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Abstract

On-device ML accelerators are becoming a standard in
modern mobile system-on-chips (SoC). Neural architecture
search (NAS) comes to the rescue for efficiently utilizing
the high compute throughput offered by these accelerators.
However, existing NAS frameworks have several practical
limitations in scaling to multiple tasks and different target
platforms. In this work, we provide a two-pronged approach
to this challenge: (i) a NAS-enabling infrastructure that de-
couples model cost evaluation, search space design, and
the NAS algorithm to rapidly target various on-device ML
tasks, and (ii) search spaces crafted from group convolu-
tion based inverted bottleneck (IBN) variants that provide
flexible quality/performance trade-offs on ML accelerators,
complementing the existing full and depthwise convolution
based IBNs. Using this approach we target a state-of-the-
art mobile platform, Google Tensor SoC, and demonstrate
neural architectures' that improve the quality-performance
pareto frontier for various computer vision (classification,
detection, segmentation) as well as natural language pro-
cessing tasks.

1. Introduction

Due to the diminishing returns in the performance gains
with the technology scaling in the post-Moore era, spe-
cialized ML accelerators became an essential component
in most of the modern mobile system-on-chip (SoC) plat-
forms to serve the needs of the real-time on-device ML
workloads. Specialized ML accelerators (such as TPUs
[2], NPUs [1, 18]) provide a substantial peak computation
throughput, however the neural networks can extract opti-
mal performance only when they are co-designed for the
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Figure 1. Proposed MobileNetEdgeTPUV2 models achieve higher
ImageNet top-1 accuracy at lower latency when running on
Google Tensor’s TPU [2] compared to MobileNetEdgeTPU, Ef-
ficientNet, FBNet, MobilenetV3. All models are quantized unless
noted otherwise.

underlying hardware architecture.

There has been significant effort in hand crafting op-
timized neural architectures for specific target platforms
[16,24]. However, the increased complexity of the neu-
ral models and the variety of the target platforms gave rise
to automated neural architecture search (NAS/AutoML) ap-
proaches [6-8, 22,26, 34]. Although there are a variety of
NAS frameworks, there are practical scalability limitations
when it comes to designing neural architectures for different
task domains and/or target platforms.

Either using NAS [14, 29, 31] or through manual de-
sign [24, 30], inverted bottleneck (IBN) layers have been
predominant in building computer vision models. Al-
though conventional IBNs that use depthwise convolutions
have been very successful for mobile CPUs, prior work
highlighted the use of full convolutions can significantly
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improve the model’s accuracy-latency trade-off [14, 31].
Moreover, using full convolutions in IBNs allow fusing the
pointwise expansion with the main full convolutions that
can enable further latency optimizations on ML accelera-
tors such as Edge TPUs [4, 14]. However, fused-IBNs can
have substantially high computational and memory require-
ments for spatially narrow, channel-wise deep tensor shapes
that are typical in the later stages of vision models, limiting
their use throughout the model and leaving the depthwise-
IBN as the only alternative.

We make an observation that a key factor in the high
hardware efficiency of full convolutions on ML accelera-
tors is the increased data reuse due to channel-wise con-
volutions. Depthwise separable convolutions remove the
channel-wise convolution dimension which reduces the
overall parameter and operation count but at the same time
leading to extremely low hardware utilizations. We propose
group convolution (GC) based IBNs, where the channel-
wise convolution is still performed but limited to within
each group. This allows GC-IBN variants to reach hard-
ware utilization levels similar to the full convolution based
IBNs but with much fewer parameter/operation counts.

Moreover, to address the practical limitations of NAS
frameworks, we built a scalable infrastructure which decou-
ples the search space design, platform cost evaluation (e.g.
latency, energy) and the NAS algorithm. We provide cost
evaluation as a gRPC [3] service where multi-trial or one-
shot NAS clients can plug into, either for directly evaluating
a search candidate (multi-trial) or to build learned cost mod-
els (one-shot).

As a concrete case study, we use the proposed infrastruc-
ture on the search spaces including the proposed GC-based
IBNs and target the Edge TPU ML accelerator in the Google
Tensor mobile SoC [2] for the on-device ML tasks identified
by MLPerf Mobile Inference suite [5] which includes image
classification, object detection, semantic segmentation and
natural language processing. For each task, we demonstrate
that the models designed by using our framework signif-
icantly improves the accuracy-performance pareto-frontier
through the latency and energy measurements from Pixel 6
devices.

2. Related Work

Neural Architecture Search (NAS) was proposed to
automate the design of neural network architectures, of-
ten aiming to improve model quality given a cost metric
[6-8,22,26,34]. Since evaluating a candidate model’s qual-
ity requires expensive training jobs in a multi-trial NAS
[26], one-shot approaches with weight sharing in a super-
network are proposed [0, 7,22]. In this work we are not
proposing a new NAS algorithm. Rather we are making
an observation that various NAS methods and their imple-
mentations come with either algorithmic or practical limi-

tations/benefits. We build an infrastructure which can in-
terface with various NAS clients and exercise it for rapid
development targeting a state-of-the-art platform for multi-
ple on-device ML tasks from different domains.

Inverted bottleneck blocks (IBN) have been used exten-
sively in building computer vision models [16, 17,24,29—

]. Conventionally the use of depthwise separable convo-
lutions along with separate pointwise expansion and pro-
jection has shown to be very effective for mobile CPUs
[16,17,24]. Recent work also showed that using full convo-
lutions where expansion and the K x K kernel is fused can
be very efficient on ML accelerators [4, [4,31].

Group convolutions (GC) were originally intended for
model parallelism across GPUs in AlexNet [19], yet they
were also used as part of the IBN blocks [29, 30, 32] to
improve model quality. Recent FBNets [29] use GC in
pointwise convolutions while keeping depthwise convolu-
tions. ResNext [30] divides the ResNet bottleneck blocks
into groups, while ShuffleNet also uses shuffle operations to
add cross-group feature exchange. In this work, we propose
flexible GC based IBN variants that use GC as the K x K
kernel and optionally keep the pointwise full convolutions.
We exploit the flexibility of GC to implement the expan-
sion/projection as part of the K x K GC kernel and achieve
fused GC IBNs similar to fused full convolution versions.
We demonstrate that using GC IBNs opens up the search
space between depthwise and full convolution based IBNs,
and create unique opportunities for efficient execution on
ML accelerators.

3. Neural Architecture Search Infrastructure

In this section, we introduce a scalable infrastructure we
built to perform neural architecture search for optimizing
various models on a dedicated ML accelerator (Edge TPU).
There are two major challenges to address with this infras-
tructure. First, different from optimizing models for CPUs,
performance and power metrics of a model are harder to
predict directly from the number of operations/parameters
on ML accelerators. With the software managed mem-
ory hierarchies of ML accelerators, achieved performance
highly depend on how compiler maps the neural networks
on the hardware. Therefore, we need a way to collect accu-
rate performance and power evaluations (PPE) for guiding
the search. Second, since we target diverse applications, the
framework should unify the search space description and
exploration flow and scale to different model domains.

3.1. Performance Power Evaluation (PPE) Service

Figure 2 shows the components of the PPE service. The
server integrates the Edge TPU compiler, a cycle-accurate
simulator, an analytical performance model for fast yet less
accurate model simulation and a power estimator. Clients
can send independent estimation requests to the server via
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Figure 2. PPE service for model power/performance evaluation.
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Figure 3. Comparing on-device latency measurement with the PPE
service results.

gRPC [3] interface for a candidate model. The server is
scaled to thousands of machines, so several requests can be
served at the same time to serve the needs for highly parallel
NAS.

Figure 3 presents the correlation of on-device latency
versus the latency from PPE service for randomly selected
real use-case models. We observe that PPE latency is
in general lower compared to the on-device latency, due
to simulator’s optimistic assumptions on system resources
such as DRAM bandwidth. However, there is a very strong
linear correlation between the PPE results and the real-
device measurements (R? = 0.99). This leads to correct
relative ranking of the models which is the most critical in
NAS.

3.2. NAS Integration

PPE service can be integrated with different NAS back-
ends. In this work, we have utilized both one-shot and
multi-trial NAS algorithms. For one-shot NAS, we used
a weight sharing method based on TuNAS framework [6].
We have leveraged the one-shot NAS for classification and
detection tasks. However, mostly due to practical chal-
lenges of searching for end-to-end models (backbone and
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Figure 4. Model generator framework.

head) and compatibility of the neural operations (e.g. in
transformer blocks) with weight sharing, we used multi-
trial NAS for segmentation and NLP tasks. However, note
that this is not a fundamental limitation but rather an imple-
mentation decision for rapid deployment targeting a state-
of-the-art platform.

Model Generator. For the multi-trial approach, we have
designed a model generator framework which is platform
and task domain agnostic. Figure 4 is an overview of the
framework. A user-friendly interface allows defining flexi-
ble search spaces by specifying model architecture topology
and searchable parameters. A reinforcement learning (RL)
back-end takes in searchable parameters and provides trial
suggestions in iterations. The suggested candidate mod-
els are constructed and fed to PPE server as estimation re-
quests. The PPE server responses with the model metrics
are used to train the Vizier-based [ | 3] RL agent for optimiz-
ing the back-end to make the next iteration of suggestions
towards an optimization goal (latency, power, model size,
etc.). A visualization and analysis tool is also integrated for
assisting the selection of the best candidate models from the
pool. The user can then export the selected models in pre-
ferred formats for further evaluation (e.g. training) and de-
ployment. We use model generator as (i) a multi-trial NAS
agent and (ii) an inverted bottleneck based neural block an-
alyzer (see Section 4).

4. Neural Architecture Search Space
4.1. Inverted Bottlenecks (IBN)

Inverted bottleneck layers, commonly abbreviated as
IBNs, have been a predominant building block in state-
of-the-art computer vision models for mobile platforms
[16,24,31]. The concept of a (inverted) bottleneck have
also been extended to design of edge-device friendly NLP
models [25]. As shown in Figure 5, a conventional IBN
features a point-wise (1 x 1) convolution that expands the

2669



KxK
D-wise Conv

Yo

Xo

Figure 5. IBN using depthwise convolution [24] (Depthwise-
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Figure 6. IBN using full convolution for the fused expansion and
main kernel [14,31] (Fused-IBN).

input channel dimension to a larger value before applying
a K x K depthwise convolution on the spatial dimensions.
Finally, another point-wise convolution is used to project
the expanded channel dimension to the desired final value.

IBNs are originally designed for mobile CPUs to reduce
the overall operation count in FLOPS (floating-point op-
erations), the number of trainable parameters and improve
hardware efficiency. The separation of convolutions along
the channel and spatial dimension serves this goal compared
to performing a full convolution at the expanded channel
dimension. However, also observed by prior work [14,31],
not all FLOPS have the same efficiency, especially on mo-
bile ML accelerators, where a regular convolution may run
3x as fast on Edge TPUs than a depthwise convolution even
with 7x as many FLOPS.

Motivated by this observation, Fused-IBN variants as
shown in Figure 6 uses a regular full convolution instead
of a separate pointwise expansion and a depthwise convo-
lution kernel. Neural architecture search spaces augmented
with the Fused-IBN were shown to improve model qual-
ity/latency trade-off for object detection [31] and image
classification [ 14] tasks.

Although the Fused-IBN variant can provide an efficient
alternative to Depthwise-IBN, we observed that Fused-IBN
were primarily used in the early layers of the vision models
where the channel dimension is relatively shallower. As the
channel dimension gets deeper and the spatial dimensions
get narrower, Fused-IBN uses a large amount of FLOPS and
parameters which substantially increases the latency cost.

4.2. Group Convolution Based Inverted Bottlenecks

Group convolutions (GC) divide their input/output fea-
ture maps along the channel dimension into groups where
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Figure 7. A K x K group convolution with g groups represented
as a series of regular convolutions.

channel-wise convolutions are limited to within each group
[19]. A group convolution operation can be represented
with a series of full convolutions applied to the groups of
input and output tensors as shown in Figure 7. GC can be
considered as a generalized convolution representation such
that when g = 1 a GC becomes a regular full convolution
and when Z; = Z, = g a GC degenerates into a depth-
wise convolution. Therefore, one can consider the number
of groups in a GC as a knob to tune the number of param-
eters and operations of the convolution. This property of
GC makes it a versatile tool that can be used in crafting
IBN blocks. To this end, we propose GC based IBN vari-
ants to fill the gap in the neural architecture search spaces
constructed solely from Depthwise and Fused IBNs.

A generalized form of GC-based IBN is provided in Fig-
ure 8. Firstly, GC can be used simply as a replacement of the
depthwise convolution of a Depthwise-IBN to increase the
total trainable parameters. However, in contrast to a depth-
wise convolution, GC does not constrain its input and out-
put channel dimensions to be the same size. This allows
performing a part of the channel expansion/projection us-
ing the pointwise convolutions and the remaining part by
the GC kernel. For example, a total channel expansion of
mX, can be split into nx on pointwise convolution and px
on the GC such that 7., = Z; xnand Z,, = Zo X p
where m = n X p (reverse can be applied to the projection
side). Moreover, the entire expansion/projection can also
be performed by the GC in which case the pointwise expan-
sion/projection becomes ineffectual and can be eliminated
(e.g. n = 1). This instance can be considered as a Fused-
IBN where the K x K convolution is replaced with a GC
(Figure 9). Due to this property we will refer to this special
instance as a GC-IBN. GC-IBN provides advantages similar
to the Fused-IBN as the pointwise expansion is fused into
the GC kernel, yet it is more flexible thanks to the group
count knob. Moreover, since the pointwise projection is
kept, it provides a cross-group convolution. This allows us
to avoid commonly used but hardware-unfriendly channel
shuffle operations [29,32]. Note that a dual of this block,
where the projection is fused also exists. However, we did
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Figure 8. A generalized IBN using group convolution as the main
kernel. GC can implement part of the expansion/projection since
there is no constraint such that 7., = Z/.

Figure 9. A special instance of Figure 8: IBN using GC for the
fused pointwise expansion with the main kernel (GC-IBN). (A
dual block also exists where the projection is fused.)

not include it in our search space due to its inferior perfor-
mance on Edge TPUs.

4.3. Hardware Utilization Trade-offs

ML accelerator architectures commonly use wide single-
instruction multiple-data (SIMD) execution units to extract
the highest processing throughput. However, often times
feeding these wide execution units from the memory system
becomes the real bottleneck.

Depthwise convolutions require significantly lower num-
ber of parameters to mitigate the memory requirements.
However, they fall short in utilizing the wide SIMD units of
ML accelerators [14]. An overlooked key insight related to
the low utilization is the lack of the activation operand reuse
in depthwise convolutions. Every input feature map element
fetched from the memory is only used once when com-
puting the output feature maps in a depthwise convolution.
This puts a heavy pressure on the activation fetch bandwidth
requirements, and leads to low utilization of the compute
units. We make the observation that in a group convolution
operation, every input feature map element fetched from the
memory is reused for computing the output feature maps
within its group. This is significant since this means that we
can amplify the activation operand data reuse by controlling
the group size as needed by the SIMD width of the hardware
while requiring fewer parameters than a full convolution.

To concretely demonstrate the computational character-
istics of GC-IBNs, we leveraged the model generator as a
neural block analyzer (Section 3) to generate neural nets
solely based on IBN variants that can run on the Edge
TPU accelerator. In Figure 10, first we observe that GC-
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Figure 10. Executing different IBN variants for two different input
sizes on Pixel 6 Tensor SoC. All IBNs use 3 x 3 kernel size and
int8 data-type.

IBN blocks can provide 4x the trainable parameters and
number of operations while having 0.5x the latency cost
of Depthwise-IBNs. This indeed demonstrates the impor-
tance of the data reuse in reaching high hardware utilization.
We also observe that GC-IBNs hardware utilization can
be closer to the Fused-IBN blocks especially with smaller
number of groups (hence larger group sizes). With smaller
group sizes we start to lose data reuse and hit diminishing
returns. Finally, we observe that the latency vs. trainable
parameter count trade-offs are highly dependent on the ten-
sor shapes and choosing the optimal IBN variant and its
configuration (e.g., group size) is not a straight-forward task
which calls for an automated exploration methodology us-
ing a neural architecture search (NAS).

With the inclusion of the proposed IBN variants the neu-
ral architecture search space becomes extremely large. Al-
though choosing the optimal blocks that will maximize the
model quality with a given latency target is a very diffi-
cult task to perform by hand, we observe that some block
choices can be inherently sub-optimal for certain places
in the neural network topology. For example, in the later
stages of the neural network with the growth of the channel
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dimension and the reduction of the spatial dimension, pa-
rameter reuse drops significantly and Fused-IBNs become
much less efficient. We leverage the neural block analyzer
to alleviate the search space size and filter out such choices
by carefully analyzing the IBN’s performance characteris-
tics.

5. Edge TPU Optimized Models

In this section, we use the proposed infrastructure on the
search spaces including the proposed GC-based IBNs and
target the Edge TPU ML accelerator in the Google Tensor
mobile SoC [2] for the on-device ML tasks identified by
MLPerf Mobile Inference suite [5] which includes image
classification, object detection, semantic segmentation and
natural language processing.

5.1. Image Classification

We start from a model topology similar to Mo-
bileNet/MobileDets due to their efficiency for mobile plat-
forms including TPUs which is our primary target [4, 14,

]. In the search space, we include the IBN variants de-
scribed in Section 4 including Depthwise, Fused and GC-
IBNs. We include residual skip connections over the IBN
blocks with unit stride but omit them for the blocks that
use stride > 1. We also omit swish non-linearity and the
squeeze-and-excite blocks which are known to be less effi-
cient on edge ML accelerators. As mentioned previously,
we fine-tune the search space by filtering the IBN variants
with consistently sub-optimal performance characteristics
at certain blocks of the model topology instead of includ-
ing all variants globally. Furthermore, considering the wide
SIMD engines of ML accelerators, we pick a minimum
group size of 32 and omit GC-IBNs with smaller group
sizes (i.e. larger group counts) based on the neural block
analyzer (Section 4).

Using this search space, we target the Edge TPU ML
accelerator in the Google Pixel 6 Tensor SoC. We search
for 5 different models with progressively increasing latency
budgets which are named as Tiny, XS, S, M, L variants of
MobileNetEdgeTPUv2. Accuracy vs. latency trade-offs
provided by these models after post-training quantization
to int8 datatype are provided in Figure 1 in comparison to
other state-of-the-art (SOTA) mobile models. We observe
that MobileNetEdgeTPUv2 model family outperforms even
the prior SOTA MobileNetEdgeTPU models that are opti-
mized for the Edge TPUs.

Our primary optimization target is the TPU accelerator,
however our search space includes operations that also run
well on mobile CPUs. Moreover, we implement GC using
functionally equivalent series of commonly used ML prim-
itives (slice, full convolution, concatenation) as shown in
Figure 7, so that various platform compilers can efficiently
support them since the native GC support may be missing.
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Figure 11. MobileNetEdgeTPUV2 models also demonstrate better
accuracy-latency trade-off on Google Tensor CPU.

Also GC-IBNs tend to have fewer operations than Fused-
IBNs and mobile CPUs show a stronger correlation between
the number of operations in the neural network and latency.
As a result, in Figure 11 we observe that when executed
on the Google Tensor CPU, MobilenetEdgeTPUV2 family
also outperform other SOTA models.

5.2. Semantic Segmentation

Many vision models consist of two components, the base
feature extractor for understanding general features of the
image, and the head for understanding domain-specific fea-
tures, such as semantic segmentation. For feature extrac-
tion, we start from a model topology similar to Efficient-
Net [27] with IBN variants described in Section 4. We use
a MobileNetEdgeTPUv2 classification model coupled with
the DeepLabv3 [9] segmentation head as our baseline model
and find that it improves the quality of on-device segmenta-
tion.

To further improve the segmentation model quality, we
use the bidirectional feature pyramid network (BiFPN) [28]
as the segmentation head, which performs weighted fusion
of different features extracted by the feature extractor. Us-
ing NAS we find the optimal configuration of blocks in both
the feature extractor and the BiFPN head. Specifically, we
search for the kernel size from {3, 5, 7} for each IBN layer,
and we also search for the expansion ratio from {3, 6} for
each block except for the first one, which has the default
expansion ratio of 1. In addition, we apply a channel multi-
plier that is among {1/2, 1/4, 1, 3/4, 2} to scale the model up
and down. In the BiFPN head, we search over the number of
repeats and minimum feature level, which produces trade-
offs between accuracy and latency. The resulting mod-
els, named Autoseg-EdgeTPU, produce even higher-quality
segmentation results, while also running faster (Figure 12).

The final layers of the segmentation model contribute
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Figure 12. Segmentation model performance on Edge TPU.

significantly to the overall latency, mainly due to the op-
erations involved in generating a high resolution segmenta-
tion map. To optimize the latency on TPU, we introduce an
approximate method for generating the high resolution seg-
mentation map that reduces the memory requirement and
provides a nearly 1.5x speedup, without significantly im-
pacting the segmentation quality.

5.3. Object Detection

Modern one stage object detection architectures typi-
cally produce one or more feature maps from the input im-
age and use either an anchorless detection head such as the
CenterNet [33] or anchor based detection head such as the
SSD [23]. In the past, the classic process to design ar-
chitectures for either of these two types of object detec-
tors requires choosing a backbone network such as the Mo-
bileNets [16, 24] for low latency applications or ResNets
[15] for accurate applications.

There are various methods to fuse together the feature
maps from different endpoints of the backbone, such as
FPN [20] which iteratively includes more low level infor-
mation into the feature map as it upsamples the top feature
map.

We notice that most of the classic object detection archi-
tectures allocate more than 70% of the total budget to the
backbone area of the network while limiting the feature map
fusion to less than 30%. We want to explore if rebalancing
such allocation could lead to a better detection architecture.
Also, recent NAS works such as MnasFPN [8] introduces
a non-trivial connection pattern to fuse feature maps from

different endpoints in the backbone network. We want to
utilize the success in such connection patterns as we design
our object detection architecture.

With this in mind, we have created the Spaghetti Search
Space, aptly named for the spaghetti-like connections be-
tween architecture blocks. For the COCO Object Detec-
tion Task [2 1], the search space consists of a stem node and
12 main blocks, each with the choice of between 2-4 lay-
ers. 6 blocks form the backbone whilst the other 6 form the
head. Blocks in the head use the MnasFPN [8] connection
pattern. Each layer may consist of depthwise separable cn-
volutions [10], Inverted Bottleneck blocks (IBN) [24] and
Grouped Convolution based IBNs (GC-IBN).

As seen in Figure 13, models found with this search
space outperform MobileDet-EdgeTPU [31], current state-
of-the-art detection models targeting Edge TPU platform.
To verify the usefulness of GC-IBNs we remove GC-IBNs
from the search space, and observe that the optimal models
perform similarly to MobileDet-EdgeTPU, which demon-
strates that the proposed search space provides more effi-
cient options compared to the existing depthwise and full
convolution based IBNs.

SpaghettiNet Performance with Grouped Convolutions
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Figure 13. The performance of SpaghettNet models compared
to MobileDet-EdgeTPU. When GC-IBN blocks are incorporated
into the Spaghetti search space, it achieves +2.2% mAP more than
MobileDet-EdgeTPU at the same latency.

5.4. Natural Language Processing

Deploying low-latency, high-quality transformer based
language models on-device is highly desirable, and can
potentially benefit multiple applications such as auto-
matic speech recognition (ASR), translation, sentence auto-
completion, and even some vision tasks [12]. While we
mainly focused on vision tasks so far, the NAS infrastruc-
ture is domain agnostic, and can be easily extended to ap-
plications beyond vision, such as BERT [ 1] variant of lan-
guage models.
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Due to the limitations on weight sharing support in Tu-
NAS for transformers, we simply use a multi-trial approach
exploiting the flexibility of the proposed NAS infrastruc-
ture. Named as Mobilebert-EdgeTPU, we set up our NLP
model architecture search space based on MobileBERT [25]
and leverage the proposed NAS framework to find models
with up to 2x better Edge TPU hardware utilization. With
higher utilization, we are able to bring larger and more ac-
curate models on chip, and meanwhile the models can still
outperform the baseline MobileBERT latency. To comple-
ment the model generator for multi-trial NAS, we developed
a customized knowledge distillation based training pipeline
to quickly assess the generated model’s quality without full
training during search. The final model is fully trained. As
shown in figure 14, the quantized MobileBERT-EdgeTPU
models establish a new pareto-frontier for the question an-
swering tasks and also exceed the accuracy of the float
BERTyqse [11] model, a 400MB+ model in float32 pre-
cision which is too large to run on edge devices.

* MobileBERT-baseline ® MobileBERT-EdgeTPU-quant ® MobileBERT-EdgeTPU-float
91

M-float

S-float
90

M-quant

S-quant

89

XS-float
[
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SQUAD v1.1 F1 score

87 XS-quant
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Pixel 6 Edge TPU Latency (ms)

Figure 14. Performance of MobileBERT-EdgeTPU models on the
SQuAD vl.1 dataset.

As an alternative to the quant models, we also pro-
vide a set of Edge TPU friendly float models, as shown
in figure 14. Notably, the float MobileBERT-EdgeTPU-
M model yields accuracy that is even comparable to the
BERTqrge [11], which has 1.3GB model size in float32
precision. Quantization now becomes an optional optimiza-
tion rather than a prerequisite, which can greatly benefit
use cases where quantization is infeasible or introduce large
accuracy deterioration, and potentially reduce the time-to-
market.

5.5. Energy Efficiency

As the energy consumption is critical for on-device ML
use cases, we also setup an energy measurement harness
and benchmark our models. Our benchmarking setup uses
the nominal device settings and runs the models at 30 in-

Energy per Inference on Google Tensor TPU
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Figure 15. On-device energy per inference measurements when
running the models on Edge TPU.

ferences per second. We first measure the average power
while the TPU is idle. Then, we subtract the idle power
from the average power measured when the TPU is running
the model for 100 inferences to find the active TPU power
consumption. Finally, this power consumption rate is mul-
tiplied by the model latency to find the energy consumed
per inference. Figure 15 demonstrates that the energy effi-
ciency trends are similar to the latency measurements. This
is expected since the efficient utilization of the hardware not
only improves performance but also minimizes the use of
inefficient operations and reduces the energy consumption.
For the other targeted tasks we observe similar trends but
for brevity we only report the image classification results.

6. Conclusion

In this work we target optimizing various on-device
ML tasks on edge ML accelerators. We propose flexi-
ble inverted-bottleneck (IBN) variants using group convolu-
tions (GC) and design search spaces including these blocks.
GC based IBNs opens up the search space between depth-
wise and full convolution based IBNs, and create unique
opportunities for efficient execution on ML accelerators.
To easily find optimized models for various on-device ML
tasks, we propose a scalable NAS-enabling infrastructure
that decouples cost evaluation, neural search space design.
Using this infrastructure with the proposed search spaces
and targeting a state-of-the-art mobile SoC platform Google
Tensor TPU, we demonstrate significant improvements in
quality, latency and energy metrics for mobile ML tasks in-
cluding computer vision (classification, detection, segmen-
tation) and natural language processing (NLP).
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