upon latency predictors, Syed and Srini-
vasan [29] used transfer learning to adapt a regression
model to unseen hardware. Although transfer learning re-
duces the overall cost of sample collection from new hard-
ware, it still requires a considerable number of measure-
ments (approx. 700 samples) from unseen hardware. To-
wards predicting latency on new hardware, Lee et al. [18]
employed meta-learning techniques to develop HELP. Simi-
lar to our work, HELP adapts a regression model to infer la-
tency on previously unseen hardware. The rapid adaptation
is mainly due to the characterization of the hardware us-
ing end-to-end latency of reference architectures. Although
this technique demonstrates state-of-the-art performance, it
requires at least 10 measurements from new hardware to
adapt effectively and does not explicitly characterize the
hardware.

3. Methodology

Our goal is to design a latency estimation inference
model capable of generalizing to different hardware by a
few shot adaption strategy. To this end, in this section we

formulate the hardware-aware regression model, explain the
hardware descriptor and provides details of the dataset col-
lection pipeline.

3.1. Problem Formulation

Although DNN Latency is a function of network ar-
chitecture as well as the underlying hardware architecture,
most latency oriented NAS approaches [12,29] model DNN
latency solely as a function of network architecture. Such
techniques are incapable of generalizing across hardware
devices and therefore require building a predictor for each
target device. Moreover, to generalize across different DNN
architectures, we need to collect a large number of architec-
ture and latency pairs from each target device.

To enable rapid adaptation to new hardware devices, the
latency model must take into account some hardware char-
acteristics (i.e. be hardware-aware) as prior knowledge. To
this end, we formulate the problem of inference latency es-
timation as a hardware-aware regression model. Formally,
the hardware-aware regression model can be defined as
f (a,S; θ) 7→ ŷ where a is the architecture encoding vec-
tor, S is the quantitative hardware descriptor and ŷ is the
predicted latency. This formulation enables the regression
model to predict ŷ on different hardware (S) for the same
architecture a.

Most hardware-agnostic latency estimation techniques
train the regression model on architecture encodings and
subsequently adapt it to different hardware through some
form of domain adaptation [18, 29]. In contrast, MAPLE
adapts to new hardware at training time. The training set
consists of latency measurements from 900 architectures

2749

collected from seven initial devices. This training set is aug-
mented by a few latency measurements (as few as 3) from
the target device. Formally, we define the initial set of sam-
ples (X) as

X =
{(

a,S, y
)
| a ∈ A,S ∈ S, y ∈ Y

}
(1)

where S is the set of hardware descriptors characterizing
every hardware in the training device-pool, A is a set of
architectures (typically 900) for which we collect the on-
device latency, Y, from each device in the training device-
pool. Similarly, the adaptation set X̂ can be described as:

X̂ =
{(

a,S, y
)
| a ∈ Â,S ∈ Ŝ, y ∈ Ŷ

}
(2)

where Ŷ is the measured latency belonging to a set of ran-
domly selected DNN architectures Â, and Ŝ is a set of hard-
ware descriptors characterizing the previously unseen target
hardware. The random adaptation architectures are sampled
from the entire NAS-Bench-201 search space and are not re-
stricted to the 900 training architectures used for the initial
set. The actual training set is simply T = X ∪ X̂. Since
the number adaption examples is considerably less than the
number of initial examples, we minimize weighted mean
absolute error L over the training set T:

argmin
θ

= L
(
f
(
a,S; θ

)
, w, Y

)
(3)

where w is the assigned sample weight. The adaptation
samples are assigned a weight of 1√

|X̂|
and the initial set

of examples are assigned a weight of 1√
|X|

. This weight-

ing scheme ensures that the regression model prioritizes the
samples from new hardware during training.

The architecture a is encoded using a one-hot encoded
operations matrix [36] which defines each edge operation
in a given architecture. The hardware descriptor S is cap-
tured by measuring 10 distinct hardware performance coun-
ters while executing all possible operations defined in the
search space. The hardware descriptor thus effectively car-
ries a unique characterization between the search space and
the underlying device. We discuss the hardware descriptor
S in detail in Sec. 3.3.

3.2. Dataset and Latency Collection Pipeline

Following experimental setup in BRP-NAS [12] and
HELP [18], we use the NAS-Bench-201 dataset [11] for
our experiments. NAS-Bench-201 defines 15,625 cell-
based DNN architectures and provides accuracy figures for
CIFAR-10, CIFAR-100 and ImageNet-16-120 datasets. A
NAS-Bench-201 cell is a 4-node densely connected directed
acyclic graph. Within each cell, each edge is associated
with an operation from the NAS-Bench-201 search space.

i5-7600k

i9-9920X

Xeon 6230

GTX1070

RTX2080Ti

RTX6000
TitanX

TitanXP

i5-7600k

i9-9920X

Xeon 6230

GTX1070

RTX2080Ti

RTX6000

TitanX

TitanXP

0.00 15.35 19.49 18.22 21.26 23.12 24.45 17.91

15.35 0.00 13.88 16.72 18.31 17.24 27.86 15.84

19.49 13.88 0.00 23.18 21.54 16.49 27.54 21.56

18.22 16.72 23.18 0.00 10.90 16.37 16.09 3.56

21.26 18.31 21.54 10.90 0.00 12.86 17.11 11.39

23.12 17.24 16.49 16.37 12.86 0.00 20.71 14.30

24.45 27.86 27.54 16.09 17.11 20.71 0.00 15.47

17.91 15.84 21.56 3.56 11.39 14.30 15.47 0.00

0

5

10

15

20

25

Euclidean Distance

Figure 2. A distance map illustrating the dissimilarity between
hardware descriptors. Of particular note is the distance between
the Titan X and Titan XP, both of which are paired with the same
CPU. Despite using the same CPU (i.e. proxy device), CPU-
specific hardware counters are different for each GPU due to the
tight I/O coupling between the microprocessor and GPU.

The search space includes five possible operations including
none, skip-connection, conv1x1, conv3x3 and avgpool3x3.
Each operation can take on a channel width of 16, 32 and
64, yielding a total of 15 possible operation types.

We characterize a given hardware device by measuring
key performance metrics while executing each operation in
the NAS-Bench-201 search space (further details in Sec-
tion 3.3). More specifically, by employing the Linux per-
formance analysis tool perf [1], we measure key hardware
performance metrics while executing each of the 15 opera-
tions in the search space. Given that we measure 10 hard-
ware counters per descriptor, the resulting size of the hard-
ware descriptor S is 150. In addition to these performance
metrics, we also measure the latency of each operation. The
rationale for including the operator latency is to allow the
model to correlate the end-to-end architecture latency with
the operator latency.

In addition to hardware characterization, we also mea-
sure the end-to-end latency of all 15,525 architectures in
NAS-Bench-201 on eight devices. These devices include
an Intel Core i5-7200k, an Intel i9-9920k, an Intel Xeon
Gold 6230, a Nvidia GTX-1070, a Nvidia RTX-2080 Ti,
an Nvidia TitanX, an Nvidia TitanXP and finally an Nvidia
RTX-6000. Each architecture latency is a mean of 50 mea-
surement runs to reduce variance.

2750

3.3. Quantitative A Priori Hardware Descriptor

The quantitative a priori model described in Section 3.1
requires a hardware descriptor to characterize hardware de-
vices. An effective hardware descriptor would uniquely pa-
rameterize different devices, enabling the regression model
to distinguish between various hardware. We construct
this hardware descriptor via various hardware performance
counters which characterize workload execution. Hard-
ware performance counters are special-purpose hardware
registers within microprocessors that track events related
to CPU-cycles, instruction counts, branch mispredictions,
and cache miss rates, among other vital low-level metrics.
These metrics are widely used for fine-grained performance
analysis and for identifying bottlenecks within programs
[5, 25].

We identify ten different hardware performance counters
that can characterize the hardware effectively. These coun-
ters include CPU-cycles, instructions, cache-references,
cache-misses, level one (L1) data cache loads, L1 data
cache load misses, last-level cache (LLC) load misses, LLC
loads, LLC store-misses and LLC stores. These event coun-
ters characterize if a given workload is compute or memory
bound, how effective is the cache utilization and how often
the system needs to request data from the main memory. We
emphasize that the hardware descriptor is not used to pre-
dict the performance on a target device, it is merely used to
parameterize the hardware such that it leads to a rich rep-
resentation in the latent space. An important consideration
here is the workload executed while the above-mentioned
hardware counters are monitored. Some possible options
include executing several architectures or a set of reference
architectures that can represent the underlying architecture-
latency distribution. However, identifying reference archi-
tectures becomes challenging as the number of possible ar-
chitectures allowed by a NAS search space grows. Simi-
larly, the number of architectures that may need to be exe-
cuted would also increase with the number of possible ar-
chitectures. In lieu of using DNN architectures as work-
loads, we propose a more fine-grained approach where we
execute all operations in the NAS-Bench-201 search space.
The advantage offered by this approach is that its indepen-
dent of the number of architectures and only depends on the
search space size.

While hardware performance counters have been widely
available on various microprocessor architectures [2, 9, 16]
for over decade, they are scarcely found on GPUs or
ASIC/FPGA based deep learning accelerators (DLA). Only
some of the latest GPU models have begun to feature hard-
ware performance counters. Moreover, since GPUs and
DLAs feature significantly different hardware architectures,
they tend to expose a different set of hardware counters
ultimately leading to a different hardware descriptor. A
model trained on CPU performance counters would have

difficulty in interpreting a GPU-based hardware descriptor
and would likely require a latency estimation model dedi-
cated for GPUs or DLAs. Thus relying on device-specific
hardware counters can potentially limit the versatility of the
technique. Keeping the scarcity and versatility in mind, we
propose to use CPU-specific counters to characterize GPUs.
GPU performance strongly depends on how fast a micro-
processor can continuously keep it fed with data, resulting
in tight I/O coupling between the two devices. We propose
to take advantage of this tight I/O coupling to character-
ize the GPU while measuring CPU performance counters,
effectively using the CPU as a proxy to describe GPU be-
havior. This approach yields a versatile hardware descriptor
that can be acquired on a wide variety of systems.

To assess if the proposed CPU-based descriptor is able
to distinguish between different GPUs, we collect hardware
descriptors from all devices used in this study and sub-
sequently compute their euclidean distances. We use eu-
clidean distance over cosine distances to ensure the magni-
tudes of the vectors are also take into account. We observe
from Figure 2 that all devices exhibit large distances from
each other, suggesting that the hardware descriptors are suf-
ficiently dissimilar. A key distance to note is between the
Nvidia Titan X and TitanXP, which were paired with the
same CPU (in the same PC). We note that despite using the
same proxy device, the hardware descriptor describes the
two GPUs differently (hence the large distance between the
two GPUs). This discernability of the hardware descriptor
is due to the tight I/O coupling between the CPU and GPU,
which leads the CPU to behave differently with each GPU.
Thus, employing CPU-specific hardware counters to yield a
hardware descriptor results in a versatile technique that can
target a wide variety of deep learning hardware.

3.4. Regression Model Architecture

The proposed method employs a compact neural
network-based non-linear regression model for latency in-
ference. The regression model is hardware-aware and DNN
architecture-aware as it accepts the hardware descriptor and
DNN architecture encoding as inputs. To cater for the
discrete nature of the architecture encoding a as well the
continuous-valued hardware descriptor S, the regression
model is designed as a dual-stream neural network archi-
tecture (Figure 1 provides an illustration). The first stream
takes the architectural encoding as an input and is processed
by two hidden layers. The architecture encoding is subse-
quently mapped to a 32-dimensional continuous space vec-
tor before being concatenated with the hardware descriptor
S. The concatenated vector is the second stream of the re-
gression model consisting of a further two hidden layers.
Employing the dual-stream model enables the regression
model to learn the characteristics of the architecture encod-
ing and the hardware descriptor independently.

2751

Intel Xeon 6230

0 25 50 75 100
True Latency (ms)

0

20

40

60

80

100

La
ye

r-w
ise

 L
at

en
cy

 (m
s) 1.25% (±1%)

14.82% (±5%)
44.26% (±10%)

Layer-wise Predictor

0 25 50 75 100
True Latency (ms)

0

20

40

60

80

100

Pr
ed

ict
ed

 L
at

en
cy

 (m
s)

8.22% (±1%)
46.60% (±5%)
87.37% (±10%)

HELP

0 25 50 75 100
True Latency (ms)

0

20

40

60

80

100

Pr
ed

ict
ed

 L
at

en
cy

 (m
s)

12.10% (±1%)
55.68% (±5%)
88.18% (±10%)

MAPLE

Nvidia RTX6000

0 5 10 15 20
True Latency (ms)

0

5

10

15

20

La
ye

r-w
ise

 L
at

en
cy

 (m
s) 3.20% (±1%)

18.12% (±5%)
42.81% (±10%)

Layer-wise Predictor

0 5 10 15 20
True Latency (ms)

0

5

10

15

20

Pr
ed

ict
ed

 L
at

en
cy

 (m
s)

3.87% (±1%)
20.41% (±5%)
45.56% (±10%)

HELP

0 5 10 15 20
True Latency (ms)

0

5

10

15

20

Pr
ed

ict
ed

 L
at

en
cy

 (m
s)

11.64% (±1%)
51.95% (±5%)
78.36% (±10%)

MAPLE

Figure 3. Visual comparison of true and predicted latency on Intel Xeon Gold 6230 and Nvdia RTX6000. The HELP and MAPLE methods
were trained on 900 samples collected from each of the seven devices in the training pool. The MAPLE method was adapted by mixing
in 3 samples whereas the HELP method was adapted using 10 samples. The blue line represents perfect prediction accuracy whereas the
dashed gray lines represent ±1%, ±5% and ±10% error bounds. The error-bound accuracy for each technique is annotated in the top left
corner. The insets provide a closer comparison of where each technique places the predicted latency. For example, for the Xeon 6230,
HELP is able to place a significant number of points within ±5 error but exhibits a considerable bias (many points are above the blue line).
In contrast, MAPLE distributes the predictions within ±5% more evenly and is thus able to deliver an accuracy of 88.18%.

4. Evaluation

4.1. Experiment setup

To assess the efficacy of MAPLE, we measure the accu-
racy of our predictor as well as HELP [18] and look-up ta-
ble (LUT)-based approaches. Moreover, we employ an Or-
acle NAS approach to evaluate the identification of Pareto-
optimal architectures.

4.2. Comparison Metric

Inspired by BRP-NAS [12], we employ error-bound ac-
curacy as our primary metric, which is defined as the per-
centage of samples that falls within a given error-bound. In
this study, we use ±1%, ±5%, and ±10% error-bounded
accuracy. These metrics are widely used in the literature

due to their interpretability.

4.3. Comparison baselines

We compare the proposed MAPLE against two well-
known approaches i) LUT [6, 7, 10, 37] and ii) HELP [18].
Using a LUT for architecture latency yields a simple yet
effective approach for estimating how a given architecture
would perform on a new device. The number of measure-
ments required depends only on the search space size and
not on the number of architectures. Although our experi-
ments showed that the accuracy of a LUT-derived latency
depends highly on the complexity of the underlying hard-
ware (see Figure 3), we still consider an architecture latency
LUT to be a strong baseline due to its simplicity, relative ac-
curacy and convenience.

2752

HELP [18] is a state-of-the-art method that can general-
ize to new hardware with as few as 10 samples. The au-
thors demonstrated their technique with seventeen devices
and collected 900 training samples. To eliminate any distri-
bution bias, we train HELP and MAPLE on the exact same
training samples. Using the same samples ensures that the
accuracy results are due to the technique’s ability to gener-
alize to new devices and not due to randomly being trained
on a more representative distribution. We modify the HELP
implementation to output error-bound accuracy instead of
Spearman correlation.

4.4. Efficacy of Few shot Adaptation to Unseen
Hardware

To compare the efficacy of the proposed approach with
the competing methods, we begin by forming a training
pool of seven devices (mentioned in section 3.2) and us-
ing the eighth device for testing purposes. Importantly,
we rotate devices into and out of the training pool using
leave-one-out cross-validation and average the results. Us-
ing leave-one-out cross-validation ensures that the results
are invariant of a specific device combination. We train both
HELP and MAPLE using the same 900 training samples per
device and validate using all 15,625 architectures in NAS-
Bench201. Table 1 shows a detailed comparison between
HELP, the LUT baseline and our method. To stay consistent
with the original study, we use 10 samples to adapt HELP to
test devices [18]. To demonstrate the hardware adaptation
capability of MAPLE, we evaluate our method with as few
as 3 samples as well.

Table 1 compares the 10% error-bound accuracy be-
tween HELP and MAPLE. This Table illustrates MAPLE’s
efficacy in rapid model adaptation. We note that MAPLE
reports an improvement of 6% despite using only 3 sam-
ples for model adaptation compared to HELP’s 10 samples.
Moreover, we note that when MAPLE uses 10 adaptation
samples, the performance improves significantly from an
average of 0.85 to 0.94. Importantly, our regression model
was adapted to GPUs presented in Table 1 using CPU-based
performance counters. The model is able to adapt to GPUs
with only 3 samples due to the tight-coupling present be-
tween the CPU and GPU, as discussed in Section 3.3. This
illustrates the effectiveness of using widely available CPU
performance counters to characterize GPU hardware.

Figure 3 provides an illustrative comparison between the
architecture layer-wise predictor, HELP and MAPLE. The
blue line in the Figure serves as a guide for perfect pre-
diction latency while the dashed gray lines visually show
the ±1%, ±5%, and ±10% error bounds. We again use
10 samples with HELP and 3 samples with MAPLE for
model adaptation. In Figure 3 (top left) we show the cor-
relation between the true latency and summed layer-wise
latency. The layer-wise latency was computed by summing

the execution time of all primitive operations that a given
architecture was comprised of. Each sample was measured
25 times and averaged to get a robust estimate. We note
that the layer-wise predictor consistently underestimates the
architecture latency with the error growing for higher la-
tency models. This illustrates that simply summing the op-
erator latency fails to capture the intricacies of running a
full DNN architecture. Employing HELP (top center) re-
duces the error significantly, with most architectures falling
within ±10% of the actual latency. In contrast, MAPLE is
able to outperform HELP and exhibits an improvement of
nearly 10%, while utilizing only three samples for model
adaptation. We observe a similar trend when assessing the
plots for Nvidia RTX6000 GPU. The layer-wise predictor
consistently overestimates the architecture latency. HELP
again closes the gap between the predicted latency but gen-
erally underestimates the architecture latency for a signifi-
cant number of samples. In comparison, MAPLE can bring
over half the points within ±5% error while employing just
three points.

Finally, to visualize the identification of Pareto-optimal
models we plot the true accuracy of each DNN architec-
ture against its latency (Figure 4). We combine the true
model accuracy with its true (measured) latency to effec-
tively yield an Oracle NAS. The Oracle NAS represents the
overall ground truth for every target device and identifies
the true Pareto-optimal architectures. These true Pareto-
optimal architectures are denoted via yellow stars in the
Figure. Additionally, we combine the true model accu-
racy with predicted latency to identify DNN architectures
that MAPLE and HELP would delineate as Pareto-optimal.
Several important observations can be made from Figure 4.
First, the true Pareto-optimal architectures are different for
each target device, strongly suggesting device dependency
for DNN latency. Secondly, despite using just three adap-
tation points, MAPLE identifies DNN architectures much
closer to the true Pareto-optimal models than HELP which
requires ten adaptation samples. Finally, we note that even
if the prediction accuracy is relatively close (e.g. for Titan
X), it does not necessarily guarantee successful identifica-
tion of optimal models in the search space.

5. Conclusions
In this work, we proposed MAPLE, a simple yet effec-

tive latency predictor that is able to rapidly adapt to new
hardware. MAPLE is based on a novel device descriptor
that is able to characterize the target hardware by measuring
ten key performance metrics, including cache efficacy, com-
putational rate and instruction count, among others. These
metrics are captured by measuring key CPU-based hard-
ware performance counters while executing key primitive
workloads on top. Hardware performance counters yield an
efficient hardware descriptor that enables MAPLE to gen-

2753

No. of Unseen CPU Unseen GPU
Method Samples i5-7600k i9-9920k Xeon 6230 GTX1070 RTX2080 RTX6000 TitanX TitanXP Mean

HELP 10 0.95 0.87 0.87 0.80 0.73 0.45 0.86 0.92 0.81
MAPLE 3 0.92 0.90 0.88 0.95 0.79 0.83 0.84 0.84 0.87
MAPLE 10 0.97 0.92 0.92 0.97 0.90 0.86 0.95 0.94 0.93

Table 1. Comparison of few-shot adaptation efficacy between HELP and MAPLE. Both techniques were trained with 900 points from each
of the seven hardware devices in the training device-pool. HELP was adapted to the unseen devices by collecting 10 additional samples as
suggested by the authors [18]. The efficacy of MAPLE is demonstrated by mixing 3 as well as 10 samples. The reported metric is ±10%
error-bound accuracy. We note that although MAPLE benefits from mixing in 10 samples, mixing only 3 samples also outperforms HELP
algorithm and provides a 3% improvement over HELP.

20 40 60 80
Measured Latency (ms)

45

50

55

60

65

70

75

Va
lid

at
io

n
Ac

cu
ra

cy

Intel i9-9920X

20 40 60 80 100
Measured Latency (ms)

45

50

55

60

65

70

75

Va
lid

at
io

n
Ac

cu
ra

cy

Intel Xeon 6230

5 10 15 20 25
Measured Latency (ms)

45

50

55

60

65

70

75

Va
lid

at
io

n
Ac

cu
ra

cy

Nvidia TitanX

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Measured Latency (ms)

45

50

55

60

65

70

75

Va
lid

at
io

n
Ac

cu
ra

cy

Nvidia TitanXP

Oracle NAS
HELP
MAPLE

Figure 4. Identification of Pareto-optimal architectures in NAS-Bench-201. Each point is a DNN architecture with CIFAR100 validation
accuracy along with true latency (yellow star), MAPLE predicted latency (red cross) and HELP predicted latency (blue plus). We note
that MAPLE only uses three adaptation samples whereas HELP uses the recommended ten. We observe that despite the lower number of
adaptation samples, MAPLE identifies Pareto-optimal architectures more successfully than HELP.

eralize to new devices with as few as three samples. More-
over, the proposed hardware descriptor is also able to char-
acterize GPUs despite being based on CPU-based hardware
performance counters. The GPU characterization is possi-
ble as the proposed technique takes advantage of the tight-
coupling present between the CPU and GPU. In contrast
to other approaches which use fine-tuning or meta-learning,
we incorporated the target device characterization at train-
ing time, yielding a simple yet accurate approach to latency
prediction. We validated MAPLE by conducting a series of
experiments. First, we assessed the latency prediction accu-
racy on new hardware with as few as three and ten sam-
ples. Employing just three adaptation samples yielded a
6% improvement over the state of the art while using ten
samples yielded an improvement of 12%. Second, we as-
sessed how many samples the proposed method requires
to generalize effectively to new devices. We found that
MAPLE yielded an average improvement of 8-10% over
other approaches. Finally, compared to the state-of-the-art
techniques, MAPLE also requires significantly fewer train-
ing examples to generalize to unseen network architectures.
These characteristics yield a simple latency predictor that
can significantly reduce the cost hardware-aware NAS.

References
[1] perf. https://github.com/torvalds/linux/

tree/master/tools/perf, 2021. 4
[2] ARM. Cortex-a9 technical reference manual. pages 159–

169, 2012. 5
[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-
forcement learning. arXiv preprint arXiv:1611.02167, 2016.
1

[4] Maxim Berman, Leonid Pishchulin, Ning Xu, Matthew B
Blaschko, and Gérard Medioni. Aows: Adaptive and optimal
network width search with latency constraints. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11217–11226, 2020. 1

[5] B.R. Buck and J.K. Hollingsworth. Using hardware perfor-
mance monitors to isolate memory bottlenecks. In SC ’00:
Proceedings of the 2000 ACM/IEEE Conference on Super-
computing, pages 40–40, 2000. 5

[6] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 1, 2, 6

[7] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 1, 2, 6

[8] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xi-
aocheng Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural

2754

architecture search. arXiv preprint arXiv:2006.10355, 2020.
1

[9] Intel Corporation. Intel 64 and ia32 architectures perfor-
mance monitoring events. 2017. 5

[10] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei
Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming
Wu, Yangqing Jia, et al. Chamnet: Towards efficient net-
work design through platform-aware model adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11398–11407, 2019. 1,
2, 6

[11] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending
the scope of reproducible neural architecture search. arXiv
preprint arXiv:2001.00326, 2020. 4

[12] Łukasz Dudziak, Thomas Chau, Mohamed S Abdelfattah,
Royson Lee, Hyeji Kim, and Nicholas D Lane. Brp-
nas: Prediction-based nas using gcns. arXiv preprint
arXiv:2007.08668, 2020. 2, 3, 4, 6

[13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hin-
ton. Speech recognition with deep recurrent neural networks.
In 2013 IEEE international conference on acoustics, speech
and signal processing, pages 6645–6649. Ieee, 2013. 1

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[15] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pages 784–
800, 2018. 2

[16] AMD Inc. Amd64 architecture programmer’s manual vol-
ume 2: System programming. pages 629–636, 2021. 5

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25:1097–1105, 2012. 1

[18] Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju
Hwang. Help: Hardware-adaptive efficient latency predictor
for nas via meta-learning. arXiv preprint arXiv:2106.08630,
2021. 3, 4, 6, 7, 8

[19] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 2

[20] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European conference on com-
puter vision (ECCV), pages 19–34, 2018. 1

[21] Chia-Hsiang Liu, Yu-Shin Han, Yuan-Yao Sung, Yi Lee,
Hung-Yueh Chiang, and Kai-Chiang Wu. Fox-nas: Fast,
on-device and explainable neural architecture search. arXiv
preprint arXiv:2108.08189, 2021. 2

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 1, 2

[23] Yongpeng Liu and Hong Zhu. A survey of the research
on power management techniques for high-performance sys-
tems. Software: Practice and Experience, 40(11):943–964,
2010. 2

[24] Wiplove Mathur and Jeanine Cook. Toward accurate perfor-
mance evaluation using hardware counters. In ITEA Model-
ing and Simulation Workshop, pages 23–32, 2003. 2

[25] Daniel Molka, Robert Schöne, Daniel Hackenberg, and
Wolfgang E. Nagel. Detecting memory-boundedness with
hardware performance counters. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance
Engineering, ICPE ’17, page 27–38, New York, NY, USA,
2017. Association for Computing Machinery. 5

[26] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning,
pages 4095–4104. PMLR, 2018. 1

[27] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

[28] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. In Advances in neu-
ral information processing systems, pages 3104–3112, 2014.
1

[29] Muhtadyuzzaman Syed and Arvind Akpuram Srinivasan.
Generalized latency performance estimation for once-for-all
neural architecture search. arXiv preprint arXiv:2101.00732,
2021. 3

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
1

[31] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2820–2828, 2019. 1

[32] Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: A
lightweight performance-oriented tool suite for x86 multi-
core environments. In 2010 39th International Conference
on Parallel Processing Workshops, pages 207–216. IEEE,
2010. 2

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 1

[34] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, et al. Fbnetv2: Differentiable neural architecture
search for spatial and channel dimensions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12965–12974, 2020. 1

[35] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng
Zhu, Chuang Gan, and Song Han. Hat: Hardware-aware
transformers for efficient natural language processing. arXiv
preprint arXiv:2005.14187, 2020. 2

2755

[36] Colin White, Willie Neiswanger, Sam Nolen, and Yash Sa-
vani. A study on encodings for neural architecture search.
arXiv preprint arXiv:2007.04965, 2020. 4

[37] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10734–10742, 2019. 1,
2, 6

[38] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient architecture search. arXiv
preprint arXiv:1907.05737, 2019. 1

[39] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Bowen
Shi, Qi Tian, and Hongkai Xiong. Latency-aware dif-
ferentiable neural architecture search. arXiv preprint
arXiv:2001.06392, 2020. 1

[40] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu,
and Yunxin Liu. Fast hardware-aware neural architecture
search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages
692–693, 2020. 1

[41] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 1

2756

