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Abstract

We propose the use of fractals as a means of efficient

data augmentation. Specifically, we employ plasma fractals

for adapting global image augmentation transformations

into continuous local transforms. We formulate the diamond

square algorithm as a cascade of simple convolution op-

erations allowing efficient computation of plasma fractals

on the GPU. We present the TorMentor image augmenta-

tion framework that is totally modular and deterministic

across images and point-clouds. All image augmentation

operations can be combined through pipelining and ran-

dom branching to form flow networks of arbitrary width

and depth. We demonstrate the efficiency of the proposed

approach with experiments on document image segmenta-

tion (binarization) with the DIBCO datasets. The proposed

approach demonstrates superior performance to traditional

image augmentation techniques. Finally, we use extended

synthetic binary text images in a self-supervision regiment

and outperform the same model when trained with limited

data and simple extensions.

1. Introduction

In the era of deep learning, computer vision-based neural

networks need extreme quantities of annotated data. This has

led to Image Data Augmentation (IDA) being employed in

any state-of-the-art training pipeline to various degrees. Spe-

cialised domains such as Document Image Analysis (DIA) or

medical imaging usually are much more restricted in the size

of the available datasets making data augmentation an inte-

gral part of the training pipeline. When the use case exceeds

Figure 1. An MS-COCO [11] sample and its ground truth aug-

mented through TorMentor along with the automatically generated

validity mask

typical image classification such as image segmentation, ob-

ject detection, landmark detection etc., data augmentation

becomes more challenging as the ground truth needs to be

modified along with the input sample.

Image data augmentation is the introduction of noise in

data samples, essentially creating new plausible samples

in order to train a ML model with more data. This causes

the model to become invariant to the specific kind of noise.

Each noise operation of an IDA tries to mimic distortions

that could occur naturally in an image and thus defining and

tuning it requires domain-specific knowledge.

IDA operators can also be employed in self-supervision

scenarios, test-time augmentation, and ablation studies.

One could argue that defining all the invariants that need

to be learned, is essentially defining the problem itself.

2. Plasma Fractals for Image Augmentation

Elastic transforms have proved quite important for aug-

menting data, especially textual images [24] but they require

employing large Gaussian filters. The diamond-square algo-

rithm was proposed [5] in 1982 as an algorithm for generat-

ing random height-maps for computer graphics. The algo-

rithm can be used to generate cloud-looking fractals called

plasma-fractals. While the popular algorithm requires sparse

memory access, and square images of size (2n+1)×(2n+1)
for any n > 2, we propose a version of the algorithm that

can be implemented with convolutions.

In algorithm 1, the python-numpy inspired pseudo-code

description of the proposed algorithm can be seen. The algo-

rithm consists of two steps: the first ONEDS is applying a

diamond and square step cascade on an existing image and

some weighted random pixels effectively quadrupling its

resolution. The second step DS invokes ONEDS recursively

in order to grow the plasma fractal to an arbitrary size. It

should be pointed out that in line 19, plasma could be initial-

ized to any image of odd dimension sizes larger than 3, but

if a dimension is initialized with a size grater than 3, then

it will be missing some low frequencies. The roughness

parameter, through e, controls the ratio between the existing

pixels and random pixels added. In practice other than the

desired resolution (recursion steps), it is the only parame-

ter controlling the fractal generation and can be perceived
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Figure 2. Generated plasma fractals 129× 129 pixels with a roughness of 0.2 to 0.9

Algorithm 1 Convolutional Diamond Square

1: procedure ONEDS(plasma, e)

2: dfilter ← [[0.25, 0, 0.25], [0, 0, 0], [0.25, 0, 0.25]]
3: sfilter ← [[0, 0.25, 0], [0.25, 0, 0.25, ], [0, 0.25, 0]]
4: oldw, oldh← size(plasma)
5: w, h← (oldw − 1) ∗ 2 + 1, (oldh− 1) ∗ 2 + 1
6: border ← ones(w, h)
7: border[1 : −1, 1 : −1]← ones(w − 2, h− 2)
8: rnd← random(w, h)
9: dilated← zeros(w, h)

10: dilated[:: 2, :: 2]← plasma+ random(w, h) ∗ e
11: d← dilated⊛ dfilter

12: dc← ispositive(d)
13: dilated← dilated+(1− e) ∗ d ∗ dc+ rnd ∗ dc ∗ e
14: s← dilated⊛ sfilter ∗ border
15: sc← ispositive(s)
16: return dilated+ (1− e) ∗ d ∗ sc+ sc ∗ rnd ∗ e

17: procedure DS(steps,roughness)

18: e← 1
19: plasma← rand(3, 3)
20: for i← 1, steps do

21: e← e ∗ roughness
22: plasma← OneDS(plasma, e)

23: return plasma

as a parameter controlling whether low or high frequencies

will dominate. In Fig. 2, the resulting plasma fractals for

different roughness values can be seen.

Other than the fact that ONEDS is differentiable with

respect to plasma and can be used as a valid neural network

layer, the proposed algorithm can be computed efficiently on

the GPU with PyTorch [13]. In Fig. 3, the performance with

respect to the output image size is compared between a C++

implementation [9], a generic python-numpy version [7], and

the proposed method in CPU and GPU mode. They were

tested for resolutions of 65 × 65 up to 8193 × 8193. The

proposed method on CPU (single thread) converges to being

twice as slow as the C++ version while the GPU version is

more than an order of magnitude faster.

3. The TorMentor augmentation framework

The extensive use of plasma-fractals to provide local-

ized augmentation operations was coupled with some other
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Figure 3. Proposed Diamond Square Benchmark.

design patterns into a coherent image data augmentation

framework that called TorMentor. 1

At the heart of the design lies the concept of ventral

operations, which move things in the image, and dorsal aug-

mentations, which modify pixels where they are [3]. Ventral

operations affect images, masks, and points while dorsal

operations affect only images, this allows for the creation of

deep augmentation pipelines that are applicable at the same

time on image pointclouds and masks.

An augmentation operation is a class that possess the

random generation parameters, instances of that class are

lightweight objects containing a random number generator

seed as their only data member allowing each instance of the

operation to be deterministic and serializable. Each augmen-

tation class must implement a method sampling the random

distributions that specify the augmentation parameters given

the size of the data and a functional method that applies it

on a sampling field if it is a ventral operation or directly on

the image if it is a dorsal operation.

Finally, other than ventral and dorsal augmentations, a

random choice between several augmentations, a cascade

of several augmentations, and an identity augmentation are

also defined. These preserve determinism for data of the

same (image) size and allow for combinations of elementary

augmentations into ones of arbitrary complexity, e.g. an

operation known as random flip, can be implemented in

tormentor as a choice between a vertical flip, a horizontal flip,

1https://github.com/anguelos/tormentor.
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Figure 4. Samples augmented under the three augmentation regiments in the document segmentation experiment.

a cascade of both, or an identity. In essence, a TorMentor’s

data augmentation regiment defines a flow network where

the input data are the source, the augmented data are the sink,

and every augmentation instance combined with a specific

input image size defines a random path from the source to

the sink.

As with every other augmentation class, choices have

their own categorical distributions from which they sample

and these are easily tuned to control the probability of every

branch in the graph.

TorMentor builds on top of Kornia [22] and thus it is

differentiable and a PyTorch layer. This allows to employ

augmentations anywhere inside an end-to-end model training

regiment including between the generator and discriminator

in a Generative Adversarial Network (GAN).

4. Document Image Segmentation Experiments

We performed several experiments for document image

segmentation (binarization). Our intention was not to com-

pare the models we employed to the state of the art but rather

obtain insights about generalization abilities of a straight-

forward model, trained under different augmentation strate-

gies. Document Image Segmentation (DIS) ground-truthing

is extremely labor intensive and in the case of historical

documents, paleographers might be needed. In most cases,

training data are limited to at most a few pages.

We used the whole range of the DIBCO datasets that

were publicly available [6, 14–21]. In all experiments we

performed, either we used DIBCO2009 as a train set or

no “real” data at all. We used as a metric for each page,

the FScore, the harmonic mean of precision and recall as

defined in [6], and averaged it across all samples in each

dataset regardless of the sample size. While DIBCO has

different tracks and modalities in several years, we averaged

the FScore across all samples in all cases among the dataset.

We also created a synthetic dataset with 30 images containing

black text on various fonts and sizes rendered as small text-

blocks on white pages; these images are employed in a self

supervision task being both input and output but augmenting

the input. While synthetic data has been used for text image

classification [8], to the authors knowledge, they have not

been used for text-image segmentation. In Fig. 4, DIBCO

and synthetic samples can be seen on the first row while rows

2, 3, and 4 demonstrate how they are augmented through the

different augmentation regiments.

We chose a lightweight segmentation model: iUNets [4]

which are reversible [10] UNets [23]. Networks such as the

UNet are quite small from the perspective of parameters but

the memory they require is vast and proportional to the size

of the input image. Reversible networks allow to economize

memory needed for caching the forward pass by an order

of magnitude allowing to use the UNet in a fully convolu-

tional way without the use of patches and their associated

complications such as stitching and border artifacts. As the
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Table 1. Document Image Segmentation Experiment

FScore % on DIBCO Dataset

Method Augmentation 2009 2010 2011 2012 2013 2014 2016 2017 2018 2019

DIBCO Participant centile 100 % 91.24 91.78 93.33 92.85 92.7 96.88 88.72 91.04 89.37 72.88

DIBCO Participant centile 75 % 86.17 87.98 91.68 90.035 89.78 94.17 88.14 86.38 82.91 62.76

DIBCO Participant centile 50 % 84.57 85.06 88.99 89.38 89.06 89.51 87.61 83.10 78.46 57.66

Otsu – 78.60 85.43 82.10 75.07 80.03 86.59 77.74 51.46 51.455 47.83

Thr. Oracle – 87.86 87.70 85.88 87.81 87.61 90.66 85.15 88.74 88.741 81.13

BIUnet None – 90.52 87.86 89.92 90.42 91.39 84.62 87.59 66.43 62.03

BIUnet Global – 75.91 86.07 79.50 82.76 82.05 79.71 82.75 59.81 51.35

BIUnet Plasma Cascade – 91.92 85.52 88.83 89.41 94.03 85.00 86.30 83.42 63.62

Synth BIUnet Plasma Branching 87.85 87.78 88.45 87.35 89.34 90.39 89.07 89.69 82.82 69.84

point of the experiments was not to compete with the state

of the art in DIS, we chose a light-weigh architecture with

1,597,698 parameters, we also omitted connected component

post-processing heuristics that typically improve the method

outputs.

We also measured the performance of two global thresh-

olds as reference, Otsu’s threshold [12] and the Threshold

oracle [1].

Finally for reference, we provide quantiles 100 % (best),

75 %, and 50 %(median) from all participating methods as

reported by the competition organisers.

All images were converted to grayscale and three aug-

mentation regiments were defined: a traditional one, called

Global, selecting randomly between a perspective transfor-

mation, a brightness modification, and Gaussian additive

noise. A cascade of three plasma-based augmentations: a

plasma-brightness operation followed by plasma-wrapping,

followed by a linear color space manipulation. And a Branch-

ing regiment where a cascade of several choices between

mostly plasma-based augmentations was performed.

The results presented in Tab. 1 allow several observations.

The Global regiment performs worse than no augmentation

at all. The model trained on synthetic images achieves the

best performance in 4 out of 9 datasets, compared to compe-

tition participants it would rank above or near the top 25 %

and in recent years where the data became more challenging

even higher.

Even when training on 10 images and without augmenta-

tion, the BIUnet could not overfit the data as the images were

much larger than its receptive field demonstrating the merit

of training fully convolutionally instead of patched-based.

The DIBCO datasets are quite different from year to year

and demonstrate very well that there is no such thing as the

overall best DIS method.

5. Conclusion Discussion and Future Work

TorMentor is developed as a technology demonstrator that

enables the encoding of domain-specific expert knowledge

to generate plausible distortions. While defining an aug-

mentation is constrained by its formalism, the fact that an

augmentation is defined once and automatically applied on

images, pointclouds, etc., makes it much easier to maintain

than popular frameworks such as Albumentations [2] that

redefine operations for every kind of data. The choice and

cascade augmentations are also created through the ‘ˆ’ and

‘|’ operators respectively allowing for readable and dense

pythonic constructs of complicated augmentation graphs.

The fact that it could be used to successfully train a UNet

strictly on augmented ground truth maps proves its potential.

In future work, we intend to replace the visual augmen-

tation tuning tool seen in Fig. 5 with adversarial training

to mimic existing data. Extensive experiments allowing a

quantitative estimation of the question “How many fewer

samples do I need to annotate if I properly tune my data

augmentation?”.

Figure 5. Tool for tuning Tormentor parameters visually
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