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Abstract

We study the few-shot learning (FSL) problem, where a
model learns to recognize new objects with extremely few
labeled training data per category. Most of previous FSL
approaches resort to the meta-learning paradigm, where
the model accumulates inductive bias through learning from
many training tasks, in order to solve new unseen few-shot
tasks. In contrast, we propose a simple semi-supervised
FSL approach to exploit unlabeled data accompanying the
few-shot task to improve FSL performance. More exactly,
to train a classifier, we propose a Dependency Maximiza-
tion loss based on the Hilbert-Schmidt norm of the cross-
covariance operator, which maximizes the statistical de-
pendency between the embedded feature of the unlabeled
data and their label predictions, together with the super-
vised loss over the support set. The obtained classifier is
used to infer the pseudo-labels of the unlabeled data. Fur-
thermore, we propose an Instance Discriminant Analysis to
evaluate the credibility of the pseudo-labeled examples and
select the faithful ones into an augmented support set, which
is used to retrain the classifier. We iterate the process un-
til the pseudo-labels of the unlabeled data becomes stable.
Through extensive experiments on four widely used few-
shot classification benchmarks, including mini-ImageNet,
tiered-ImageNet, CUB, and CIFARFS, the proposed method
outperforms previous state-of-the-art FSL methods.

1. Introduction

Deep learning has achieved remarkable performance on
visual recognition problems such as image classification.
However, the success of deep neural networks hinges on
substantial labeled training examples. The prohibitive anno-
tation cost on very large-scale supervised dataset will limit
the applicability of these deep learning models to learn new
concepts quickly and efficiently. In contrast, human intel-
ligence has the ability to learn new concepts quickly, even
with very few labeled examples. This is achieved by using

the prior experience and integrating it with the new informa-
tion. By the same token, it is desirable for the deep learning
models to learn to recognize novel classes of objects with
very limited labeled examples. This learning approach is re-
ferred to as the few-shot learning (FSL), which has received
substantial research interests.

A large body of FSL approaches place focus on the meta-
learning paradigm and episodic training strategy. In meta-
learning, the model is trained on a series of episodes, with
support and query examples, that simulate the generaliza-
tion during testing time. After accumulating the prior ex-
perience, the trained model will have the ability to general-
ize to novel classes by using very few labeled training data.
However, a recent work [5] empirically found that meta-
learning cannot compete with the simplest transfer learning
baseline, where a deep backbone model is firstly trained on
a big supervised image corpus and a new linear classifier is
appended and finetuned on the novel few-shot tasks.

Recent methods start exploring transductive and semi-
supervised learning to improve the performance on few-
shot tasks, by using the information from unlabeled query
examples or an additional unlabeled set. Among various
methods, self-training [19] is one of the most straight-
forward way to utilize the unlabeled data. Typically, a
model trained on the support examples can be used to in-
fer the pseudo-labels (class that has the maximum pre-
dicted probability) of the unlabeled data, and then uses
these pseudo-labels along with the support set to retrain the
model. However, in FSL, the model is trained with very
few labeled support examples, thus it cannot capture the
data distribution of target classes in the task. The inferred.
pseudo-labels will have low quality. Including wrongly la-
beled examples into the training set will jeopardize the final
model performance.

To counteract the limitations in meta-learning and tra-
ditional self-training, we present a novel semi-supervised
FSL approach to exploit the unlabeled examples to improve
few-shot performance. Firstly, we propose a Dependency
Maximization loss to enhance the model training, which
maximizes the statistical dependence between the embed-
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ded features of unlabeled data and their softmax predictions,
in conjunction with the supervised loss minimization over
support set. We develop a empirical dependence measure
based on the Hilbert-Schmidt norm of the cross-covariance
operator. The obtained model is used to infer the pseudo-
labels for those unlabeled data, where we further propose an
Instance Discriminant Analysis to evaluate the sample from
the perspective of feature discriminant power and select the
most faithful pseudo-labels to augment the support set and
retrain the model. Following the standard transductive and
semi-supervised FSL setup, our experiments show that the
proposed method outperforms previous state-of-the-art FSL
methods, not only on the widely adopted few-shot bench-
marks, but on more challenging scenarios such as cross-
domain FSL and higher-way testing FSL.
Our contribution are highlighted as follows:

* A simple semi-supervised few-shot learning frame-
work to exploit unlabeled data in few-shot tasks

* A dependency maximization loss to train the classifier
with unlabeled data

e An instance discriminant analysis method to evaluate
and select credible pseudo-labels. We also derive an
efficient approximation for our discriminant criterion
to speed up our selection process substantially.

* State-of-the-art performance on various few-shot clas-
sification benchmarks

2. Related Works

We briefly review recently proposed few-shot learning
approaches, with focus on transductive and semi-supervised
FSL methods. Optimization-based meta-learning meth-
ods [1,7,23,26] learn the model through a series of episodes,
so that it can adapt to new tasks with limited labeled ex-
amples. In contrast, our method does not use the complex
meta-training setup; we pretrain a feature extractor on the
base classes using the standard cross-entropy loss. Metric
learning methods learn to compare feature similarity based
on distance metric between support and query examples in
the feature space. Examples of the distance metrics in-
clude cosine similarity [29], Euclidean distance [25, 32],
relation network [10, 27], mahalanobis distance [3], Earth
Mover’s distance [34], subspace projection distance [24].
In this paper, we do not utilize any specialized distance
metric, instead we propose a label-free dependency maxi-
mization loss for task inference. Hallucination based meth-
ods [8, 13,35] utilize generative models or data augmenta-
tions to expand the support set by synthesizing new samples
or features based on the given labeled data. In contrast, our
framework uses the additional unlabeled data using pseudo-
labeling technique.

Transductive and Semi-Supervised FSL. In practical
applications, we can access to unlabeled data accompany-

ing the few-shot task, apart from the labeled support set.
Transductive FSL (TFSL) methods [4,6, 11, 17,22] assume
that the query examples come in as a bulk and can be used as
unlabeled data to facilitate the few-shot performance. [17]
uses label-propagation to propagate labels from labeled to
unlabeled examples via a graph. [22] proposes embedding-
propagation regularizer for manifold smoothing. [11] pro-
poses a Laplacian regularizer to encourage nearby query
samples to have consistent label assignments. [6] proposes
to minimize the conditional entropy of the query softmax
predictions. Similarly, [4] further incorporates a marginal
entropy of the query softmax predictions, which helps to
avoid degenerate solutions obtained when solely minimiz-
ing conditional entropy. In contrast, our method proposes
to maximize the statistical dependency between the fea-
tures and their label predictions. In semi-supervised FSL
(SSFSL), the unlabeled data comes in addition to the sup-
port/query set. To name a few, [ 14] applies self-labeling and
soft-attention to the unlabeled set with finetuning on both la-
beled and self-labeled examples. [21] proposes a prototype
refinement based on the soft assignment scores for the unla-
beled examples. [3 1] introduces a linear regression hypothe-
sis to select pseudo-labeled examples for classifier training.
Different from these approaches, we propose a simple in-
stance discriminant analysis, together with our dependency
maximization loss, to utilize the unlabeled data for improv-
ing FSL performance.

3. Preliminary
3.1. Few-shot learning formulation

Assume we are given a labeled base dataset Xpgse =
{(Xi,¥i),¥i € Ybase}» where Vpuse denotes the set of
classes (i.e. category set) for the base dataset. FSL aims
to learn a model using the base dataset so that the model
will be able to recognize unseen examples belonging to
novel classes after short learning from very few labeled ex-
amples in these novel classes. Denote a novel dataset by
Xnovel = {(Xi,¥4), Yi € VYnover + With completely new cat-
egory set Viovel, from which the few-shot tasks are sam-
pled. The base and novel datasets have mutually disjoint
classes, i.e. Voase N Vnover = 0. We follow the standard
N-way K-shot formulation. For each few-shot task 7;, we
randomly sample NN classes from Y, oe;. We then sample
K labeled examples for each of IV classes and construct the
support set D5 with set size |D5.| = N x K. Each task also
has a query set ’D?- which consists of () unlabeled and un-
seen examples for the same IV classes, i.e. |D%| =Qx K.
The unlabeled query set evaluates the generalization perfor-
mance of the model trained on base set and also adapted on
the labeled support set.
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3.2. Self-training based semi-supervised FSL

One of the fundamental challenge for FSL is the diffi-
culty to estimate the data distribution of novel categories
with very few labeled examples. To address this prob-
lem, recent FSL approaches use semi-supervised learning
(SSFSL) or transductive learning (TFSL) wit h unlabeled
examples DT of novel categories for the task at hand.
In SSFSL setting, extra examples apart from the support
and query examples are available for the model to learn,
while TFSL assumes the model evaluates all query exam-
ples at once and utilizes those query examples as the unla-
beled set. Among various semi-supervised learning meth-
ods, self-training [19] is one of the state-of-the-art rep-
resentatives that can be easily applied. Specifically, let
fo: X = Z C R?be the feature extractor of a deep neural
network parameterized by 6, where Z denotes the space of
the feature embedding. In this work, we pretrain the feature-
extractor on the base dataset Xp, e, following [4]. Given a
few-shot task 7;, self-training first learns a classifier from
the labeled support set: ngn Z(x,y)ep% L(hy(fo(x)),y)

where L represents the cross-entropy loss. Then, the clas-
sifier is used to infer the pseudo-labels ¢, = he(fo(xy))
for the unlabeled examples DY = {x,}{_,. The pseudo-
labeled examples are taken as additional labeled data for the
corresponding classes and are augmented with the support
examples using their pseudo-labels as true labels. Finally,
the classifier is retrained using the augmented support set
and evaluated on the query set.

3.3. Motivation for our method

Self-training in FSL suffers from two limitations: (1)
since the classifier hy(-) is trained with very few labeled
examples, the pseudo-labels have low quality with signif-
icant label noise; (2) there is no sample selection strategy
to filter out the label noise, and including the untrustwor-
thy pseudo-labeled examples for the target classes causes
accuracy degradation, counteracting our goal of using unla-
beled data to improve the accuracy. To rectify these two
limitations, (1) we propose a Dependency Maximization
loss which gracefully uses the unlabeled data to enhance
the classifier training process for generating higher qual-
ity pseudo labels; (2) we propose an Instance Discriminant
Analysis to evaluate the pseudo-labeled examples and se-
lect the most trustworthy ones to augment the support set,
in order to alleviate the accumulation of label noise.

4. Methodology
4.1. Overview

Given a pretrained feature extractor CNN fy(-), for a
specific few-shot learning task with support set D% and
unlabeled set D%, the proposed method performs the fol-

lowing steps:
1. Apply an self-attention based feature pre-processing to
features in the unlabeled set and support set
2. Train a classifier using the supervised loss on the sup-
port set and the dependency maximization loss on the
unlabeled set
Infer the pseudo-labels on the unlabeled set
4. Evaluate the credibility of the pseudo-labeled exam-
ples based on the instance discriminant analysis and
select the most trustworthy ones to augment the sup-
port set
5. Repeat step 2 - 4 until the pseudo-labels on the unla-
beled set becomes stable
6. Use the final classifier to predict the query set D%

w

4.2. Feature pre-processing via self-attention

The feature pre-precessing step is applied to transform
both the unlabeled set and the support set. For the unla-
beled set, the pre-precessing step captures the global re-
lationships among different instances, so that similar fea-
tures can be driven closer to induce better data separation.
We transform each unlabeled instance by fusing its feature
with a weighted sum of other instances’ features using self-
attention [28]. Let Xy = [fo(x1), ..., fo(X|pv|)] denote
the data matrix with the unlabeled features ananéed in rows.
Then the transformed unlabeled set is given by:

d(Xy, X
Xy« (1—a)+Xy +a*softmax<M>XU (1)
T

In Eq.(1), « is a constant balancing the transformed and
original features. d(-,-) is a distance metric and we com-
pute the squared Euclidean distance between each pair
of unlabeled instances in the feature embedding space:
d(Xy,Xy) = —(2diag(XpX7;)—2XyXFE). The softmax
operation is applied row-wise so that the attention weights
summed up to one. T is a temperature constant that con-
trols the sharpness of the attention weights. As the attention
weights are normalized similarities between one unlabeled
instance’s features with all other instances’ features, the
transformation drives similar features closer to each other.

For the support set, the pre-processing step propagates
the information from the unlabeled set to support instance
via cross-attention. Let Xg = [fo(x1), .., fg(X‘D%I)] de-
note the data matrix with the labeled support features ar-
ranged in rows. Then, the transformed support set is given
by:

d(X57XU)>XU (2)

Xs (1-p8)*«Xg+ softmax(

In Eq.(2), the distance metric is calculated between the fea-
tures in the support set and the transformed features in the
unlabeled set.
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4.3. Dependency maximization for training classi-
fier

The proposed Dependency Maximization (DM) loss is
differentiable and can be optimized with standard gradient
descent algorithm to enhance the classifier training. While
we train the classifier with the labeled support examples,
DM loss maximizes the statistical dependence between the
features of the unlabeled set and their label predictions, in
conjunction with minimizing the cross-entropy loss over the
support set. DM loss acts as a surrogate for the classifier’s
empirical risk on the unlabeled examples, which helps to
restrict the classifier’s hypothesis space and facilitates the
prediction for the given unlabeled examples.

We begin by listing some notations before introducing
how to characterize the dependence between features and
label predictions. Let Z be a random vector (of size R?
where d is the embedding dimension) associated with the
embedded features of the unlabeled set, Y denotes the ran-
dom vector (of size RV where N is number of classes) as-
sociated with their softmax predictions. Pz y is the joint
distribution between these two random variables. To mea-
sure the dependence between Z and Y, we define the cross-
covariance operator based on [2]:

Coy =By [(P(2) — p12) ® (U(y) — py)] 3)

where ® : Z — F (or ¥ : Y — G) defines a kernel
mapping from the space of feature embedding (or space
of prediction vector) to a reproducing kernel Hilbert space
(RKHS) F' (or G), with mean vectors defined as i, (or ju,).
To summarize the degree of dependence between Z and Y,
we use the Hilbert-Schmidt norm of C',,, which is given by
the trace of CzyCzTy. In this paper, we use the square of
the Hilbert-Schmidt norm of the cross-covariance operator,
|C.y 1%, because it can detect nonlinear dependence, as
shown in the following theorem:

Theorem 1 (C., and Independence [9]). Assume F' and
G are RKHSs with characteristic kernels. Then, we have
|C.yll%s = 0if and only if Z and Y are independent.

Characteristic kernels such as Gaussian kernel, i.e.
k(z,2") = exp( — |z — 2'||3/(20?)), allows us to measure
any dependence between Z and Y. In our case, ||C., /%
is zero only if the features and the label predictions of the
unlabeled set are independent. Clearly, we aim to achieve
the opposite. We aim to maximize the dependence between
the features and predictions by maximizing ||C, /% s-

To utilize the dependence measure as a loss function for
classifier training, we need an empirical estimate from finite
number of samples. Formally, denote the kernel functions
associated with the RKHS F and G as k(z, 2’) and I(y,y');
let K,L € RY*Y denote the Gram matrices defined over
the features and softmax predictions associated with the un-
labeled set DY, containing entries K; ; = k(z;,z;) and

L;; = l(yi,yj). The empirical estimator of ||C.,||% g is
given by:

1Coy |2 = (U = 1)~2 tr(KHLH) @)

where H = Iy — (1/U)1y1%; is the centering matrix, I/
is an identity matrix, 1y is a vector with all ones, and tr(-)
is the matrix trace operation. As shown by [9], this empir-
ical estimator converges sufficiently: with high probability,

[[|C2yl1% 5 —1|Cyll% 5| is bounded by a very small constant.
With the empirical estimator, we define the overall loss
function, by adding the empirical dependence measure on
the unlabeled set with the supervised cross-entropy loss on

the support set:
exp(W fo(x) + by)

min — -2 (U -

1)~ 2 tr(KHLH
Wb NK 2)eDs, epo“WTf() b.) ) ot )

Dependency maximization on unlabeled set

)
where W, b denote the weight and bias of the softmax lin-
ear classifier hg, and the label prediction is given by y =
hy(z) = softmax(WT'z + b) = softmax(W7 fp(x) + b).

Objective (5) is optimized for each test task using gra-
dient descent (GD) w.rt. W and b. The pretrained
feature extractor fy is frozen. W and b are initialized
based on the class prototypes computed over the sup-
port set: WO = [2uy,....2uy] € R¥>N and b =
[—1lpeqll3, s —len l|3] € RY*1, Then, the weight and bias
parameters are updated by GD using both the support and
unlabeled samples of the few-shot task without mini-batch
sampling.

Cross-entropy minimization on support set

4.4. Instance discriminant analysis for selecting
pseudo-label

After training the classifier with our proposed DM loss
in Eq.(5), we can predict the labels g, for the unlabeled
examples in D as their pseudo-labels. In this section, we
present an Instance Discriminant Analysis (IDA) to evaluate
the quality of these pseudo-labeled examples and select the
most trustworthy ones into the augmented support set.

IDA is essentially a sample selection or outlier removal
algorithm, that aims to remove a subset of training data sam-
ple a priori, and train the classifier only with the remaining
subset of data. We introduce a hypothesis that the feature
discriminant power computed on the embedded features and
pseudo-labels can be used as a surrogate for the pseudo-
labels’ accuracy for the unlabeled set (cf. Table 1). The
rationale behind is that a wrongly labeled example would
be detrimental to the overall data separability of the unla-
beled set, causing low feature discriminant power; while a
correctly labeled example would facilitate the data separa-
bility, improving the feature discriminant power.

We adopt Fisher’s discriminant analysis as the basis
of our quality measure. We evaluate the quality of each
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mini-ImageNet  tiered-ImageNet

Labeling v Acc%) Acc.(%)

Algorithm 1 Semi-supervised FSL from
A Dependency-Discriminant Perspective

Random 0.14 20.00 0.13 20.00
Pseudo (w/o DM)  0.55 57.73 0.61 68.29
Pseudo (w/ DM) 0.68 75.80 0.74 82.43
Groundtruth 1.00  100.00 1.00  100.00

Table 1. The feature discriminant (measured by the normalized
1 in Eq.(6)) can serve as a surrogate for the pseudo-labels’ ac-
tual accuracy over the unlabeled set. Thus, ¥ in Eq.(6) can be
used as a metric to evaluate the credibility of the pseudo-labels.
“Random”: randomly guessing the labels for unlabeled data. “w/o
DM”: inferred pseudo-labels from a classifier trained with cross-
entropy loss only. “w/ DM”: inferred pseudo-labels from a classi-
fier trained with cross-entropy and dependency loss as in Eq.(5).

pseudo-labeled instance by computing its contribution to
the overall data separability based on the Fishers Crite-
rion. Formally, denote the set of pseudo-labeled data as
{(xu;Ju)|xu € DY }. Note that the true labels are not
known, but we use the pseudo labels for the following com-
putation. Let f(x,) denote the embedded feature of in-
stance u (for notation simplicity, we omit 6 for the feature
extractor). We define the scatter matrix and the between-
class scatter matrix, respectively, as S = 25:1( f(xy) —
W) (F (i)~ )" and S = Yy vy Me(pte— ) (e —
)T, where p is the mean of all embedded features associ-
ated with the pseudo-labeled set, M, is the number of in-
stances belonging to class ¢, p. is the mean vector of the
embedded features belonging to class ¢, and N is the num-
ber classes in the given few-shot task. Then, the Fishers
Criterion (1) is defined as the ratio of the between-class
scatter matrix to the scatter matrix:

Y= tr{S™'Sp} (6)

where tr(-) denotes the matrix trace operation. To explain
more, the eigen-vectors of matrix S™'S 5 compose the op-
timal space that maximises the between-class separability
while minimising the within-class variability. The Fishers
Criterion, calculated as the summation of the correspond-
ing eigen-values, is regarded as a measure of the overall
data separability.

Next, we evaluate the credibility of each pseudo-labeled
instance (x,, §,,) by measuring its contribution to the over-
all discriminant power, i.e. to measure the difference of
Fishers Criterion value when the instance is present and the
instance is removed. Precisely, the influence of removing a
specific instance on the discriminant power v is referred to
as the Instance Discriminant Analysis (IDA):

dipy = tr{S7'Sp} — tr{[S—w] 'Sp—u} (7

where S—u and S p—u are derived from the remaining data
after removing instance u. di),, captures the reduction in

1: Require Support set D% = {Xn, yn }X; Unlabeled data D% =
{xu}U_,; pretrained feature extractor fg ().
2: Run self-attention feature preprocessing on the support and unlabeled
set as Eq.(1) and (2).
: Initialize augmented support set (X, ys) = {Xn,yn }N5 .
: while pseudo-labels are not stablized do
Train a classifier he(-) on (Xs,ys) and D% using Eq.(5).
Infer pseudo-labels for {xu}g::l and obtain {X, Ju }3:1-
Compute IDA for each pseudo-labeled instance by Eq.(7).
Rank {x.,, Z}u},[f:l based on their IDA values di),,.
Select the most trustworthy subset (Xgup,Ysup) from
{Xu, g}u}gzl, and merge them into (X, ys).
10: end while
11: Return Augmented support set (X, ys).

LRI kW

the feature discriminant power caused by removing instance
u, and it can be used as a metric for our sample selec-
tion process. Larger di, indicates that the instance has
greater (positive) impact to the data separability, thus its
pseudo-label is more trustworthy and the instance should
be selected to the augmented support set. We sort the
pseudo-labeled examples in the descending order of their
di,, value, and only select the top-ranking examples.

On the other hand, the exact computation of d,, can be
expensive, since it requires multiple matrix inverse. In order
to perform our IDA-based sample evaluation and selection
more efficiently, we provide the following approximation of
the d,,, which can be computed without any matrix oper-
ations, with only inner-product and scaler operations. The
proof is provided in the appendix.

Proposition 1 (Bound on dv,). Instance Discriminant
Analysis (IDA) di,, of a sample u is upper-bounded by:

Ay < 8 (xa) " f (x) 4 Mt fGx) " f(xu)) 4 S )" f (%) (v + £ (x0) " f (x0))

= )T T ~ ) P, 1) P x0T Fx0) = p) (M, — 1)
®)

Where 0 = 206{17“_,]\,} M.pFp,; p > 0 is the
ridge parameter; M, is the number of examples shar-
ing the same pseudo label as x, in the dataset (includ-
ing xy); Hy1/2 = Zizl k=12 is the generalized har-
monic number;, M. is number of examples that have
pseudo label equal to class c; p. is the mean of class
¢, W, is the mean of class that example x, belongs
to; and v, = M,[(pfp,)* — Apg ) (p fzw)) +
2(f (®u)" f(2u) (1] 1) + 2(0f, f(0))?]H 2,

In practice, we iteratively select the most trustworthy
pseudo-labeled examples based on their IDA values to aug-
ment the support set as shown in Algorithm 1: The classi-
fier is firstly trained with the initial support examples using
our DM loss objective Eq.(5). Then, the trained classifier
is used to infer the pseudo-labels of the unlabeled set. We
employ the IDA method to select the most faithful ones into
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Method Setting mini-ImageNet CUB CIFARFS tiered-ImageNet
1-shot  5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
DSN [24] 62.64  78.83 - - 7230 85.10 66.22 82.79
FEAT [32] In. 66.78  82.05 - - - - 70.80 84.79
DeepEMD [34] 6591 8241 7565 88.69 - - 71.16 86.03
TransFinetune [6] 65.73  78.40 - - 76.58 85.79  73.34 85.50
LaplacianShotT [36] 74.86  84.13 80.96  88.68 - - 80.18 87.56
TIM' [4] 77.80 87.40 8220 90.80 - - 82.10 89.80
SIBT [11] Tran.  70.00  79.20 - - 80.00  85.30 - -
EPNet' [22] 70.74  84.34 8775 94.03 - - 78.50 88.36
ICI+LR [31] 66.80 79.26 88.06 9253 7397 84.13 80.79 87.92
BD-CSPN' [16] 7031 81.89 8745 91.74 78.74 86.92
LST [14] 70.10  78.70 - - - - 77.70 85.20
ICA+MSP' [15] Semi 80.11  85.78 - - - - 86.00 89.39
EPNet' [22] ’ 79.22  88.05 - - - - 83.69 89.34
ICI+LR [31] 71.41 81.12 91.11 9298 78.07 8476 85.44 89.12
Ours Tran. 80.60 87.02 9243 9477 79.52 86.16 85.87 89.61
Semi. 83.34 88.17 93.51 9544 82.16 87.26 87.12 90.54

Table 2. Comparison of testing accuracy with previous state-of-the-art methods on four few-shot benchmark datasets. Our method out-
performs previous state-of-the-art methods across all four few-shot classification benchmarks. ‘In. and ‘Tran.’ denotes inductive and
transductive FSL, respectively. ‘Semi.” denotes semi-supervised FSL. ‘-’ denotes the results are not provided by the corresponding method.

Methods with ‘t” use WRN28-10 as the backbone network.

the support set. The expanded support set is used to update
the classifier based on Eq.(5) again. We iterate the above
process to progressively enhance the classifier until the pre-
dicted pseudo-labels for the unlabeled set becomes stable.

5. Experiments

We evaluate on four widely used few-shot benchmark
datasets: mini-ImageNet [29] consists of 100 classes, and
we follow the split of base/novel classes as [20]; tiered-
ImageNet contains 608 classes and we follow the spilt
as [21]; CUB [30] is a fine-grained classification dataset,
containing 200 classes and we follow the split as [5]; CI-
FAREFS is a low-resolution few-shot dataset, containing 100
classes and we follow the split as [31].

Throughout the experiments, the hyperparameters of
DM loss and IDA algorithm are kept fixed. Specifically,
we use Guassian kernel with bandwith ¢ = 0.5 for the DM
loss, and weight X\ in Eq.(5) is set to 0.01. For the IDA
algorithm, we select at most 5 samples per class at each
iteration, until the pseudo-labeling process becomes stable.
For training the softmax classifier, we use ADAM optimizer
with 10~ learning rate and run 1000 iterations for each
task. Unless otherwise specified, we use WRN28-10 [33]
as our main backbone for feature extraction, as it has been
widely used by previous FSL works. Training the back-
bone network follows the same training procedure (without
episodic training) as [4] on base classes. The models are
trained for 90 epochs, with initial learning rate 0.1, divided

by 10 at epochs 1/2 and 2/3, and batch-size 128. We employ
standard data augmentation strategies, including random re-
sized cropping, color jittering, and random horizontal flip-
ping. All input images have resolution 84 x 84. To evaluate
the testing performance, we randomly sample 600 few-shot
tasks from the novel classes and report the averaged accu-
racy, following the same setup as [31].

5.1. Results of few-shot classification

Table 2 evaluates our method on the four benchmarks,
under both transductive and semi-supervised setting.

Transductive FSL. In TFSL (denoted as Tran.), we have
access to the query examples in the inference stage, thus we
take the query set as the unlabeled set and utilize our pro-
posed DM and IDA algorithms (i.e. no additional unlabeled
set, but using the query set as the unlabeled set in Trans.)
This transductive setup is used by all other compared meth-
ods as well. As shown in Table 2, our method outper-
forms previous state-of-the-art TFSL approaches across all
datasets, especially on 1-shot tasks where the labeled sup-
port data is extremely limited. For example, on 1-shot mini-
ImageNet, our method outperforms [4] by 2.8% accuracy.

Semi-Supervised FSL. We follow the SSFSL (denoted as
Semi.) setup in [15,22,31], where each testing task has an
additional unlabeled set consisting of unlabeled examples
from the classes in the support set. The results are shown in
Table 2. On mini-ImageNet and tiered-ImageNet datasets,
we use 50 unlabeled examples per class in both 1-shot and
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mini-ImageNet— CUB

Method 1-shot 5-shot
MAML [7] - 51.34
ProtoNet [25] - 62.02
RelationNet [27] - 57.71
Finetuning [5] 48.56 65.57
LaplacianShot ¥ [11]  55.46 66.33
Ours (Tran.) § 55.79 71.01

Table 3. Results of testing accuracy for cross-domain FSL sce-
nario. For a fair comparison, we use the same ResNet-18 backbone
as compared methods. ‘¥”: denote transductive FSL methods.

results not reported.

RN

10-way 20-way

Method 1-shot 5-shot 1-shot 5-shot

Baseline++ [5] 4043  56.89 2692  42.80

LEO [23] 4526 6436 3142 5048
MetaOpt [12] 4483 6449 3150 51.25
S2M2pR [18] 5040 7093 36.50 58.36
EPNet ¥ [22] 53.70  72.17  38.55  59.01

BD-CSPN 8 [16] 51.58 6935 36.00 55.23
Ours (Tran.) 8 60.05 7593 4147 6191

Table 4. Results of testing accuracy for higher-way scenario on the
mini-ImageNet, where each testing task contains 10 or 20 unseen
object categories. For a fair comparison, all methods are based on
the WRN28-10 backbone. ¥*: denote transductive FSL methods.

5-shot scenarios. On CIFARFS and CUB datasets, we use
80 and 30 unlabeled examples per class, respectively. Com-
pared with previous SSFSL method [ 14] that uses more than
100 unlabeled examples per class, our method still achieves
better testing accuracy across all datasets with accuracy im-
provement ranging 5%~13%. Compared with previous
state-of-the-art [15], our method achieves 3.2% accuracy
improves on 1-shot mini-ImageNet. Moreover, comparing
our SSFSL results versus our TFSL results, we see that the
additional unlabeled examples helps to further improve the
testing accuracy.

Cross-domain FSL. [5] showed that many of meta-
learning algorithms perform no better than the simplest fine-
tuning baseline when there exists a domain-shift between
the base dataset for training and the novel dataset for test-
ing. We evaluate our method in this challenging cross-
domain scenario, where we train the backbone network on
the mini-ImageNet dataset while testing it on the few-shot
tasks sampled from the CUB dataset. As shown in Table 3,
our method outperforms previous meta-learning and trans-
ductive FSL methods, suggesting that our method is appli-
cable to more realistic few-shot learning problems.

Higher-way testing scenario. We evaluate on more chal-
lenging 10-way and 20-way few-shot scenarios, where each

mini-ImageNet tiered-ImageNet

Loss 1-shot 5-shot 1-shot 5-shot

Cross-entropy (CE) only  57.73 78.17 68.29 85.31
CE + Entropy [6] 65.73 78.40 73.34 85.50
CE + Mutual Info. [4] 71.54 83.92 77.02 87.57
CE + Dependency (Ours) 75.80 85.26 82.42 89.12

Table 5. Ablation study on the effectiveness of proposed depen-
dency maximization loss. Results are testing accuracy. All meth-
ods use WRN28-10 as the backbone.
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Figure 1. Convergence plot while we use Eq.(5) to train the clas-
sifer on mini-ImageNet 1-shot tasks. Left: cross-entropy loss and
DM loss versus iterations. Right: accuracy of the classifier trained
by the joint cross-entropy loss and DM loss versus iterations.

task contains 10 or 20 unseen object categories but each
class still only has 1 or 5 labeled examples. As shown in Ta-
ble 4, compared with previous meta-learning or transductive
FSL methods, our method achieves the highest accuracy on
the difficult testing tasks with more object categories.

5.2. Ablation studies

We investigate the effectiveness of various components
our method, namely the DM loss, the IDA method, and the
self-attention based feature preprocessing in the following
ablation studies.

Effectiveness of DM. To validate the effectiveness of
DM loss, we compare it with several recently proposed
label-free loss functions utilizing unsupervised information
in query data for transductive FSL. Results are reported
in Table 5. [6] proposes to minimize the conditional en-
tropy of the label predictions over query data; [4] proposes
to maximize the weighted mutual information over query
data. Nevertheless, we can observe that incorporating our
DM loss consistently outperform other types of transduc-
tive learning on both mini-ImageNet and fiered-ImageNet.
This suggests that maximizing the dependency between
query feature and the label predictions can effectively im-
prove the generalization performance. Furthermore, Figure
1 shows the convergence plot for our DM method on 1-shot
mini-ImageNet tasks. During training, DM value increases
monotonically at each iteration and converges well.

Effectiveness of IDA. To further validate the effective-
ness of IDA, we compare it with other metrics for eval-
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Figure 2. (a) The flip ratio of the pseudo-labels between two consecutive iterations in our IDA method. (b) The accuracy of the pseudo-
labels w.r.t. the ground-truth labels. (c) The actual testing accuracy on the query versus number of selected pseudo-labeled examples. (d)
The discriminant power v (Eq.(6)) of the pseudo-labeled set over iterations.

Metric Transductive Semi-supervised
1-shot  5-shot 1-shot  5-shot
No selection 56.06 7543  56.06 75.43
Random 59.01 76.38  59.46 76.58
Nearest Neighbour  63.24  77.63  63.10 77.75
Confidence 63.29 7792  63.57 77.71
ICI[31] 6532 7830 64.60 77.96
IDA (Ours) 67.17 80.00 67.36  80.18

Table 6. Comparing IDA to other metrics for selecting the pseudo-
labeled examples for self-training. Results are testing accuracy on
mini-ImageNet. All methods use ResNet-12 as the backbone.

mini-ImageNet  tiered-ImageNet

1-shot Accuracy

Tran. Semi.  Tran. Semi.
w/o SA-FP 79.17 8246 84.10 87.12
w/ SA-FP 80.60 83.34 85.87 86.71

Table 7. Ablation study on the effectiveness of the self-attention
based feature preprocessing (SA-FP).

uating the credibility and selecting the pseudo-labeled ex-
amples under the transductive/semi-supervised FSL setting
in Table 6. A naive strategy is to randomly select some
pseudo-labeled examples into the augmented support set.
Another strategy is to select high-confidence examples, i.e.
selecting the pseudo labels whose largest class probability
given by the classifier is above a certain threshold [14]. One
can also leverage the nearest-neighbour strategy to select
the examples based on their distance to the centroid of each
class in the feature space. The last strategy we compare to
is ICI [31], which selects pseudo-labels based on a linear
regression hypothesis. Here, we assume 15 unlabeled ex-
amples for each class and select 5 examples per class by
different metrics to retrain the classifier on mini-ImageNet.
As shown, IDA outperforms other metrics in all settings.
Specifically, IDA outperforms the ICI pseudo-label selec-
tion method, suggesting that our discriminant hypothesis
can select more faithful pseudo-labeled examples thatn the
linear regression hypothesis in [31]. We also provide visu-

alizations for our iterative IDA method in Figure 2. We have
the following observations: (1) the pseudo labels gradually
stabilize without label flipping at the end; (2) IDA can se-
lect more trustworthy pseudo labels as the accuracy of the
selected pseudo labels is always higher than the accuracy of
overall pseudo labels; (3) the accuracy of overall pseudo-
labels gradually improves, indicating that some wrongly la-
beled examples in previous iterations can be corrected and
re-considered to select in later iterations; (4) the actual test-
ing accuracy on query consistently improves as we attrac-
tively select more pseudo labeled examples.

Effectiveness of self-attention feature preprocessing.
The self-attention feature preprocessing step is to drive sim-
ilar features in the unlabeled set to cluster closer and to
propagate the unlabeled feature information to the support
features to better represent the data distribution of the task.
In Table 7, we see that this preprocessing step improves
the testing performance noticeably for both transductive and
semi-supervised FSL on mini-ImageNet and for transdutive
FSL on tiered-ImageNet.

6. Conclusion

Few-shot learning is a fundamental problem in modern
Al research. In this paper, we propose a simple approach
to exploit unlabeled data to improve the few-shot perfor-
mance. We propose a dependency maximization loss based
on the Hilbert-Schmidt norm of the cross-covariance oper-
ator, which maximizes the statistical dependency between
the features of unlabeled data and their label predictions.
The obtained model can be used to infer the pseudo-labels
for the unlabeled data. We further propose an instance dis-
criminant analysis to evaluate the quality of each pseudo-
labeled example and only select the most faithful ones to
augment the support set. Extensive experiments show that
our method compares favourably with state-of-the-art meth-
ods on standard few-shot benchmarks, as well as on higher-
way testing tasks and cross-domain FSL. In future work,
we aim to provide a more theoretical analysis for our de-
pendency maximization and discriminant-based sample se-
lection; and we aim to generalize the method to other appli-
cations such as few-shot detection/segmentation.
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