
A Low Memory Footprint Quantized Neural Network for
Depth Completion of Very Sparse Time-of-Flight Depth Maps

Xiaowen Jiang1 Valerio Cambareri2* Gianluca Agresti3

Cynthia Ifeyinwa Ugwu4 Adriano Simonetto4 Fabien Cardinaux3 Pietro Zanuttigh4

1 EPFL, Switzerland 2 Sony Depthsensing Solutions NV, Belgium
3 Sony Europe B.V., R&D Center, Stuttgart Laboratory 1, Germany 4 University of Padova, Italy

Abstract
Sparse active illumination enables precise time-of-flight

depth sensing as it maximizes signal-to-noise ratio for low
power budgets. However, depth completion is required to
produce dense depth maps for 3D perception. We address
this task with realistic illumination and sensor resolution
constraints by simulating ToF datasets for indoor 3D per-
ception with challenging sparsity levels. We propose a
quantized convolutional encoder-decoder network for this
task. Our model achieves optimal depth map quality by
means of input pre-processing and carefully tuned training
with a geometry-preserving loss function. We also achieve
low memory footprint for weights and activations by means
of mixed precision quantization-at-training techniques. The
resulting quantized models are comparable to the state of
the art in terms of quality, but they require very low GPU
times and achieve up to 14-fold memory size reduction for
the weights w.r.t. their floating point counterpart with min-
imal impact on quality metrics.

1. Introduction

Time-of-flight (ToF) sensors are active depth sensing
devices [53] with the potential to provide more reliable
scene understanding by true 3D perception. Due to their
low power consumption and accuracy at real-time frame
rates, ToF sensors were recently integrated in mobile con-
sumer devices [33]. However, ToF relies on active illumi-
nation [53] which accounts for a relevant part of its power
consumption. To use the limited power budget of a mo-
bile device more efficiently, the scene can be illuminated
with a dot pattern light source so that its radiant intensity
concentrates onto a small number of regions (dots). A low-
power ToF sensor for indoors 3D perception typically cap-
tures 500 ∼ 1500 dots per frame. Because of this sparsity
level, sensor fusion techniques are necessary to obtain dense

*Corresponding author: valerio.cambareri@sony.com. XJ,
CU, and AS thank Sony Europe B.V. for supporting their internships.

depth maps. Hereafter, we tackle this depth completion task
by using a single RGB image frame together with a sparse
depth map warped to the RGB camera view (at small base-
line of a few mm to minimize occlusion issues w.r.t. the
ToF sensor). We dub this the sparse ToF setting.

To obtain dense depth from a sparse depth map, deep
learning-based approaches have gained significant atten-
tion, with several contributions showing competitive per-
formances especially on autonomous driving datasets [17,
44, 47]. We instead focus on efficient indoor 3D perception
with ToF. In order to attain overall low power budget for
both ToF sensing and depth completion, neural networks
must be designed and trained accordingly for efficient in-
ference. In this paper we introduce a carefully designed
encoder-decoder CNN for depth completion. We achieve a
low memory footprint for weights and activations by means
of mixed-precision quantization-aware training and show
that the resulting quantized models achieve conspicuous
memory size savings for weights and activations, while re-
maining competitive w.r.t. quality metrics. Our contribu-
tions are as follows:

• We propose an efficient depth completion model suit-
able for low-power sparse ToF sensing. We evaluate
our model and other state-of-the-art models on two
datasets: the public-domain dataset NYU-Depth v2
[43], and SDS-ST1k [6], a contributed dataset provid-
ing accurate sparse ToF and RGB camera simulations.

• We analyze the impact of input pre-processing provid-
ing fast initialization; a normals estimation block en-
abling supervision with ground truth normals; differ-
ent loss functions and network configurations. Each of
these elements contributes to achieving optimal depth
map quality for the resulting model.

• We evaluate quantization-aware training strategies
to quantize weights and activations of the previous
model. To the best of our knowledge, mixed-precision
quantization [46] has been used successfully to clas-
sification tasks. In this paper we present the first ap-

2687

plication of mixed precision quantization to the depth
completion task. This technique allows us to minimize
the weights and activations memory requirements with
very limited quality degradation.

2. Related Works

2.1. Depth Completion

The main task we explore in this paper is popular in com-
puter vision since the introduction of depth sensors [3, 11]
and has been addressed by neural networks with convolu-
tional encoder-decoder architectures [9,24,34,35,37,39,52].
Many other works define the state of the art in depth
completion [12, 13, 20, 22, 28, 31, 40, 45]. We will com-
pare our results against CNN solutions [8, 9, 34, 37] se-
lected on the basis of their similar complexity (single
encoder-decoder). These will be retrained on our sparse
ToF datasets. There exist also higher-complexity networks
leveraging, e.g., multiple decoder branches [39, 51] or sep-
arate encoder branches [16, 42, 48, 52] but in this work we
aimed for a more compact and lightweight model. We will
only focus on single-frame depth completion. Many contri-
butions extend depth completion by either self-supervision
or by providing as input multiple RGB-D frames with
known or inferred poses [16,34,38,49,50]. By tackling only
the single-frame case, we grant temporally-independent be-
havior for both dynamic and static cameras and remove ad-
ditional computational effort required by pose estimation
via neural networks (e.g., [25]) or traditional odometry. We
now discuss the main works we compare against.

Sparse-to-Dense (S2D [34]) is a popular approach us-
ing a single encoder-decoder network. Its core contribu-
tion is self-supervision by pose estimation (a feature we do
not leverage) as well as its long-standing role in the KITTI
leaderboard compared to its low complexity. The network
architecture is similar to ours. As shown in [34, Sec. 6.4]
and confirmed in our experiments, its robustness to sparsity
is limited. We reproduced and retrained their model.

D3 [8] is developed using DenseNet [21] layers as build-
ing blocks. Its input pre-processing is an efficient way to
initialize the depth map and attain high quality while main-
taining low complexity. NYU-Depth v2 results are pro-
vided, but the authors’ code is not public and we could not
reproduce their quality in our implementation and retrain-
ing.

Convolutional Spatial Propagation Network (CSPN [9])
was among the first works [9,37,51] to propose a two-stage
network architecture using spatial propagation layers. This
entails: (i) generation of a “blurred” depth map and affinity
matrix; (ii) iterative refinement using the learned affinity
matrix as weights for anisotropic diffusion. We retrained
the authors’ model via their code.

(a) 1216× 352,K ≈ 4.4%

(b) 304× 224,K ≈ 1.4% (c) 640× 480,K ≈ 0.4%

Figure 1. RGB-annotation overlay of (a) KITTI (LiDAR; range:
[0, 85]m), (b) NYU-Depth v2 (processed; range: [0, 10]m), (c)
SDS-ST1k (sparse ToF; range: [0, 15]m). Annotations (red) at
available sparse depth coordinates. Figure best viewed in color.

Non-Local Spatial Propagation Network (NLSPN [37])
improves upon [9], its main novelty being the use of non-
local neighbors in the diffusion process, which is imple-
mented by deformable convolutions. The authors show it
achieves superior performances w.r.t. S2D and CSPN on
NYU-Depth v2. In our experiments, we confirm this is in-
deed the most competitive approach at its network complex-
ity. We retrained the authors’ model via their code.

2.2. Neural Networks Quantization

Quantized Neural Networks (QNN) [18, 29, 54] are
DNNs for which a smaller number of bits b ≪ 32 is used
to represent the weights and activations. QNNs are key to
achieving efficient and low-power inference: they require
considerably less memory and have a lower computational
complexity, since quantized values can be stored, multiplied
and accumulated efficiently.

Quantization-Aware Training (QAT) refers to a set of
special algorithms to train QNNs, leading to superior re-
sults than post-training quantization. Recent QAT meth-
ods [2, 7, 10, 23, 30] proved effective on classification tasks.

These methods often use uniform quantization and the
same bit width in each network layer. To improve QAT,
Uhlich et al. [46] and Nikolić et al. [36] proposed to learn
the optimal bit width for each layer while achieving a target
size budget. On classification tasks, these mixed precision
approaches show superior results since the bit widths can be
allocated optimally across the network. Much less evidence
of successful QAT exists for regression tasks such as depth
completion.

3. Sparse ToF Datasets
We target datasets that are critically challenging in terms

of sparsity. We consider indoor scenes (range: [0, 15]m)
with rich structure and detailed objects with diverse cam-

2688

(a)

(b) (c)

(Horizontal)

(Vertical)

(d)

Figure 2. Summary of our network design for depth completion: (a) Network architecture. We highlight pre-processing blocks (gray);
tensor operators (orange, square); training supervision operators (teal) and connections (dashed); concatenation (yellow, circle); the
UNetθ,nf ,ns module (blue); the normals estimation block (purple). (b) UNetθ,nf ,ns Module. M2×2 indicates a MaxPooling2D layer
with stride 2. U2×2 indicates an Upsample2D layer using nearest neighbors upsampling with factor 2. (c) Basic convolutional building
blocks of the UNetθ,nf ,ns Module. (d) Normals Estimation Block, as implemented by 1-D convolution (∗) in the respective directions.

era orientations. Given sparse depth maps DS, let us de-
fine the sparsity level K := 100 |{i∈[nh]×[nv]:(DS)i ̸=Invalid}|

nhnv

at target depth map resolution1 nh × nv . We tackle very
sparse settings where K ≈ 0.4 ∼ 1.4% (as a reference
in the widely used KITTI depth completion benchmark2

K ≈ 4 ∼ 5%). A visual overview is provided in Fig. 1.
Indeed, such higher values of K simplify the depth com-

pletion task. In this work we will focus on indoor 3D per-
ception datasets with very sparse depth maps, where tradi-
tional pipelines [27] will struggle to achieve good results.

Our main results are given on NYU-Depth v2 [43] as
broadly adopted public-domain dataset. For the training
set, we use a subset of ≈ 50K RGB-D images from the
249 standard training scenes. Each image is downsized to
320 × 240 then center-cropped to 304 × 224, identically
to [35, 37]. The main difference we introduce is that we
process the depth by subsampling it with a triangular tiling
dot pattern generated from sparse illumination of commer-
cial VCSELs [33] instead of choosing random indices. This
results in sparse depth maps DS with on-average 943 ac-
tive pixels (K ≈ 1.4%; see Fig. 1b) sampled from the full,
dense depth map DGT which is used as supervision. The
surface normals map NGT was also estimated from DGT.
The standard test set of 654 images is processed identically.

In addition, we provide results on SDS-ST1k [6], a con-
tributed dataset using 8 diverse environments from Unreal

1Typically equal to the input RGB frame resolution or a cropping of it.
2By computing K over the standard validation set of KITTI Depth

Completion.

Engine [14] marketplace assets yielding ≈ 18K images
from random camera poses at resolution 640 × 480. To
obtain sparse ToF data, we apply a light source with dot
pattern light shading in our raytracing ToF simulator; this
is received on a simulated ToF sensor compatible with low
power designs and camera specifications (e.g., sensor inte-
gration time, camera intrinsics). This provides both sparse
ToF depth maps Ds with realistic parallax and pattern ge-
ometry, and ground truth DGT, NGT. In this setting we ob-
tain on-average 1239 active pixels, yielding a challenging
K ≈ 0.4% (see Fig. 1c). The recommended training/testing
split yields ≈ 5K images as test set; this will be provided
at https://github.com/sony/ai-research-
code. We shall train our models with 160 × 160 non-
overlapping patches (i.e., 12 per image) to meet training
device memory limitations.

4. Network Design

The input of all considered depth completion methods is
an RGB-D frame comprised of a color image and a sparse
depth map, suitably projected to RGB camera space by as-
suming known intrinsics and RGB-ToF extrinsics, and with
negligible RGB-ToF baseline to avoid occlusions.

4.1. Input Pre-Processing

We leverage the input pre-processing method of Chen et
al. [8]: given the sparse depth DS, we compute an initial
guess DNNI of the depth map by Nearest Neighbors Inter-
polation (NNI), i.e., mapping each coordinate to the closest

2689

L λn RMSE (mm) MNS
Lℓ2

n/a 105.2 0.538
Lℓ1

n/a 97.8 0.754
Lℓ1

+ λnLn 1 259.0 0.864
Lℓ1

+ λnLn 10−1 227.0 0.868
Lℓ1

+ λnLn 10−2 101.5 0.838
Lℓ1

+ λnLn 10−3 98.7 0.783
Lℓ1

+ λnLn 10−4 109.3 0.764

(a)

Color Lℓ2

Lℓ1 Lℓ1 + λopt
n Ln

(b)

Figure 3. Loss function tuning on SDS-ST1k (resolution 640 ×
480): (a) Quantitative analysis; (b) Qualitative analysis of error
maps (range: [−500, 500]mm). Figure best viewed in color.

sparse depth pixel in the Euclidean sense. We also compute
the Euclidean Distance Transform (EDT) E with [15] (via
OpenCV) given the 2-D valid coordinates of DS. NNI is
obtained by the same call, which takes median CPU time
tNNI = 4.99 ms over SDS-ST1k and tNNI = 0.99 ms
over NYU-Depth v2. We normalize DNNI by the maximum
range Dmax := 15m and E by Emax := 40, which we
find empirically to be an appropriate normalization value
for our datasets. The EDT feeds the CNN an uncertainty
map of DNNI, i.e., it is low where sparse depth is known
and progressively higher when it is not. We tried replacing
NNI with linear interpolation3 in preliminary tests, but this
did not show any benefits while increasing CPU time.

4.2. Network Architecture

A summary of our supervised approach is given in
Fig. 2. The core CNN element (Fig. 2b) is a simple “UNet-
like” [41] template, dubbed UNetθ,nf ,ns

, of which we tune
the number of scales ns and feature maps nf relative to the
highest scale. Our reference is ns = 5, nf = 64. The
number of feature maps doubles at each scale as their spa-
tial resolution is reduced, up to 2ns−1 at the lowest scale.
The basic building blocks (Fig. 2c) are standard 2-D con-

3Linear interpolation on a non-uniform grid due to the dot pattern re-
quires Delaunay triangulation, which is costly and cannot be reused as the
pattern can change at every frame.

volutions with 3 × 3 filters, with padding to same resolu-
tion as the layer input and stride 1. We chose to replace
transpose convolutions in the decoder with upsampling and
convolution layers, as preliminary tests indicated better per-
formance on our datasets. All skip connections are by con-
catenation except for the last one, which is a tensor addi-
tion w.r.t. DNNI. Thus, we have the (normalized) interpo-
lated depth D̂ := DNNI + UNetθ,nf ,ns

(DNNI, E, C), i.e.,
UNetθ,nf ,ns

computes a residual w.r.t. the initial guess.

4.3. Normals Estimation Block

As shown in Fig. 2a, we estimate the surface normals
map N̂ from the interpolated depth map D̂ rather than using
costly dedicated decoders [39]. We resort to a well-known
approximation that is directly applicable to depth maps; the
computation graph is reported in Fig. 2d. Given a depth
map tensor D at the input, we approximate horizontal and
vertical image axes derivatives by centered differences us-
ing two fixed-kernel 1-D convolutions yielding the tensors
(∂D∂x ,

∂D
∂y). We then have at the i-th pixel the normal vector

(N̂)i :=

[
(∂D∂x)i (∂D∂y)i −1

]
√

(∂D
∂x)2i+(∂D

∂y)2i+1
. (1)

We found this small-kernel method sufficiently accurate to
enforce similarity4 between (N̂)i, (NGT)i at training.

4.4. Loss Function

Our supervised training follows the flow in Fig. 2a. The
supervision is comprised of two terms. The first term mea-
sures the ℓp-norm distance between (normalized) ground
truth DGT and D̂, i.e., for dataset D with J samples,

Lℓp(D) := 1
J

∑J
j=1 ∥ vec(D̂j−DGT,j)∥pp, p = 1, 2. (2)

The second term measures similarity between the dense
ground truth normals map NGT and N̂ from the block in
Fig. 2d: for each i-th pixel normal we measure the cosine
similarity cosα = ⟨(NGT)i, (N̂)i⟩. We then take its aver-
age over the dataset and define the normals loss

Ln(D) := − 1
Jnhnv

∑J
j=1

∑nhnv

i=1 ⟨(NGT,j)i, (N̂j)i⟩ (3)

with range [−1, 1] (at −1 all normals are identical). In the
presence of invalid ground truth depth or normals map (e.g.,
for invalid pixels in NYU-Depth v2) we exclude the corre-
sponding pixel from the loss computations.

Only part of the literature uses normals supervision5 [39,
51], while all depth completion approaches use depth su-
pervision providing scale. Normals supervision alone is not

4We ensure the surface normals’ orientation is always consistently
pointing towards the camera both in NGT and N̂ .

5Smoothness losses on the gradients of D̂ are also common [34,42] but
not considered here as the normals loss implements similar behavior in a
supervised and more geometrically sound fashion.

2690

nf ns MParams RMSE (mm) MNS
64 5 50.3 98.7 0.783
32 5 12.6 105.0 0.775
16 5 3.2 181.1 0.751
64 4 12.6 219.2 0.779
64 3 3.1 248.4 0.761
32 4 3.1 274.8 0.767

Table 1. Network tuning on SDS-ST1k (resolution 640×480). We
confirm a steady decrease of quality metrics as the feature maps nf

relative to the highest scale and the scales ns are reduced.

sufficient to retrieve scale. Thus, we minimize

L(D) := Lℓp(D) + λnLn(D) (4)

which balances between scale-dependent and scale-
independent terms using λn ∈ [0, 1]. This weight depends
on the dataset and must be tuned empirically. To do so,
we run preliminary tests of our approach (Fig. 2a) on SDS-
ST1k under different6 L := {Lℓ2 ,Lℓ1 ,Lℓ1 + λnLn} and
λn := 10−q, q = 0, . . . , 4, in the same settings described
in Sec. 6.1. Indeed, defining the conventional RMSE and
Mean Normals Similarity

MNS := 1
Jnhnv

∑J
j=1

∑nhnv

i=1 ⟨(NGT,j)i, (N̂j)i⟩ (5)

as quality metrics we see that large values of λn degrade
the RMSE, and vice versa for MNS. We find the best trade-
off at λopt

n = 10−3. As confirmation of this, in Fig. 3b
we report one sample error map D̂ − DGT under different
L. As we move from Lℓ2 to Lℓ1 the observed error map
pattern artefact disappears. Remaining errors at depth map
discontinuities are reduced by using the normals loss Ln.

4.5. Network Tuning

We investigated simple strategies to reduce the size of the
initial model, such as tuning the UNetθ,nf ,ns

module by its
number of feature maps nf relative to the highest scale, and
the number of scales ns. Our preliminary tests, in the same
setting as Sec. 6.1 on SDS-ST1k, actually confirm (Tab. 1)
that any pair smaller than (nf , ns) = (64, 5) leads to a
rapid degradation of RMSE and MNS, with the reduction
of ns (shallower network) being generally worse than that
of nf . Thus, we choose to achieve memory size reduction
by quantization of the full model with (nf , ns) = (64, 5)
which, as we will show, allows for a more compact model
with limited impact on quality metrics.

5. Quantization-Aware Training

Let Q(x;ϕ) be an arbitrary scalar quantizer with param-
eters ϕ, which maps x ∈ R to discrete values {q1, ..., qI}
represented by b bits, b : I ≤ 2b. This quantizer may

6We verified in preliminary tests that Lℓ2 + λnLn is systematically
worse than the ℓ1 case and excluded it accordingly.

be applied to both weights and activations to reduce their
memory size requirements. This can be done by either
post-training quantization or by Quantization-Aware Train-
ing (QAT), which generally achieves better accuracy than
the former. QAT consists in training the quantized version
of a DNN (in this case, CNN) while applying Q(x;ϕ) to
its weights and/or activations. However, this is challenging
as the gradient through the quantizer is zero almost every-
where; a solution to this is the Straight-Through Estimator
(STE) [4]. A symmetric uniform quantizer QU (x;ϕ) then
maps x ∈ R to uniformly quantized values by

q = QU (x;ϕ) := sign(x)

{
d
⌊
|x|
d + 1

2

⌋
|x| ≤ qmax

qmax |x| > qmax

,

(6)
where the parameter vector ϕ := [d, qmax, b]

T with step
size d ∈ R+, maximum value qmax ∈ R+, and number of
bits or bit width b ∈ N : b ≥ 2 of the quantized value q.

5.1. Uniform Precision Models

We start by considering uniform precision (UP) QAT,
i.e., every weight (or activation) of every layer has the same
predefined bit width b and QAT optimizes over the remain-
ing parameters d, qmax of ϕ. We conducted extensive exper-
iments to preserve depth completion accuracy while quan-
tizing with (6) the weights and activations in our model. The
most effective UP QAT training procedure was obtained
by initializing from the pretrained float32 model and us-
ing learnable qmax as in the Trained Quantization Thresh-
old (TQT) approach [23]; to stabilize the QAT, we used co-
sine learning rate decay scheduling [32], and we first trained
with RMSprop until convergence (32 epochs in our case),
followed by Adam [26] for 20 more epochs.

5.2. Mixed Precision Models

Recent results [36, 46] show that, for a given memory
size budget, better accuracy than UP QAT can be achieved
using mixed precision (MP) QAT, i.e., each layer uses its
own bit width learned at training to fit a target total net-
work size. Following [46] we parametrize QU (x;ϕ) with
their range and step size d, from which the bit width
b := ⌈1 + log2(qmax/d + 1)⌉ is then inferred. With this
parametrization and STE [4] gradient, we can use standard
stochastic gradient descent methods to learn per-layer opti-
mal bit widths jointly with network parameters. To achieve
target network sizes we add to (4) size constraints on the
weights and activations as penalty terms [5], minimizing

LMP = L(D) + λW max(0, SW)2 + λA max(0, SA)
2

(7)

Sx = (
∑L

l=1 S
l
x)− So

x, S
l
x = Nx,lbx,l, S

o
x = b̄x

∑L
l=1 Nx,l

(8)

2691

Precision Weights Size (MB) RMSE (mm) MNS
float32 198.5 98.7 0.783

Uniform (WUP
4) 25.1 100.3 0.762

Mixed (W⋆) 13.9 94.5 0.783

(a)

0 5 10 15 20 25
0

2

4

6

8

10

12

b̄W

Layer Index l

B
it

W
id

th
b
W

,l

(b)

Figure 4. Weights quantization. (a) Results on SDS-ST1k (resolu-
tion 640×480) for the most compact UP model WUP

4 at bit width
b = 4 and MP model W⋆ at average bit width b̄W = 2.35. (b)
Per-layer precision allocation of W⋆ (last float32 layer omitted)
and the corresponding b̄W (dashed).

where x := {W,A} denote weights or activations; Sl
x

their per-layer total memory size for Nx,l coefficients with
learned bit widths bx,l; So

x is the target size which we tune7

by a reference average bit width b̄x. The parameters λW ∈
R+ and λA ∈ R+ are chosen to balance the respective
penalties. We empirically set them following the criteria in
[46, Sec. 4], yielding λW ≈ 2.66 · 10−7, λA ≈ 1.73 · 10−6.
In MP QAT we also initialize network parameters from the
pretrained float32 model, and run Adam for 60 epochs until
convergence with cosine learning rate decay scheduling.

5.3. Weights Quantization

We initially compare weights-only UP QAT and MP
QAT against the pretrained float32 model, with the same
dataset and setting as Sec. 4.5. In all our models the last
layer is at float32 precision as it directly produces the re-
gression output in Fig. 2a. We refer to UP models WUP

b

and MP models Wb at (fixed or average) bit width b. We
report the most compact UP model WUP

4 (b = 4) providing
best quality metrics, and compare it against the most com-
pact MP model W⋆, where ⋆ denotes target size So

W,⋆ :=

14MB, i.e., b̄W ≈ 2.35 bit when setting the size constraint.
The results in Fig. 4a allow us to establish that MP QAT

is superior to UP, as with half of the weights memory size
we see no degradation of MNS and a slight improvement in
RMSE due to refinement from the pretrained float32 model.
We also observe in Fig. 4b how the per-layer precision al-
location of MP naturally tends to assign smaller (larger) bit
widths to inner (outer) layers of the QNN.

5.4. Activations Quantization

For efficient inference on mobile or low-power devices,
it is crucial to consider the quantization of both weights

7This tuning can arbitrarily refer to an average bit width or to a total
size (in which case the average as defined in (8) can be fractional).

and activations. Indeed, activations can dominate memory
requirements at inference (especially for encoder-decoder
networks such as ours) and may additionally cost many
read/write accesses of buffer memory, with large impact on
energy consumption. As we observed that MP is capable of
achieving superior performances than UP for the weights-
only case, our final results (Sec. 6.3) will consider MP QAT
with weights and activations quantization at 4 to 8 bits; we
therefore denote them by Wb′Ab′′ where b′, b′′ ≥ 2 are av-
erage bit widths that set the respective size constraints.

6. Results
We present our results using the same quality metrics

of most prior works [8, 35]: RMSE, Mean Absolute Error
(MAE), Mean Absolute Relative Error (MRE), and δi, i =
1, 2, 3; we also add the MNS metric (5) to study normals
similarity. Where reported, the median GPU time per pre-
diction (tGPU) is measured on an NVidia GTX 1080 Ti. The
reported results are given on full-frame test sets from Sec. 3.

6.1. Training Setup

We train our depth completion model for 40 epochs until
convergence using RMSprop as the optimizer with learning
rate ρ := 10−4 and batch size of 8 (SDS-ST1k) or 4 (NYU-
Depth v2). Given its very large resolution, all trainings of
our model on SDS-ST1k leverage patches of 160 × 160,
but we switch to full 640× 480 inference when computing
quality metrics since our networks are fully convolutional.

We also retrain other competing methods for compar-
ison, by following the supervised training procedures de-
scribed by the respective authors as reproducible from their
codes (S2D, CSPN and NLSPN) or descriptions (D3), while
providing as input our sparse ToF datasets. We also tested
the authors’ CSPN and NLSPN models pretrained on NYU-
Depth v2 with randomly sampled patterns, but the resulting
performances were worse than our retraining.

In addition to the float32 model, we consider our quan-
tized MP models W8A8,W4A8,W4A4 (Sec. 5.4) and W⋆

(Sec. 5.3)8; the subscripts denote the respective average bit
widths. For MP QAT, we use the NNabla [19] implemen-
tation of [46]. In this case we obtained the best results by
training our MP models starting from the pretrained float32
model, with the Adam optimizer for 60 epochs until con-
vergence, starting from learning rate ρ := 10−4 with cosine
learning rate decay scheduling [32].

6.2. Depth Completion Models

We first discuss some quantitative results of our method
(in float32 precision) against others in Tab. 2. We achieve
very good results on both evaluated datasets despite their
different sparsity level K: our method ranks second-best on

8In W⋆ activations are left float32.

2692

Method Weights
Size (MB)

Activations
Size (MB)

RMSE
(mm)

MAE
(mm) MRE (%) MNS δ1(%) δ2(%) δ3(%)

Median tGPU

(ms)
NYU-Depth v2 (center cropped, 304 × 224)

S2D 90.1 322.7 72.1 34.1 1.230 0.538 99.79 99.97 99.99 4.83 (0)
D3 7.8 59.9 128.3 46.9 1.760 0.422 99.13 99.79 99.94 13.78 (0.99CPU)

CSPN 832.1 44.2 79.0 28.5 0.970 0.752 99.68 99.95 99.99 63.97 (14.02)
NLSPN 100.1 200.2 61.4 22.5 0.750 0.800 99.83 99.98 100.00 42.50 (7.93)

Ours 198.5 145.5 63.7 23.2 0.782 0.790 99.81 99.98 99.99 5.11 (0.99CPU)
SDS-ST1k (640 × 480)

S2D 90.1 1455.5 643.3 589.9 29.130 0.158 55.45 83.27 94.25 6.02 (0)
D3 7.8 270.2 176.7 57.4 2.500 0.572 98.40 99.40 99.70 18.83 (4.99CPU)

CSPN 832.1 199.2 174.3 97.1 3.850 0.687 98.60 99.60 99.78 154.62 (23.50)
NLSPN 100.1 890.6 99.1 29.4 1.150 0.775 99.39 99.81 99.92 148.68 (11.18)

Ours 198.5 656.3 98.7 21.7 0.829 0.783 99.45 99.81 99.91 10.30 (4.99CPU)

Table 2. Depth completion models. The median tGPU is given as ttotal(tinitialization). In ours and D3, initialization is computed on CPU.

Precision Weights
Size (MB)

Activations
Size (MB)

RMSE
(mm)

MAE
(mm) MRE (%) MNS δ1(%) δ2(%) δ3(%)

NYU-Depth v2 (center cropped, 304 × 224)
float32 198.5 145.5 63.7 23.2 0.782 0.790 99.81 99.98 99.99
W8A8 22.1 47.9 64.2 23.4 0.784 0.793 99.81 99.98 99.99
W4A8 22.0 36.2 64.3 23.5 0.793 0.790 99.81 99.98 99.99
W4A4 23.7 17.6 70.3 26.1 0.894 0.739 99.76 99.97 99.95
W⋆ 13.7 145.5 64.9 23.6 0.796 0.786 99.81 99.98 99.99

SDS-ST1k (640 × 480)
float32 198.5 656.3 98.7 21.7 0.829 0.783 99.45 99.81 99.91
W8A8 45.9 164.1 101.7 22.5 0.874 0.781 99.40 99.79 99.91
W4A8 20.7 163.3 101.3 21.1 0.810 0.776 99.48 99.83 99.92
W4A4 21.1 78.4 99.0 24.4 0.958 0.638 99.41 99.81 99.92
W⋆ 13.9 656.3 94.5 20.8 0.808 0.784 99.48 99.83 99.92

Table 3. Quantized network models. Among MP QNN models, we highlight the best trade-off between lowest memory footprint and best
quality metrics for weights and activations (yellow) and weights-only (orange). Figure best viewed in color.

NYU-Depth v2 with a RMSE of 63.7mm and best on SDS-
ST1k with a RMSE of 98.7mm. MAE and MNS confirm
the RMSE ranking. We also achieve very competitive tGPU

by virtue of the simple initialization obtained via NNI and
simple encoder-decoder architecture of Fig. 2a.

NLSPN provides the most competitive performances: it
is quality-wise the best approach on NYU-Depth v2 (but
the RMSE gap w.r.t. ours is very limited, only 2.3mm) and
second-best on SDS-ST1k, as confirmed by all quality met-
rics as well as visual results (Sec. 6.4). However, its tGPU

is relatively high even if the model is substantially compact.
This is due to spatial propagation, which requires several it-
erations (18 as recommended in [37]) that linearly increase
tGPU even at constant memory footprint. tGPU also notably
increases significantly between 304 × 224 and 640 × 480
resolutions. Moreover, the initialization cost (i.e., the input
encoder-decoder module of NLSPN) is substantially higher
than that of our method, which runs on CPU.

As for the other methods, it is possible to see that CSPN
has slightly but consistently inferior performances than NL-
SPN and ours on both datasets. We also observed that

S2D, even if very fast, yields sub-optimal quality metrics
on NYU-Depth v2, and poor quality metrics on SDS-ST1k
given its larger resolution at lower K. This confirms the
findings in [34, Sec. 6.4] that the RMSE of S2D deterio-
rates for lower sparsity level K and that structured subsam-
pling patterns yield worse performances than random ones.
Finally, we observed that D3, even if starting from the same
initialization as ours, yields worse RMSE and MAE.

6.3. Quantized Network Models

The QAT results for our MP models are given in Tab. 3.
Among those models, we highlight our best weights-only
MP QAT result for W⋆; the weights size constraint of
14MB is met by weights memory size of 13.9MB after
training. This yields 14-fold memory size reduction w.r.t.
the float32 model at 198.5MB. There, we observe limited
and graceful degradation of the quality metrics9 (e.g., the
RMSE loss is only 1.2 mm on NYU-Depth v2) when reduc-

9We do not report tGPU as comparable with that of the float32 model
and not indicative of computation time on dedicated hardware, since fixed-
precision operations are here emulated by float32 operations as in [36,46].

2693

NLSPN Ours (float32) Ours (W4A8)
Color

Depth Map Error Map Depth Map Error Map Depth Map Error Map
DGT

NYU-Depth v2 (center cropped, 304 × 224)

SDS-ST1k (640 × 480)

Figure 5. Qualitative results. We report, for three arbitrary frames in the test sets of NYU-Depth v2 (top rows) and SDS-ST1k (bottom
rows), the predicted depth maps D̂ and error maps D̂ −DGT (range: [−500, 500]mm). Figure best viewed in color.

ing precision of the weights and activations in the float32
model. However, as activations are also crucial for reduc-
ing memory footprint (Sec. 5.4), we remark that the overall
most compact model with minimal impact on quality met-
rics is W4A8 with a RMSE loss of only 0.7 mm on NYU-
Depth v2, as W4A4 sees instead significant degradation of
the MRE, MNS, and MAE metrics (e.g., 6.6 mm in RMSE).
We select this model for the following analysis.

6.4. Qualitative Analysis

We now highlight the visual differences observed be-
tween different depth completion approaches. We consider
the best competitor from Sec. 4.2, NLSPN, against our
method in its float32 and MP W4A8 flavors. We report
three samples from each dataset with both depth maps D̂
and error maps D̂ − DGT in the same range to allow for a
visual comparison. On NYU-Depth v2 NLSPN yields sharp
edges with minimal amount of “mixed depth” pixels. How-
ever, the float32 and W4A8 models are as sharp, e.g., on the
wall discontinuities (middle row). The error patterns seen in
all approaches on far planar regions (top row) are probably
due to the acquisition of DGT with a Kinect sensor, whose

accuracy decreases with the distance [53].
As for the higher-resolution SDS-ST1k dataset, we see

that while depth map quality of our models is comparable
to that of NLSPN, on several scenes the latter yields larger
errors on planar surfaces (e.g., the ground plane) than ours
as shown in the corresponding error maps (top, middle row);
our model also recovers more accurately some complex ob-
ject details such as the cupboard (middle row), trash bin and
shelves (bottom row).

7. Conclusion
We described a depth completion model based on a com-

pact CNN with mixed-precision quantization. Our model
performs within a few percent units of the state-of-the-art in
terms of quality metrics on standard datasets such as NYU-
Depth v2, but achieves faster GPU time at competitively
small memory footprint and is suitable for real-time appli-
cations. A dedicated hardware implementation of our QNN
will take full advantage of mixed-precision by fixed-point
operations. We will investigate knowledge distillation with
MP QAT to compress the network, as well as domain adap-
tation techniques [1, 31] to improve depth map quality on
real RGB-ToF datasets.

2694

References
[1] Gianluca Agresti, Henrik Schafer, Piergiorgio Sartor, Yalcin

Incesu, and Pietro Zanuttigh. Unsupervised Domain Adap-
tation of Deep Networks for ToF Depth Refinement. IEEE
Trans. Pattern Anal. Mach. Intell., 2021.

[2] Yu Bai, Yu-Xiang Wang, and Edo Liberty. ProxQuant:
Quantized Neural Networks via Proximal Operators. In
Proc. Int. Conf. Learn. Represent. (ICLR), 2019.

[3] Jonathan T. Barron and Ben Poole. The Fast Bilateral Solver.
In Proc. Eur. Conf. Comput. Vis. (ECCV), pages 617–632.
Springer International Publishing, 2016.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[5] Dimitri P. Bertsekas. Constrained optimization and La-
grange multiplier methods. Academic Press, 2014.

[6] Valerio Cambareri. SDS-ST1K Dataset. Technical report,
Sony Depthsensing Solutions NV, May 2021.

[7] Fabien Cardinaux, Stefan Uhlich, Kazuki Yoshiyama,
Javier Alonso Garcı́a, Lukas Mauch, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Iteratively Training
Look-Up Tables for Network Quantization. IEEE J. Sel. Top.
Signal Process., 14(4):860–870, 2020.

[8] Zhao Chen, Vijay Badrinarayanan, Gilad Drozdov, and An-
drew Rabinovich. Estimating depth from rgb and sparse
sensing. In Proc. Eur. Conf. Comput. Vis. (ECCV), pages
167–182, 2018.

[9] Xinjing Cheng, Peng Wang, and Ruigang Yang. Learning
depth with convolutional spatial propagation network. IEEE
Trans. Pattern Anal. Mach. Intell., 42(10):2361–2379, 2019.

[10] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I.-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: Parameterized clipping acti-
vation for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018.

[11] James Diebel and Sebastian Thrun. An Application of
Markov Random Fields to Range Sensing. In Y. Weiss, B.
Schölkopf, and J. Platt, editors, Proc. Advances Neural Inf.
Process. Syst. (NeurIPS), volume 18. MIT Press, 2005.

[12] Abdelrahman Eldesokey, Michael Felsberg, Karl Holmquist,
and Michael Persson. Uncertainty-Aware CNNs for Depth
Completion: Uncertainty from Beginning to End. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020.

[13] A. Eldesokey, M. Felsberg, and F. Khan. Confidence Propa-
gation through CNNs for Guided Sparse Depth Regression.
IEEE Trans. Pattern Anal. Mach. Intell., 42(10):2423–2436,
Oct. 2020. Place: Los Alamitos, CA, USA Publisher: IEEE
Computer Society.

[14] Epic Games. Unreal Engine (v4.25).
[15] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Distance

Transforms of Sampled Functions. Theory of Computing,
8(19):415–428, 2012.

[16] Vitor Guizilini, Rares Ambrus, Wolfram Burgard, and
Adrien Gaidon. Sparse auxiliary networks for unified
monocular depth prediction and completion. In Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 11078–
11088, 2021.

[17] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3D Packing for Self-Supervised
Monocular Depth Estimation. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2020.

[18] Song Han, Huizi Mao, and William J. Dally. Deep Com-
pression: Compressing Deep Neural Networks with Prun-
ing, Trained Quantization and Huffman Coding. In Proc.
Int. Conf. Learn. Represent. (ICLR), 2016.

[19] Akio Hayakawa, Masato Ishii, Yoshiyuki Kobayashi, Akira
Nakamura, Takuya Narihira, Yukio Obuchi, Andrew Shin,
Takuya Yashima, and Kazuki Yoshiyama. Neural Network
Libraries: A Deep Learning Framework Designed from En-
gineers’ Perspectives, 2021.

[20] Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xi-
aojin Gong. PENet: Towards Precise and Efficient Image
Guided Depth Completion. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), pages 13656–13662, 2021.

[21] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely Connected Convolutional Net-
works. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2017.

[22] Saif Imran, Yunfei Long, Xiaoming Liu, and Daniel Morris.
Depth Coefficients for Depth Completion. In Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2019.

[23] Sambhav Jain, Albert Gural, Michael Wu, and Chris Dick.
Trained Quantization Thresholds for Accurate and Efficient
Fixed-Point Inference of Deep Neural Networks. In I.
Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings
of Machine Learning and Systems, volume 2, pages 112–
128, 2020.

[24] M. Jaritz, R. Charette, E. Wirbel, X. Perrotton, and F.
Nashashibi. Sparse and Dense Data with CNNs: Depth Com-
pletion and Semantic Segmentation. In Proc. IEEE Int. Conf.
3D Vis. (3DV), pages 52–60, 2018.

[25] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
PoseNet: A Convolutional Network for Real-Time 6-
DOF Camera Relocalization. In Proc. Int. Conf. Comput.
Vis.(ICCV), pages 2938–2946, 2015.

[26] Diederick P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proc. Int. Conf. Learn. Represent.
(ICLR), 2015.

[27] Jason Ku, Ali Harakeh, and Steven L. Waslander. In Defense
of Classical Image Processing: Fast Depth Completion on
the CPU. In 2018 15th Conference on Computer and Robot
Vision (CRV), pages 16–22. IEEE, 2018.

[28] A. Li, Z. Yuan, Y. Ling, W. Chi, S. Zhang, and C. Zhang. A
Multi-Scale Guided Cascade Hourglass Network for Depth
Completion. In Proc. IEEE Winter Conf. Appl. Comput. Vis.
(WACV), pages 32–40, 2020.

[29] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016.

[30] Zhi-Gang Liu and Matthew Mattina. Learning Low-
precision Neural Networks without Straight-Through Esti-
mator (STE). In Proc. Int. Joint Conf. Artif. Intell. (IJCAI),
pages 3066–3072, 2019.

2695

[31] Adrian Lopez-Rodriguez, Benjamin Busam, and Krystian
Mikolajczyk. Project to Adapt: Domain Adaptation for
Depth Completion from Noisy and Sparse Sensor Data. In
Proc. Asian Conf. Comput. Vis. (ACCV), 2020.

[32] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradi-
ent Descent with Warm Restarts. In Proc. Int. Conf. Learn.
Represent. (ICLR), 2017.

[33] Gregor Luetzenburg, Aart Kroon, and Anders A. Bjørk.
Evaluation of the Apple iPhone 12 Pro LiDAR for an Appli-
cation in Geosciences. Scientific Reports, 11(1), Nov. 2021.

[34] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Ser-
tac Karaman. Self-Supervised Sparse-to-Dense: Self-
Supervised Depth Completion from LiDAR and Monocular
Camera. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 3288–3295, 2019.

[35] Fangchang Ma and Sertac Karaman. Sparse-to-Dense:
Depth Prediction from Sparse Depth Samples and a Single
Image. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
4796–4803, 2018.

[36] Miloš Nikolić, Ghouthi Boukli Hacene, Ciaran Bannon, Al-
berto Delmas Lascorz, Matthieu Courbariaux, Yoshua Ben-
gio, Vincent Gripon, and Andreas Moshovos. Bitpruning:
Learning bitlengths for aggressive and accurate quantization.
arXiv preprint arXiv:2002.03090, 2020.

[37] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In
So Kweon. Non-local spatial propagation network for depth
completion. In Proc. Eur. Conf. Comput. Vis. (ECCV), pages
120–136. Springer, 2020.

[38] Vaishakh Patil, Wouter Van Gansbeke, Dengxin Dai, and Luc
Van Gool. Don’t Forget The Past: Recurrent Depth Esti-
mation from Monocular Video. IEEE Robot. Autom. Lett.,
5(4):6813–6820, 2020.

[39] Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang,
Shuaicheng Liu, Bing Zeng, and Marc Pollefeys. DeepL-
iDAR: Deep Surface Normal Guided Depth Prediction for
Outdoor Scene From Sparse LiDAR Data and Single Color
Image. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2019.

[40] Chao Qu, Ty Nguyen, and Camillo Taylor. Depth comple-
tion via deep basis fitting. In Proc. IEEE Winter Conf. Appl.
Comput. Vis. (WACV), pages 71–80, 2020.

[41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation. In Nassir Navab, Joachim Hornegger, William M.
Wells, and Alejandro F. Frangi, editors, Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, Cham, 2015. Springer International Publish-
ing.

[42] Shreyas S. Shivakumar, Ty Nguyen, Ian D. Miller, Steven W.
Chen, Vijay Kumar, and Camillo J. Taylor. DFuseNet: Deep
Fusion of RGB and Sparse Depth Information for Image
Guided Dense Depth Completion. In 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), 2019.

[43] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor Segmentation and Support Inference from
RGBD Images. In Andrew Fitzgibbon, Svetlana Lazeb-
nik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, edi-

tors, Proc. Eur. Conf. Comput. Vis. (ECCV), pages 746–760,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[44] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, and others. Scalability in per-
ception for autonomous driving: Waymo open dataset. In
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
pages 2446–2454, 2020.

[45] Lucas Teixeira, Martin R. Oswald, Marc Pollefeys, and Mar-
garita Chli. Aerial Single-View Depth Completion with
Image-Guided Uncertainty Estimation. IEEE Robot. Autom.
Lett., 5(2):1055–1062, 2020.

[46] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki
Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Mixed Precision
DNNs: All you need is a good parametrization. In Proc.
Int. Conf. Learn. Represent. (ICLR), 2020.

[47] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and
A. Geiger. Sparsity Invariant CNNs. In Proc. IEEE Int. Conf.
3D Vis. (3DV), pages 11–20, 2017.

[48] Wouter Van Gansbeke, Davy Neven, Bert De Brabandere,
and Luc Van Gool. Sparse and Noisy LiDAR Completion
with RGB Guidance and Uncertainty. In 2019 16th Interna-
tional Conference on Machine Vision Applications (MVA),
pages 1–6. IEEE, 2019.

[49] Felix Wimbauer, Nan Yang, Lukas von Stumberg, Niclas
Zeller, and Daniel Cremers. MonoRec: Semi-Supervised
Dense Reconstruction in Dynamic Environments from a Sin-
gle Moving Camera. In Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit. (CVPR), pages 6108–6118, 2021.

[50] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano
Soatto. Unsupervised Depth Completion From Visual In-
ertial Odometry. IEEE Robot. Autom. Lett., 5(2):1899–1906,
2020.

[51] Yan Xu, Xinge Zhu, Jianping Shi, Guofeng Zhang, Hujun
Bao, and Hongsheng Li. Depth Completion From Sparse
LiDAR Data With Depth-Normal Constraints. In Proc. Int.
Conf. Comput. Vis.(ICCV), 2019.

[52] Yanchao Yang, Alex Wong, and Stefano Soatto. Dense
Depth Posterior (DDP) From Single Image and Sparse
Range. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2019.

[53] Pietro Zanuttigh, Giulio Marin, Carlo Dal Mutto, Fabio Do-
minio, Ludovico Minto, and Guido Maria Cortelazzo. Time-
of-Flight and Structured Light Depth Cameras. Springer In-
ternational Publishing, 2016.

[54] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong
Chen. Incremental Network Quantization: Towards Loss-
less CNNs with Low-Precision Weights. In Proc. Int. Conf.
Learn. Represent. (ICLR), 2017.

2696

