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Abstract

Most popular metric learning losses have no direct re-
lation with the evaluation metrics that are subsequently ap-
plied to evaluate their performance. We hypothesize that
training a metric learning model by maximizing the area
under the ROC curve (which is a typical performance mea-
sure of recognition systems) can induce an implicit ranking
suitable for retrieval problems. This hypothesis is supported
by previous work that proved that a curve dominates in ROC
space if and only if it dominates in Precision-Recall space.
To test this hypothesis, we design and maximize an approx-
imated, derivable relaxation of the area under the ROC
curve. The proposed AUC loss achieves state-of-the-art re-
sults on two large scale retrieval benchmark datasets (Stan-
ford Online Products and DeepFashion In-Shop). More-
over, the AUC loss achieves comparable performance to
more complex, domain specific, state-of-the-art methods for
vehicle re-identification.

1. Introduction

The main objective of metric learning systems is to em-
bed high dimensional data (such as images, videos, or audio
signals) into a lower dimensional space, while ensuring that
the data that comes from the same class or identity is em-
bedded within a cluster, which is separated from the clusters
of data that belong to other classes.

The traditional approaches (such as SIFT, SURF or bag-
of-words) were replaced by newer deep learning methods
that compute the embedding by processing input data by
deep neural networks, and use this embedding for compari-
son of images. The neural networks are trained by minimiz-
ing a loss function that models the desired structure of the
embedding space. Even though the most widely used losses

for metric learning, such as constrastive loss [5], triplet
loss [33], quadruplet loss [4], classification loss [44], etc,
train models to provide locally optimal solutions, there is
no direct relation between the optimized loss and the com-
monly used evaluation criteria (such as recall@ 1 and mAP).

One notable exception is the loss presented in [30],
which proposes a direct maximization of the mean Aver-
age Precision (mAP) for solving the retrieval task, which
perfectly mimics the final metric learning goal. However,
this loss requires obtaining the vector representations of all
training images by a full forward pass through a deep neu-
ral network several times, in order to provide a single gra-
dient. The authors demonstrate the performance of the loss
on training data up to 43k images, which is significantly less
than the size of commonly used datasets nowadays.

The area under the ROC curve is a well known way of
evaluating recognition systems [3,11,13]. As the amount of
available data, as well as computational power, in the past
were limited, the ROC curve based on the available sam-
ples was not smooth, and the area below such an empirical
curve was not accurate. Therefore, in [13] the authors pro-
posed two ways to approximate the real area under the ROC
curve: Gaussian based approximation and Wilcoxon Statis-
tics. Maximization of the area under the ROC curve for
classification task was proposed in [3], using the Wilcoxon
statistics. Even though this approach was appropriate in the
past, we show in Section 4.3.4 that our proposal is clearly
superior when evaluated on metric learning datasets.

In this paper, we propose to directly minimize a loss
which has a clear relation with the metrics typically used to
evaluate retrieval problems. This hypothesis is supported by
the fact that “a curve dominates in ROC space if and only if
it dominates in PR space” [6]. In this paper we propose the
AUC loss, a new metric learning loss which explicitly max-
imizes an underestimate of the area under the ROC curve at
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the mini-batch level. We show how the area under the ROC
curve can be approximated by its differentiable relaxation,
without the need for extra hyper-parameter search. AUC
loss is effective and computationally inexpensive. We tested
AUC loss on four benchmark datasets, and showed that
it achieved state-of-the-art performance for both retrieval
(which is measured by mAP and rank@N) and recognition
(measured by the area under the ROC curve).

2. Related Work

Losses that are designed for metric learning can be sep-
arated into two groups: pairwise losses and listwise losses.

Pairwise loss functions. This group of losses includes
some of the most popular loss functions used for met-
ric learning, instance retrieval, face recognition or re-
identification. All these losses have one thing in common:
they optimize absolute or relative distances of pairs of im-
ages; they minimize distances between descriptors that rep-
resent images from the same class/identity, and maximize
the ones that are coming from different classes.

The pioneer from this group was the contrastive loss
[12]. The authors of this approach use a Siamese archi-
tecture of two streams. If the two input samples are from
the same class, the loss pushes their descriptors closer, and
separates their descriptors if they belong to different classes.

The Triplet loss [33] requires a Siamese architecture with
three streams, and it is fed with three images: an anchor
image I, a positive image from the same class I, and a
negative image from any other class [,,. All three images
are embedded into their respective descriptors 4, 1, and 7,.
The triplet loss pushes the descriptors from the same class
closer to each other while separating the descriptors from
different classes if the difference between the distance of
anchor and negative (d~ = ||r, —7,||?) and anchor-positive
(d* = ||rq — rp||?) is smaller than a margin m.

In [4] the authors propose adding an additional, fourth
stream to the Siamese architecture, which embeds an ad-
ditional negative image. The final objective is having an
anchor-positive distance smaller than the anchor-negative,
while making sure that the anchor-negative distance is
greater than the negative-negative distance.

Many approaches, inspired by the triplet loss, proposed
various ways to optimize training time and quality of the
results by using more information from the data points that
are available in a mini-batch. In [16] the authors propose
creating mini-batches of P classes and K images per class.
In each training step they do a forward pass of all P x K
images and get their descriptors. They propose two ways
of optimizing the main objective: Batch hard and Batch all.
The batch hard triplet loss treats all images from the mini-
batch as anchors, and for each one of them selects the one
from the same class that is furthest away as a positive, and
the one from a different class, closest to the anchor, as a

negative. Batch all strategy calculates the loss based on all
positive and negative pairs from the mini-batch.

Similarly to the batch all triplet loss, the structured
loss [28] and the n-pair loss [34] take advantage of
all positive and negative pairs from the mini-batch. In
[34] the authors propose creating a mini-batch of N
pairs {(x1,27), (v2,27), ..., (xn,7})} from N different
classes. For each positive pair they sample N — 1 nega-
tive samples from all different classes, and they use them
for calculating the loss. In [28] the negative pairs are sam-
pled inside of a mini-batch, so that the negative is one of the
closest samples to either anchor or positive for each anchor-
positive pair in the mini-batch.

Finally, one group of methods attempts to optimize the
area under the ROC curve [7, 17,45]. [45] and [7] have
the goal to optimize for classification, while [17] trains
the model for cross-modal metric learning. They all ap-
ply a loose approximation of indicator function 1(z < y)
as y — x. This approximation leads to a loss that is very
similar to the Triplet loss with two minor differences: 1) the
anchor of positive and negative pair is not necessarily the
same sample, and 2) the margin m is set to 1.

Listwise loss functions Even though the pairwise loss
functions optimize distances between positive and nega-
tive pairs, they do not explicitly optimize a ranking mea-
sure. The typical ranking measure is mean average preci-
sion (mAP) which cannot easily be optimized, as it requires
ranking, which is not a differentiable operation.

In [37] the authors propose the Histogram loss. The
method is designed to separate the histograms that approx-
imate the distributions of positive and negative similarities
inside of a mini-batch. This objective does not directly op-
timize the ranking task, but indirectly, it forces all positive
pairs to have higher similarity than all negative pairs. [37]
is the inspiration of several listwise losses [14, 15, 30] that
directly optimize the average precision. The pioneer in this
line is a differentiable approximation of average precision
(AP) for retrieval in Hamming space, that focuses espe-
cially on tie scenarios (where both positive and negative
samples belong to the same histogram bin) [14]. In [15]
the authors apply the same strategy on retrieval and patch
matching tasks. In [30] the authors propose a solution for
training a very deep CNN with large images while optimiz-
ing mAP loss on the whole train set. Once all gradients are
accumulated, it backpropagates the errors through the net-
work. This method cannot easily scale to larger datasets,
due to its high computational cost per weights update.

3. Method

In this section we first introduce the area under the ROC
formula, which we relax to obtain its differentiable version,
which is the base of the proposed new AUC loss.
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3.1. Area under the ROC curve

Given a threshold value ¢, T'(t) the True Positive Ratio
(TPR) and F(t) the False Positive Ratio (FPR), the ROC
curve is the parametrized curve t — (F(t),T(t)), as shown
by the red line in Fig. 1. The area under the ROC curve can
be written as follows:

A= T(t)——=dt. 1
t=tmin ( ) dt ( )

1

T(s) |

8 = tmin
T(s+ As) | .
8 = tmax

0

F(s+ As) F(s) 1

Figure 1. The ROC curve (red line) and its approximation based on
a set of thresholds s (blue line). The area under the approximated
curve is calculated using the Trapezoidal rule.

Given a similarity function f(dy,d2) € [tmin, -, tmaz)s
for a pair of data points d; and do and for the set of all

positive pairs P = {(a’lvpl)? (a2ap2)7 ey (aNp7pr)} in
the training set, the TPR can be written as:

Np
T(t) = Nip S H(f(api) — 1), @
=1

where H(-) is the Heaviside function. For the set of all
negative pairs N = {(a1,n1), (az,n2),..., (any,"Ny)}s
the FPR can be written as:

NN

LS H(f(ag.ny) — 1), 3
=1

J

(1)

Plugging Equations 2 and 3 into | we have:

e SOV H(f(ai,pi) — t)
A_/t Np

a (zé—“ H(f(a,74) t>> v @

=tmin

dt Ny

This formula cannot be used for gradient based optimiza-
tion: (1) the integral cannot be directly computed and (2) the
Heaviside function has zero gradient almost everywhere.

3.2. Differentiable relaxation of AUC

3.2.1 Integral to series (Riemann sum)

Firstly, we approximate the continuous integral from Equa-
tion 4 with its discrete representation. We apply the Trape-
zoidal rule and obtain the numerical approximation of
Equation 1:

tmaz—AS

=3 Tls+ A;) +T0) (p(s) — F(s + As)).

S=tmin

®)
where s spans the interval [t,,in, tmaz] in S discrete steps
of size As = (tmaz — tmin)/S. This approximation cor-
responds to the area below the piece-wise linear blue curve
from Fig. 1. The number of steps is a relevant parameter
since more steps provide a better approximation of the inte-
gral. Taking into account that 7'(s) and F'(s) depend only
on the parameter s, they can be calculated in parallel for a
set of values s € {tmin, tmin + AS, ..y tmax — As}, allow-
ing for an efficient implementation on GPUs.

3.2.2 Heaviside to sigmoid

The second step involves using a derivable approxima-
tion of the Heaviside function; we use the following
parametrized sigmoidal-like function:

1

T e ©

op(z,t) =
This choice has three main rationales: (1) for large values of
r this function becomes a good approximation of the Heav-
iside function discontinuity, (2) it provides very small gra-
dients far from the discontinuity and, (3) it is symmetric
around ¢ thus producing an unbiased approximation error.
These characteristics allow having relevant gradients in
the area close to the discontinuity and, at the same time,
keeping the properties of the Heaviside function and almost
completely ignoring sample pairs that have similarity very
different from the considered threshold ¢. The tuning of the
parameter r is strictly related to the size of the steps As and
will be addressed in section 3.4.

Differently from [3], we choose to approximate multiple
Heaviside functions (one for each threshold) with the same
number of sigmoidal functions. In this way our loss pro-
vides abundant gradients for all relevant positive and neg-
ative pairs. Using the approximation from Equation 6, we
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can re-write Equations 2 and 3 as follows:
1 &
T(t) = Np Zar(f(ai7pi)at)7
- o
Fr(t) = m;gy»(f(aj,nj),t)-

Finally, we can substitute 7'(-) and F(-) from Equation
5 with their respective approximations 7*(-) and F*(-)
(Equations 7), and for sake of simplicity use shorter nota-
tion fp, instead of f(a;,p;), and f,, instead of f(a;,n;),
we obtain the following differentiable AUC formula:

tmaz—As Np

A= ¥ ﬁzwfpi,s)+ar<fpi,s+As>>

S=tmin =1

Ny
N% S (0r(fur8) = On(frrr 5+ AS)) . (8)
=1

3.2.3 Theoretical analysis of the accuracy of the AUC
approximation

The sigmoidal approximation introduces a zero mean error,
being perfectly symmetric around zero. The absolute error
is the integral of the absolute difference between the sig-
moidal function and the heaviside function. With simple
calculus, the absolute error is errg(r) = mOfg(z)’ thus in-
versely proportional to the slope . Using » = 42.2, the to-
tal absolute error is merely erry(42.2) = 0.001427 which,
when compared with the Heaviside function in the range [-
1, 1], in terms of area, corresponds to an absolute relative
error of 0.1427%.

The trapezoidal approximation has an error that depends
on the number of integration points and the second or-
der derivative of the continuous function. The domain of
the AUC function f is [0, 1]; in this case there exists a

value € € [0, 1], such that the integration error is bounded

_ 1)
12NZ2°

ber of points used in the integration. Thus the error de-
creases quadratically with N, and linearly increases pro-
portional to the second order derivative of the continuous
unknown AUC. Using As = 0.05 (see section 4.3.1), we
have N, = 41 points, thus err; = 0,0000495f”(€). Such
an error is relevant only if the AUC curve is extremely non-
smooth, with large values for the second order derivative,
which is very unlikely for a real-case scenario AUC curve.

3.3. AUC loss function

by the maximum err; = where N, is the num-

Equation 8 is a derivable approximation of the area un-
der the ROC curve on a set of positive and negative pairs.
Ideally, this equation is applied on the whole dataset to cal-
culate a very tight approximation of the real area under the

ROC curve. However, accessing the whole dataset in one
training step is computationally expensive. Therefore, we
calculate the approximated area under the ROC curve based
on the samples available at the mini-batch level.

Inspired by [16], we create mini-batches out of k£ sam-
ples from each of [ classes, and explore two different strate-
gies for calculating the loss: batch all and batch hard. In
batch all strategy we use all positive and all negative pairs
when calculating the loss. The batch hard strategy calcu-
lates the loss based only on the similarities of the hardest
positive and negative samples for each sample from the mini
batch. If N = kl is the mini-batch size, we can write the
batch all and batch hard AUC losses as following:

Lavcgy =1—
1 tm,a:z_AS N
IN2 Z Z (Ur(fpm 5) + Ur(fp,;, s+ AS))
$=tmin =1
N
Z (0r(frnirs) = or(fn; s +As)) . (9)

i=1

Even though the batch all strategy takes into account all
pairs from the mini-batch, it leads to a much weaker under-
estimate of the AUC w.r.t the the batch hard strategy. Addi-
tionally, the best scenario of training a model with AUCp 4
would require batch creation where the number of all posi-
tive pairs would be the same as the number of all negative
pairs, which is impossible using batch all. AUCpgpy max-
imizes an underestimation of the area under the full ROC
curve on a mini-batch level. We show the experimental
comparison of the two strategies in section 4.3.2.

The AUCpgpg loss defined in Formula 9 can be seen
as a pairwise loss, as it is calculated based on similarities
of image pairs. However, what makes AUCpy different
from the other pairwise losses is that it does not directly
optimize the relations between positive and negative pairs,
but rather maximizes the approximated area under the ROC
curve based on pair similarities. The full algorithm and its
detailed explanation can be found in the supplementary ma-
terials.

3.4. AUC metaparameters

The AUC loss function, as defined in Equation 9 has two
metaparameters: 1) step size As, and 2) slope of the sig-
moid function r. The step size is a relevant parameter, and
the smaller the step, the more accurate the approximation of
the integral.

The setting of r parameter in Equation 6 is of vital impor-
tance for the proposed approach. The value of r should be
large enough to ensure a good approximation of the Heavi-
side function while providing useful and well-balanced gra-
dients for a gradient-based optimization strategy. Fig. 2
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Figure 2. First order derivative of sum of sigmoids for As = 0.2.

Table 1. Optimal r for a set of As parameters.

As | 0.01 0.02 0.05 0.1 0.2
r 201.0 101.0 422 2247 12.02

shows the first order derivative of the sum of sigmoidal
functions over x for different values of r on Fig. 2. Small
r leads to flat gradient magnitudes around the middle of the
range, while significantly decreasing the magnitude close to
the edge of the range (blue line). On the other hand, hav-
ing a large r introduces oscillations of the magnitude of the
gradients on the whole input range (orange line). The ap-
proximation of the integral over ¢ with a discrete summation
can generate larger gradients for thresholds ¢ that are close
to the points of the grid if the slope of the sigmoidal-like
function is too large. For this reason we would like to find
the parameter r for which the square of the second order
derivative of the summation of all sigmoidal-like functions
over  is minimal':

tmaz [ 2 tmin+As o (z, s 2
r= arglnin/ ( Zsztmam ( ’ ) dl‘ (10)

dx?

s tmin

In such a way, we force the magnitudes of the gradients
generated for all values of x to be almost independent of
the relative position of x to the grid point s. We find a non-
degenerate local minimum? of Equation 10 numerically for
a set of As parameters (see Table 1). This setting, for As =
0.2, is presented by the red line in Fig. 2.

IThe second order derivative of sigmoidal function is not always posi-
tive, so we use its square for calculating the minimal oscillations.

2The trivial solution of this equation is » = 0, which is degenerate and
thus unacceptable.

4. Emperical evidence

In this section we analyze the performance of the AUC
loss under different settings and training parameters. We
perform experiments with different step size As, image
size, and we compare the two AUC strategies: batch all and
batch hard. We evaluate the performance of the AUC loss
on four publicly available datasets and compare the results
with current state-of-the-art approaches.

4.1. Datasets

Stanford Online Products (SOP) [28] is a widely used
metric learning dataset containing 120k images of 22.6k
products. The dataset is split into two partitions: the train-
ing one containing 59.5k images of 11.3k products, and the
testing one with 60.5k images of 11.3k products.
DeepFashion - In-Shop Clothes Retrieval [22] is part of
DeepFashion which is designed for instance image retrieval.
It contains 54.6k images of 11.7k clothing items.
Caltech-UCSD Birds 200 (CUB-200) [40] is a small
dataset that is commonly used for image retrieval. It has
6033 images of 200 categories of birds. Following the com-
mon practice for the retrieval task, we use the first 100 cate-
gories for training, and the rest for testing. Additionally, we
use bounding boxes that are provided by the authors during
both training and testing.

VERI-Wild [23] is a re-identification dataset of vehicles
in the wild. The images are captured by 174 surveillance
cameras during one month, resulting in 277,797 images of
30,671 training identities, and three testing partitions.

4.2, Implementation details

In all the experiments we use ResNet50 as a backbone
architecture, and we initialize it with the ImageNet pre-
trained weights, as it is common practice for metric learning
training [26]. We take the output of the last convolutional
layer and apply global max pooling to obtain a feature vec-
tor for each input image. We reduce the size of the feature
vector to 512 by an orthogonally initialized fully connected
layer. Finally, we l5 normalize the vector. This normlization
projects all vectors to a hypersphere which allows using the
dot product for calculating vector to vector similarities.

We train our models on large scale datasets (all except
CUB-200) by using the ADAM optimizer with initial learn-
ing rate 1074, with a decay of 0.9 every 10,000 steps.
When training a model on a small dataset, such as CUB-
200, using the ADAM optimizer is not appropriate, as it
could lead to overfitting. Therefore, we use the SGD opti-
mizer with initial learning rate 10~ which is decayed by
0.1 each 3, 000 steps.

We create each mini-batch out of 128 images, 2 images
for each of 64 classes/identities, if not stated differently. All
images in a mini-batch are resized to either 224 x 224 or
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Table 2. Validation r@1 as a function of As tested on SOP dataset.

As 001 002 005 01 02
r@1[%] | 7911 79.06 7897 7746 714.67

Table 3. Comparison of batch all and batch hard strategies on
Stanford Online Products [28] dataset.

im size mb size RQ1 RQ10
AUC BA%E, 224x224 190 64.70 80.45
AUC BH%2 224x224 190 75.72 89.13

256 x 256. In all the experiments we augment one of the
two images per class in a mini-batch. We use horizontal
flipping, cutout, zoom-in/out, color shift and motion blur as
augmentation techniques.

4.3. AUC loss analysis
4.3.1 As parameter

As parameter. Here we analyse the impact of As param-
eter from Equation 9 on a model trained on Stanford Online
Products dataset, following the implementation details in
Section 4.2.

We compare the retrieval performances, represented by
rank @1 of models trained by optimizing the AUC loss func-
tion for different step sizes As and show the results in Table
2. The smaller the As, the more precise the approximation
of the integral, which directly implies better performance
with negligible memory overhead. When As is equal to
0.2, the ROC curve is approximated with 11 points, which
is a poor approximation. On the contrary, by setting As to
0.01 we obtain a better approximation of the curve based on
201 points. On the other hand, As of 0.05 already repre-
sents the curve by 41 points, which is precise enough, and
therefore we set As to 0.05 in our experiments.

The memory requirements of the AUC loss are negligible
with respect to the memory needed for storing the backbone
architecture. As an example, having a mini-batch of 128,
and embedding size 512, the memory required for calculat-
ing the loss function for As = 0.01 is ~ 1MB.

4.3.2 Batch all vs batch hard strategies.

We trained two models on Stanford Online Products dataset,
under the same conditions (as described in section 4.2), and
we created mini-batches of 190 images. We randomly sam-
pled a set of 10 different classes, and from each one of
them we chose 19 images randomly, which results in having
Ny = 16242 negative, and Np = 1710 positive pairs. If
a chosen class has less than 19 images, we sampled some
images more than once. As shown in Table 3, the AUCpgy

optimizes a stronger underestimation of the area, thus pro-
viding stronger and better gradients during the training.

4.3.3 Computational cost

We report the numerical results of direct time measurement
of both triplet loss and AUC loss for 1000 training steps (in-
cluding forward and backward propagation) on a TITAN X
with 12GB of RAM. T'riplet gy takes 888.5 second while
AUCpy 887.7 seconds, which makes the computational
cost of the new AUC loss the same as the computational
cost of the triplet loss when employing the BH strategy.

4.3.4 AUC loss evaluation

In this section we compare the AUC loss with the triplet
batch hard loss, as this loss is a milestone for metric learn-
ing, and it was also found to obtain still competitive results
with state-of-the-art in a recent survey paper [26]. We fol-
lowed the same training parameters as described in 4.2 and
used images resized to 224x224, and compared the results
on four publicly available datasets, as shown in Tables 4
and 5. Taking into account that the AUC loss does not have
extra hyper parameters for tuning, and that the influence of
the margin when training a model with the triplet batch hard
loss is minimal [16], we set the margin for the triplet loss to
0.3.

The AUC loss outperforms the triplet batch hard by a
large margin on SOP, inShop, CUB-200 and VERI-Wild
datasets without additional hyper parameter tuning or any
increase in the computational cost w.r.t. the triplet loss. In
addition to comparing the numerical results of ranking in
terms of mAP, rank1 and rank10, we compared the area un-
der the ROC curves for all models. This measure evaluates
the separability between different classes, and confirms that
the AUC loss provides a more robust model with better class
separability.

In order to provide a fair comparison with the method in-
troduced in [3], we implemented a variation of the loss that
is originally proposed and used for classification based on
the Wilcoxon statistic. We employ the batch hard strategy
by using only the hardest positive and hardest negative pairs
for each input image when calculating the loss:

N N
LWilcomon = 1- 722 fpl fn] (11)

We compare the Wilcoxon loss with AUC under the same
experimental settings on four metric learning datasets, and
present results in Tables 4 and 5. The AUC loss provides
significantly better results on all datasets. We believe that
the main advantage of AUC with respect to Wilcoxon statis-
tics is that AUC loss relies on a family of sigmoidal func-
tions (one for each threshold in the curve), while Wilcoxon
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Table 4. Comparison of the AUC, Wilcoxon and the triplet batch hard loss functions on the Stanford Online Products [

], In-shop

Clothes [22] and CUB-200-2011 [40] datasets.
SOp inShop CUB-200-2011 CUB-200-2011_crop
RQ@1 R@10 AUC R@1 RQ10 AUC RQ@1 R@8 AUC RQ@1 R@8 AUC
Triplet-BH 74.90 87.98 98.98 89.81 97.24 98.62 | 5379 8426 8751 62.57  90.27  90.34
Wilcoxon-BH | 70.22 84.38 98.07 82.63 94.18 96.28 | 4459 7677  79.10 | 5120  84.59  83.75
AUC 78.97 91.11 99.00 | 91.04 97.84 98.88 | 58.19 8636 88.89 | 68.28 9231  92.76
Table 5. Comparison of the AUC, Wilcoxon and the triplet batch hard loss functions on the VERI-Wild [23] dataset.

VERI-Wild_small VERI-Wild_medium VERI-Wild_large
mAP R@Ql1 AUC | mAP RQl1 AUC | mAP RQ@Ql1 AUC
Triplet-BH 70.79 84.13 99.88 | 6240 77.78 99.88 | 51.12 70.00 99.89
Wilcoxon-BH | 47.76  70.5 99.57 | 40.06 6348 99.62 | 30.65 54.56 99.59
AUC 75.66 89.26 99.89 | 68.49 84.76 99.89 | 58.81 7949 99.89

statistics approximates the area under the ROC curve based
on the results of a single sigmoidal function.

Table 6. Comparison with the state-of-the-art on the Stanford On-
line Products [28] dataset. Embedding dimension is presented as a
superscript and the backbone architecture as a subscript. R stands
for ResNet, G for GoogLeNet, I for Inception.

im mb R@1 RQ@10
Histogram Lossg 2 [37] 256 128  63.9 81.7
Binomial Deviance 2 [37] 256 128 65.5 82.3
N-Pair-Lossg 2 [34] - 120 6717 83.8
Clustering®! [27] 227 128 670 83.7
Angular Loss2t? [38] 256 128 709 85.0
HDC38 [42] - 100  69.5 84.4
Margin g [24] 224 80 727 86.2
A-BIER%2 [29] 224 - 74.2 86.9
HTLE® [10] 24 50 74.8 88.3
ABE-821? [21] 224 64 76.3 88.4
FastAP%:2) [2] 224 256 764 89.1
RaMBO%2 loglog [31] 224 128 8.6 90.5
RankMI, [19] - 120 743 87.9
R-Margin}2 [32] 224 160 785 -
MS32 [39] 224 640 78.2 90.5
AUC%E 224 128 7897 9Ll1
AUC%2) \ 256 128 8032  91.89

4.4. SOTA comparison

Tables 6 - 8 present extensive comparison with state-of-
the-art methods on four publicly available retrieval and re-
identification datasets in terms of recall@k and mean aver-
age precision (mAP), as well as image size, mini-batch size,
backbone architecture and embedding size.

Table 7. Comparison with the state-of-the-art methods on the In-
shop Clothes [22] dataset. Embedding dimension is presented as a
superscript and the backbone architecture as a subscript. R stands
for ResNet, G for GoogLeNet, V for VGG.

im mb R@1 RQ10
FashionNety [22] - - 53.0 73.0
HDC* [42] 224 100 62.1 84.9
DREML7g [41] 256 128 78.4 93.7
HTLE® [10] 224 650 80.9 94.3
A-BIER%Z [29] 224 - 83.1 95.1
ABE-8%/2 [21] 224 64 87.3 96.7
FastAP%2, [2] 224 256 90.9 97.7
RaMBO%2 loglog [31] 224 128 86.3 96.2
MS53'2 [39] 224 640 89.7 97.9
AUC%2 224 128 91.04 97.84
AUC32) | 256 128 9101 97.90

We show the results on the Stanford Online Products
dataset in table 6. Due to diversity of product categories (bi-
cycle, chair, lamp etc), the methods trained on this dataset
are not domain specific. Our method achieves state-of-the-
art performance when trained with images that are resized
and cropped to 224x224 pixels, which is comparable with
the image size used in the majority of state-of-the-art meth-
ods. AUC outperforms all state-of-the-art methods, includ-
ing the ensemble methods such as A-BIER [29], ABE-8
[21] and HDC [42]. AUC achieves better performance than
FastAP [2], even though FastAP uses information about cat-
egory when sampling images for batches, while splitting
them into smaller chunks for training with effectively big-
ger batch size. We further improve the performance of our
method by using images of size 256x256.

Another dataset appropriate for image retrieval is Deep-
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Table 8. Comparison with the state-of-the-art methods on the VERI-Wild [
and the backbone architecture as a subscript. R stands for ResNet, A for ad-hoc, M for MobileNet

] dataset. Embedding dimension is presented as a superscript

VERI-Wild_small VERI-Wild_medium VERI-Wild_large
im size mb size mAP RQ1 mAP RQ1 mAP RQ1
Veri-wild1??4 [23] 224 - 35.11 64.03 29.80 57.82 2278 49.43
MLSL3%%* [1] 224 24 46.32 86.03 42.37 83.00 36.61 77.51
PGANZ5, [43] 224 64 - - - - 74.10 93.80
GLAMOR%Z [35] 208 36 77.15 92.13 - - - -
AUC%Z 224 128 75.66 89.26 68.49 84.76 58.81 79.49
AUC-BoN%2 224 128 80.31 93.50 74.55 91.22 66.47 88.36
SAVERZAS [20] 256 - 83.40 96.90 78.70 96.00 71.30 94.10
SAFRZAS [36] 350 72 - - - - 77.90 92.10
UMTS%2 [18] 256 64 72.70 84.50 66.10 79.30 54.20 72.80
PVENZAS [25] 256 8 82.50 - 77.00 - 69.70 -
AUC-BoN%2, 256 128 82.14 94.43 76.68 92.18 68.87 89.15

Fashion In-Shop. We trained models with images resized
to 224x224 and 256x256, and they achieved comparable re-
sults. We believe that the bigger image size does not pro-
vide relevant benefits on this dataset because there is not
much room for improvement even when trained with small
images. In Table 7 we show that we achieve state-of-the-
art results on this dataset. The only method that achieves
results comparabale to AUC is FastAP, while using a mini-
batch twice as big as ours.

Finally, we tested our method on VERI-Wild dataset,
which is used for vehicle re-identification. The majority of
state-of-the-art models combine several loss functions for
achieving better results (e.g. [1,20,23,25,35,36,43]). Ad-
ditionally, several methods that are evaluated on this dataset
use some domain specific information during training, such
as position of the mirrors and wheels, color of the vehicle,
side and front view etc. Even though our method is sim-
pler and not domain-specific, its performance is comparable
with domain specific state-of-the-art approaches, as shown
in Table 8. Taking into account that all images in this dataset
have the same characteristics (they are all vehicles) and that
the number of classes is much greater than the mini-batch
size, we combine AUC with BoN, a state-of-the-art method
for hard negative sampling [&, 9]. This combination sig-
nificantly improves the performance of AUC alone. Finally,
we train a model with AUC-BoN using bigger input images,
which further improve the results.

The model that achieves state-of-the-art results is SAFR
[36], and it uses significantly bigger input images than the
ones that we use in the experiments (350x350 pixels) and
embedding size 2048 and its implementation exceeds the
hardware limitations that we have. Additionally, this model
uses three loss functions: smoothed softmax, triplet and
center loss, as well as an unsupervised attention network.
SAVER [20] is another method that performs slightly better

than AUC-BoN. However, this model uses a more compli-
cated network architecture that contains variational autoen-
coder, together with ResNet50 backbone, and a combina-
tion of cross entropy and triplet losses.

In conclusion, the AUC loss outperforms state-of-the-
art methods on large scale retrieval datasets, and is com-
parable with more complex models used for vehicle re-
identification.

5. Conclusion and Future Works

In this paper we confirmed the hypothesis that training
a model by maximizing the area under the ROC curve can
be beneficial for retrieval. We presented a new loss that
maximizes a derivable variant of the area under the ROC
curve. The AUC loss achieves better or comparable results
to more complex state-of-the-art methods on large datasets,
without the need of hyper parameter tuning. The main lim-
itation of the AUC loss is that it achieves lower accuracy on
small datasets, as discussed in the supplementary material.
We presented the performance of the AUC loss on metric
learning problems, but our future work will include variants
of this loss which could potentially bring benefits to other
problems of computer vision, such as image classification
and object detection. Additionally, we will explore the us-
age of this loss for other types of data, such as audio and
video.
Ethical concerns: As any other general metric learning al-
gorithm, the AUC loss can be used for face recognition
and re-identification, that can possibly lead to mass surveil-
lance.
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