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Abstract

Momentum contrast [16] (MoCo) for unsupervised vi-
sual representation learning has a close performance to su-
pervised learning, but it sometimes possesses excess param-
eters. Extracting a subnetwork from an over-parameterized
unsupervised network without sacrificing performance is of
particular interest to accelerate inference speed. Typical
pruning methods are not applicable for MoCo, because in
the fine-tune stage after pruning, the slow update of the mo-
mentum encoder will undermine the pretrained encoder. In
this paper, we propose a Momentum Contrastive Pruning
(MCP) method, which prunes the momentum encoder in-
stead to obtain a momentum subnet. It maintains an un-
pruned momentum encoder as a smooth transition scheme
to alleviate the representation gap between the encoder and
momentum subnet. To fulfill the sparsity requirements of the
encoder, alternating direction method of multipliers [40]
(ADMM) is adopted. Experiments prove that our MCP
method can obtain a momentum subnet that has almost
equal performance as the over-parameterized MoCo when
transferred to downstream tasks, meanwhile has much less
parameters and float operations per second (FLOPs).

1. Introduction
Learning effective visual representations without human

supervision is a long-standing problem. Several recent stud-
ies [1,4,5,16,19,20,28,32,36,42] achieve satisfying results
on self-supervised visual representation learning using con-
trastive loss and its variants. In industrial scenarios, most
models need to be lightweight to reduce the size and relieve
the computing burden before being deployed to embedded
or Internet of things systems [14]. Self-supervised learn-
ing combined with pruning is a common and effective way
to achieve this, during which the pretrained model is first
transferred to downstream tasks then pruned. However, the
downstream tasks are diverse and usually require multiple
iterations with the update of the dataset. Minor changes of
the task may lead to duplicated work for re-transferring and
re-pruning. Thus, we aim to prune the pretrained model

only once in a self-supervised manner. When transferred to
downstream applications, it needs to be robust to iterations
without re-pruning and maintain the maximum transfer per-
formance under such circumstances.

Currently, weight pruning techniques [7, 11, 14, 14, 26,
27, 33, 37] have achieve high weight reduction ratio on su-
pervised learning models with little accuracy loss. How-
ever, few studies have been published in pruning for self-
supervised learning models. The main difference between
pruning for supervised and self-supervised learning mod-
els is the task. The pruning for supervised learning mod-
els goes with specific tasks defined by the labels, while
a pretext task constrains that for self-supervised learning
models. [3] proved that if the performance of the pruned
subnetwork is maintained on the pretext task, the perfor-
mance can also be kept after being transferred to down-
stream tasks. MoCo is outstanding among the unsupervised
learning algorithms and sometimes can outperform its su-
pervised learning counterparts by large margins. Currently,
many studies [4,6] based on MoCo have surged and brought
about improved self-supervised learning methods. As a re-
sult, we choose MoCo as the pruning object to provide some
insights and experience for self-supervised pruning.

If we interpret pruning from another perspective, it aims
to obtain a subnetwork with comparable performance and
representation with the over-parameterized network. For-
tunately, MoCo’s mechanism drives its encoder and mo-
mentum encoder to have consistent representation, naturally
benefiting the pruning process. However, both the encoder
and momentum encoder participate in the updating strat-
egy of pretraining MoCo so that hard pruning any one of
them will generate a huge gradient or degrade the conver-
gence. As a result, the proof in [3] is not feasible for MoCo.
Sec. 3.1 gives a detailed description of the MoCo mecha-
nism and the reasons why the typical pruning algorithms
collapse in this case. Thus, the main problem is properly
pruning MoCo’s encoder or momentum encoder without
harming the updating strategy and maintaining maximum
transfer performance simultaneously.

To address this issue, we propose the Momentum Con-
trastive Pruning (MCP) method, which is a self-supervised
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Figure 1. A framework of MCP algorithm. The momentum encoder is pruned while training MoCo with InfoNCE loss function. ADMM
is employed on the encoder to constrain its sparsity and generate a dynamic mask. The momentum subnet is obtained by calculating the
dot product of the mask and the momentum encoder. We maintain another momentum encoder that is not pruned and let it stand in for
momentum subnet with a decayed frequency to alleviate the inconsistency between the representation of encoder and momentum subnet at
the beginning of training. After training, the momentum subnet can be transferred to downstream tasks and then deployed directly.

pruning algorithm for MoCo with the following character-
istics (Fig. 1):

• MCP takes the momentum encoder as the pruning tar-
get instead of the encoder. The reason is that remov-
ing the parameters of the encoder will destroy the pre-
trained model.

• The MCP is a pruning method with no fine-tuning 1.
Instead, the ADMM is used to gradually reduce the
encoder weights of a preset amount to zero, and the
subnet is obtained directly by the dynamic mask deter-
mined by the largest weights.

• An un-pruned momentum encoder is maintained dur-
ing training to provide a smooth transition scheme
at the beginning to solve the problem of representa-
tion inconsistency between the encoder and momen-
tum subnet.

When using the MobileNetV2 as the encoder and trans-
ferred to CIFAR-10 [21] classification task, our momentum
subnet achieves almost equal performance as the un-pruned
MoCo when 92.7% of the parameters are pruned. Mean-
while, its inference speed is 13x faster. To the best of our
knowledge, [3] is the only work on unsupervised pruning at
present. As shown in Fig. 5, our performance outperforms
theirs significantly.

1Self-supervised learning has two stages: pretrain (train a feature ex-
tractor on pretext tasks) and fine-tune (freeze the feature extractor and train
the sequential layers for downstream tasks). Meanwhile, pruning algo-
rithms also have two stages: pretrain (train an over-parameterized network)
and fine-tune (prune and retrain it to restore accuracy). To avoid confusion,
the ’fine-tune’ in this paper refers to the retraining of pruning algorithms.

2. Related work
2.1. Self-supervised learning

Self-supervised learning is a subset of unsupervised
learning methods. It refers to learning methods in which
convolution networks are explicitly trained with pretext
tasks. Pretext tasks are pre-designed tasks for networks to
solve, and visual features are learned by learning objective
functions of pretext tasks. A wide range of pretext tasks
has been proposed. Examples include recovering the input
under some corruption, i.e., denoising auto-encoders [34],
context auto-encoders [30], or cross-channel auto-encoders
(colorization) [39]. Contrastive learning [12] refers to a
kind of pretext task that attracts the positive sample pairs
and repulses the negative sample pairs. Simple and effec-
tive instantiations of contrastive learning have been devel-
oped using siamese networks [1, 4, 5, 16, 38].
MoCo. MoCo [5, 16] is a kind of contrastive learning al-
gorithm using siamese networks which maintains a queue
of negative samples and turns one branch into a momentum
encoder to improve the consistency of the queue. MoCo
can outperform its supervised pretraining counterpart in
seven detection/segmentation tasks on PASCAL VOC [9],
COCO [24], and other datasets, sometimes surpassing them
by large margins.

2.2. Network pruning

Pruning is a model compression approach [27] in which
weights or nodes/filters are removed, typically by clamping
them to zero. The regular process is training the original
network, removing parameters, and then fine-tuning [14].
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Figure 2. The weight difference of encoder and momentum encoder on three types of convolution layers. MobileNetV2 [31] is used as
the structure of MoCo encoder and momentum encoder. (a) MoCo is pretrained for 1000 epochs. (b) Prune the encoder and momentum
encoder in (a) and fine-tune them for 300 epochs. For a fair comparison, the difference values of the un-pruned layer are multiplied by the
remaining proportions of the pruned layer.

In the early stage, researchers proposed fine-grained prun-
ing [14,15] by cutting off the connections within the weight
matrix. However, such methods are not friendly to CPUs
or GPUs and require dedicated hardware [29,41] to support
sparse matrix multiplication, which is highly demanding to
design [35]. Later, some researchers proposed channel level
pruning [18,23,25] by pruning the entire convolution chan-
nel based on some importance criteria (i.e. ℓ1-norm) to en-
able acceleration on general-purpose hardware. However,
these studies are mainly iterative heuristic pruning methods,
therefore lacking guarantees on the weight reduction ratio
and convergence time. To mitigate these limitations, [40]
presented a systematic weight pruning framework of deep
networks using ADMM. In this paper, we adopt filter prun-
ing [22] which is a structured algorithm in all the experi-
ments since unstructured pruning will lead to sparse weight
matrices, which cannot achieve compression and speedup
without dedicated hardware/libraries [13].
Self-supervised pruning. To the best of our knowledge, [3]
is the only work on unsupervised pruning at present. They
investigated the use of standard pruning methods developed
primarily for supervised learning on unsupervised learning
networks. They showed that pruned models obtained with
or without labels reached comparable performance when re-
trained on labels. This suggests that pruning operates sim-
ilarly for self-supervised and supervised learning. In addi-
tion, they found that pruning preserved the transfer perfor-
mance of self-supervised subnetwork representations. They
adapted rotation classification [10] and the “Exemplar” ap-
proach [8] as the self-supervised algorithm and pruned the
network based on the lottery tickets hypothesis [8]. MoCo
is outstanding among the unsupervised learning algorithms
and sometimes can even outperform its supervised learn-

ing counterparts by large margins. Currently, many stud-
ies [4, 6] based on MoCo have surged and brought about
improved self-supervised learning methods. As a result, we
choose MoCo as the pruning object. However, typical prun-
ing methods are improper for MoCo because the momen-
tum encoder updates too slow to support the rapid precision
recovery in fine-tuning after pruning.

3. Method

Our method is listed in five sections. Sec. 3.1 explains
why traditional pruning algorithms are inappropriate for
MoCo. Sec. 3.2 verifies that the momentum encoder is
capable enough to act as an alternative to pruning object.
Sec. 3.3 verifies that MoCo’s mechanism can be used as
a pruning constraint but has limitations. Sec. 3.4 describes
that ADMM is employed to break such limitations by gener-
ating a mask. Sec. 3.5 proposes a smooth transition strategy
to optimize the pruned effect of the momentum subnet.

3.1. Pruning problem caused by momentum

In MoCo, a query and a key are considered a positive
sample pair if they originate from the same image and oth-
erwise as a negative sample pair. During pretraining, the
query of an image is encoded by the encoder, while the mo-
mentum encoder encodes the corresponding key. Its pretext
task can be described as driving the query and key of a pos-
itive sample pair to be similar and that of a negative pair
to be different. The hypothesis of MoCo is that good fea-
tures can be learned by a large dictionary that covers a rich
set of negative samples. So a queue is built to make the
dictionary large, but it also makes it intractable to update
the momentum encoder by back-propagation (the gradient
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should propagate to all samples in the queue). The momen-
tum update strategy is proposed by He et al. [16] to address
this issue. The parameters of encoder fk is denoted as θk
and those of momentum encoder fq as θq. θk is updated by

θk ← mθk + (1−m)θq, (1)

where m ∈ [0, 1) is a momentum coefficient normally set to
0.999 since a relatively large momentum works better than a
smaller one. During pretraining, with the decrease of learn-
ing rate (stages learning rate schedule in MoCoV1 [16] and
cosine learning rate schedule in MoCoV2 [5]) and the con-
vergence of encoder, the fluctuation of θq gradually slows
down. A large momentum makes θk slowly approach θq,
and after sufficient pretrain iterations, they should be con-
sistent with each other. This process is depicted in Fig. 2(a),
which shows the weight difference between the encoder and
momentum encoder. Three types of convolution layers at
the head, middle, and tail of the network are selected. The
weight difference is calculated by the ℓ1-norm: ∥θqi

−θki
∥1,

where qi and ki denote the i-th layer of the encoder and mo-
mentum encoder.

However, this consistency is fragile and sensitive to gra-
dient changes. The pruning operation removes parameters
and reduces accuracy. Thus the subnetwork produces a con-
siderable gradient in the following fine-tuning. For the typ-
ical pruning methods, fine-tuning can restore accuracy in a
few iterations. But for MoCo, a weight fluctuation on the
encoder will destroy the consistency to a great extent, al-
most as much as starting from scratch. It needs many iter-
ations to reduce the difference due to the large momentum.
Fig. 2(b) shows the weight difference between encoder and
momentum encoder during fine-tuning the pruned model of
the last checkpoint in Fig. 2(a). The difference is pulled up
and takes 300 epochs to converge again.

Table. 1 shows the comparison between typical prun-
ing methods on MoCo with training a lightweight net-
work from scratch. The first experiment trains a MoCo for
1000 epochs. The second experiment prunes the pretrained
MoCo’s encoder and fine-tunes it for 300 epochs. The third
experiment trains a lightweight MoCo with the same archi-
tecture as the pruned encoder from scratch for 300 epochs.
The first and second experiments show that the pruned
MoCo achieves 82.870% top-1 accuracy when transferring
to CIFAR-10 classification, which is 5.44% lower than the
pretrained MoCo. Meanwhile, there is little accuracy dif-
ference between the pruned model and the model trained
from scratch. This means the pretrained model is barely
functional.

3.2. An alternative for pruning object

Sec. 3.1 concludes that traditional pruning algorithms
cannot be applied to MoCo’s encoder. As a result, We cir-
cumvent this by finding an alternative for pruning object.

Model #FLOPs #Params Epoch Accuracy (%)

Un-pruned 312.86M 2.24M 1000 88.310

Pruned 92.30M 0.56M 300 82.870

Trained
from scratch

92.30M 0.56M 300 81.620

Table 1. Comparison of typical pruning methods on MoCo with
training a lightweight network from scratch. All models are
trained on CIFAR-10 [21] use the MobileNetV2 structure as the
encoder. The implementation details are in Sec. 4.1.

MoCoV1 [16] and MoCoV2 [5] show that the representa-
tions of the pretrained encoder can be well transferred to
the downstream tasks. What they did not mention is that
after pretraining, the momentum encoder also has sufficient
capacity. Fig. 2(a) shows that θq and θk gradually assimilate
after enough iterations. The goal of pruning is to obtain a
subnetwork with comparable performance and representa-
tion with the original network. So the consistency between
momentum encoder and encoder provides the premise for
momentum encoder as a pruning object. However, in prac-
tice, there will not be sufficient pretraining to ensure such
consistency. So a simple verification experiment is de-
signed to show that despite scant pretraining iterations and
large pretraining loss, the momentum encoder still has equal
transferability as the encoder, as shown in Table. 2. Thus,
if there is a way to reduce the parameters of the momentum
encoder while maintaining its transferring performance, the
momentum encoder can be pruned instead of the encoder.

Pretrain
Epoch

Pretrain
Loss

Accuracy (%)

Encoder Momentum Encoder

50 8.6492 62.670 61.510
200 7.4439 79.330 79.660
800 6.8876 88.150 88.230
1000 6.8912 88.310 88.420

Table 2. Performance of the encoder and momentum encoder
transferred to CIFAR-10 classification after pretrained for 50,
200, 800, and 1000 epochs, respectively. All models used Mo-
bileNetV2 as the encoder.

3.3. The intrinsic pruning constraint of MoCo

Two properties of MoCo contribute to the consistency
between encoder and momentum encoder. One is the up-
dating strategy (Sec. 3.1), the other is the contrastive loss
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function, InfoNCE [28] formulated as

Lq,k+,{k−} = − log
eq·k

+/τ

eq·k+/τ +
∑
k−

eq·k−/τ
. (2)

Here q denotes a query, k+ denotes a positive (similar) key
sample, k− denotes a negative (dissimilar) key sample, and
τ is a temperature hyper-parameter. InfoNCE enhances the
attraction of positive pairs and repulses the negative pairs to
benefit the consistency between the encoder and momentum
encoder and ensure convergence. This is also a shared target
with the updating strategy and pruning. Based on this, we
suppose that MoCo’s mechanism can be used as a pruning
constraint and design a simple verification experiment. The
updating strategy is modified as

θk ← mθk + ϕ⊙ (1−m)θq. (3)

Here ϕ ∈ {0, 1}|θq| is a mask on encoder parameters such
that the initialization on momentum encoder is ϕ ⊙ θq,
where ⊙ is the element-wise product. Under such updat-
ing strategy, we obtain a momentum subnet that only pos-
sesses part of the encoder parameters. Besides, two other
training schemes are conducted for comparison. The orig-
inal size MoCo trained from scratch shows the due ability
of the un-pruned network. The lightweight MoCo (with the
same structure as momentum subnet) trained from scratch
provides a lower limit for an effective pruned model. For
each model, we evaluate the transfer performance on both
random initialization and after 500 epochs training.

The results are shown in Table. 3. From the third row
of Table. 3, we can find that such a simple partially updat-
ing strategy improves the momentum subnet from complete
chaos (18.32%) to 48.57%. Despite huge accuracy reduc-
tion, it proves that MoCo’s mechanism is able to act as a
pruning constraint. Due to two limitations, it loses 34.36%
accuracy compared with the lightweight model in the sec-
ond row. First, the mask is random. It cannot control the
part of elements to be deleted, which is normally the small-
est ones. Second, the masked elements in the encoder are

Model #FLOPs #Params Epoch Accuracy (%)

Train from
scratch

312.86M 2.24M
0 18.460

500 86.180

Train from
scratch

92.30M 0.56M
0 18.400

500 82.930

Momentum
Subnet

92.30M 0.56M
0 18.320

500 48.570

Table 3. Effectiveness verification of using the MoCo’s mecha-
nism as the pruning constraint. All models are trained on CIFAR-
10 and use the MobileNetV2 structure as the encoder.

large, which makes it challenging to represent consistency
with the momentum subnet.

3.4. ADMM on the encoder

To break through the limitations mentioned above and
strengthen the constraint, an ADMM variant is applied
to the encoder. [40] presented a systematic weight prun-
ing framework for deep neural networks (DNNs) using
ADMM. The training process gradually reduces the weights
of a preset amount to zero in the encoder. Then this part of
weights can be deleted or marked in a mask. By employing
ADMM on MoCo, the encoder can provide a dynamic mask
ϕ, which can be applied to the momentum encoder.

Here we introduce the derivation of ADMM for pruning.
Considering an N -layer encoder, we denote the collection
of weights in the i-th (convolution or fully-connected) layer
of the encoder as θqi . Our goal is to minimize the InfoNCE
and constrain the weight’s cardinality in each layer, then
prune the weights of the momentum encoder according to
the mask. The problem can be formulated as

min
{θqi}

f ({θqi})

s.t. card (θqi) ≤ li, i = 1, . . . , N,
(4)

where card(·) returns the number of nonzero elements of its
matrix argument and li is the desired number of weights in
the i-th layer of the momentum encoder. The above problem
can be rewritten in the ADMM form as

min
{θqi}

f ({θqi}) +
∑N

i=1 gi (Zi)

s.t. θqi = Zi, i = 1, . . . , N,
(5)

in which Zi can be regarded as a restriction as a sparsity
constraint on θqi . gi(·) is an indicator function, i.e.,

gi (θqi) =

{
0 if θqi ̸= Zi,

+∞ otherwise .
(6)

The augmented Lagrangian of the above optimization prob-
lem is given by

Lρ ({θqi} , {Zi} , {Ui}) = f ({θqi}) +
N∑
i=1

gi (Zi)

+

N∑
i=1

ρi
2
∥θqi − Zi +Ui∥2F −

N∑
i=1

ρi
2
∥Ui∥2F ,

(7)

where Ui has the same dimension as θqi and is calculated
by dividing Lagrange multiplier by ρi, corresponding to the
constraint θqi = Zi. The positive scalars {ρ1, . . . , ρN} are
penalty parameters and ∥ · ∥2F denotes the Frobenius norm.
Then we solve the above function in the kth iteration as{

θk+1
qi

}
:= argmin
{θqi}

Lρ

(
{θqi} ,

{
Zk

i

}
,
{
Uk

i

})
, (8)
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Algorithm 1 Pseudocode of MCP in a PyTorch-like style

# f q , f k : encoder networks f o r query and key
# queue : d i c t i o n a r y as a queue of K keys (CxK)
# m: momentum
# prune ra te : preset prune
# f r q : stand − i n frequency o f momentum encoder
# dr : decay ra te f o r stand − i n frequency
# p : i n d i c a t o r

f k . params = f q . params # i n i t momentum encoder
p = f r q # i n i t i n d i c a t o r

f o r x i n loader : # load a min ibatch x wi th N samples
x q = aug ( x ) # a randomly augmented vers ion
x k = aug ( x ) # another randomly augmented vers ion

# s e l e c t momentum encoder or subnet i n the i t e r a t i o n
use momentum encoder = True i f p>0 else False
# reass ign p and at tenuate f r q
i f p == 0: f r q −= dr ; p = f r q i f f r q > 0
# get mask from encoder
th resho ld = f q . s o r t ( ) [ f q . s i ze * prune ra te ]
ph i = where ( f q<th resho ld , f q , 0)

q = f q . forward ( x q ) # quer ies : NxC
i f use momentum encoder :

k = f k . forward ( x k ) # keys : NxC
else : # use momentum sbunet

f k s = f k . params . dot ( ph i )
k = f k s . forward ( x k ) # keys : NxC

k = k . detach ( ) # no g rad ien t to keys
# p o s i t i v e l o g i t s : Nx1 ; negat ive l o g i t s : NxK
l pos = bmm( q . view (N, 1 , C) , k . view (N, C, 1) )
l neg = mm( q . view (N, C) , queue . view (C, K) )
# c o n t r a s t i v e loss and ADMM loss , Eq . ( 7 )
loss = InfoNCELoss ( l pos , l neg ) + ADMMLoss( f q , ph i )

# SGD update : query network
loss . backward ( ) ; update ( f q . params )
# momentum update : key network
f k . params = m* f k . params+(1−m) * f q . params
# update d i c t i o n a r y
enqueue ( queue , k ) # enqueue the cu r ren t min ibatch
dequeue ( queue ) # dequeue the e a r l i e s t min ibatch
p −= 1 # p decreases a f t e r each i t e r a t i o n

{
Zk+1

i

}
:= argmin

{Zi}
Lρ

({
θk+1
qi

}
, {Zi} ,

{
Uk

i

})
, (9)

Uk+1
i := Uk

i + θk+1
qi − Zk+1

i . (10)

Following [2], we solve the Eq. (9) by keeping the li ele-
ments of θk+1

qi +Uk
i with the largest magnitudes and setting

the rest to 0. Note that the dynamic mask is ϕ← (Zk > 0)
after the kth iteration.

3.5. Smooth transition

ADMM breaks through the first limitation by providing
a dynamic mask. However, the second limitation remains.
ADMM needs some iterations to reduce the parameters to
zero, so the encoder parameters are not small enough at the
beginning of training. At this moment, the representation of
momentum subnet is inconsistent with the encoder, which
brings about the problem mentioned in Sec.3.1.

We propose a smooth transition technique to address this
issue. We maintain another momentum encoder that is not
pruned and let it stand in for momentum subnet with a de-
cayed frequency. With the impact of ADMM on the mo-
mentum encoder, the inconsistency gradually weakens, and
the momentum subnet becomes the main strength for key
generating. Algorithm 1 provides the pseudocode of MCP.
The hyper-parameter frq denotes the stand-in operation fre-
quency of the momentum encoder after each operation of
the momentum subnet. dr denotes the decay rate for the
stand-in frequency. A larger frq and smaller dr represent
a smoother transition to momentum subnet. When frq de-
creases to 0, all keys are encoded by momentum subnet. In
Fig. 1, the momentum encoder and subnet operate in turn,
at this moment frq = 1 and dr = 0. Note that in Algo-
rithm 1, the momentum subnet is obtained by ϕ ⊙ θq each
iteration when it needs to be used. This smooth transition
scheme significantly alleviates the inconsistency at the be-
ginning of training. Together with ADMM, it brings up a
mature pruning method for MoCo.

4. Experiments

4.1. Implementation details

MoCo. We follow closely the setup of MoCoV2 [5]. The
temperature hyper-parameter τ in Eq. (2) is set to 0.2. The
momentum value m in Eqs. (1) and (3) is set to 0.999. An
SGD optimizer with 0.0001 weight decay and 0.9 momen-
tum is used. The input image size is 224×224, and the
mini-batch size is 256 trained on 8 GPUs. The learning
rate is initialized to 0.03 and subjects to cosine learning
rate schedule. Most of the experiments are conducted on
the CIFAR-10 dataset, though we also report some results
on CIFAR-100. When the pruned model is transferred to
the downstream task, a supervised linear classifier (usually
a fully-connected layer) is trained with the pruned model
fixed. Then the retrained model is evaluated with top-1
classification accuracy. For all experiments, the MoCo is
pretrained for 1000 epochs, and then the linear classifier is
retrained for 300 epochs to get the final results.

Pruning. The last checkpoint of the pretrained model is
used for pruning. We set the same pruning ratio to each
layer and prune the filters [27] according to the preset ratio.
The final pruning proportion of the network is less than the
preset ratio because the change of output channel number
in one layer will affect the input channel number in the next
layer. We train MoCo with ADMM for 450 epochs, during
which every 15 epochs is followed by an ADMM epoch.
The learning rate is set to 0.03 in each ADMM epoch mul-
tiplied by 0.1 for every 5 epochs. After pruning, the mo-
mentum subnet in the last checkpoint is used for linear clas-
sification training.
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Figure 3. The performance comparisons between MCP under various pruning rates and the un-pruned schemes. It includes three combina-
tions of training MobileNetV2 and ResNet34 [17] on CIFAR-10 and CIFAR-100. The x-axis indicates the amount of parameters removed.
The red line denotes training a lighter model in a supervised manner from scratch. The blue line denotes training a lighter model with
MoCo’s manner from scratch.

4.2. Results

Performance of momentum subnet. In this experiment,
we are interested in the features transferability as we vary
the amount of pruned weights in the representation func-
tion. In particular, we train linear classifiers for CIFAR-10
and CIFAR-100 classification tasks with final representa-
tions given by a pretrained momentum subnet. The results
are given in Fig. 3. A specific x value means x% parameters
are pruned in MCP, and the un-pruned schemes use the same
architecture as the pruned model. The left figure in Fig. 3
shows that pruning up to 90% weights of MobileNetV2
does not significantly deteriorate the resulting features qual-
ity (MobileNetV2 is a lightweight network with 312.86M
FLOPs and 2.23M params. After 92.70% params being
pruned, only 25.43M FLOPs and 161.16K params are left,
and reduce the inference time by 91.88%.). In addition, we
observe that sometimes, pruning even improves the transfer
performance, such as when Resnet-34 pruned for 53.56%
on CIFAR-100 (in the right figure of Fig. 3). One possible
reason is that pruning removes the task-specific information
features and leads to better transferability. The comparison
in all three figures shows that when we train the networks
with the same structure, the performance of MoCo and su-
pervised training from scratch decreases as the structure be-
comes smaller, but MCP can maintain its performance.

Compare with transfer pruning. One contribution of this
paper is a scheme of pruning before transferring (pretrain
pruning), while the common practice is transferring before
pruning (transfer pruning). In this experiment, we focus on
the comparison between them. In Fig. 4, we evaluate the
performance of transfer pruning and pretrain pruning on the
CIFAR-100 classification task with MobileNetV2. When
the pruning ratio is small, transfer pruning outperforms pre-
train pruning slightly. However, pretrain pruning gets bet-
ter performance with a large pruning ratio. In industrial
scenarios, this enables our MCP to prune the model only
once without regard to the iterations and types of the down-

Figure 4. The performance comparison between transfer before
pruning (transfer pruning) and prune before transferring (pretrain
pruning).

Figure 5. The performance comparison between MCP and other
unsupervised pruning method. All models are trained on CIFAR-
10 and use the MobileNetV2 structure as the encoder.

stream task. In addition, the ability of self-supervised prun-
ing is not fully reflected in this section. In order to make a
quantitative comparison and prove the effectiveness of our
method, the same training dataset is used for self-supervised
pretrain and transferring. Actually, with a dataset that is
larger and more diverse, we assume our MCP method can
achieve more powerful and robust performance on down-
stream tasks.
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Compare with other unsupervised pruning. To the best
of our knowledge, [3] is the only work on unsupervised
pruning at present. They adapted rotation classification
(RotNet) [10] and “Exemplar” approach [8] as the self-
supervised algorithm and pruned the network based on the
lottery tickets hypothesis [8]. Although they reported re-
sults on CIFAR-10, unstructured pruning is used on ResNet-
50, which requires dedicated hardware to compress and ac-
celerate. For fair comparisons, we implement the RotNet
and the Exemplar with MobileNetV2 and apply structured
pruning to them. The results are shown in Fig. 5. All three
methods considerably retain their transferability with the in-
crease of prune ratio. However, the overall performance of
MCP surpasses the other two algorithms by a large margin.
Our method provides experience and insight into the prun-
ing for unsupervised learning methods developed on MoCo.

4.3. Ablation study

frq dr ρ ADMM loss MoCo loss acc@1(%)

100 1
0.1 0.127 5.314 88.13

0.01 0.315 5.308 88.45
0.001 2.807 5.394 87.93

100 5 0.01 0.304 5.310 88.32
1 0 0.01 0.367 5.409 87.47
0 0 0.01 0.319 5.541 84.05

Table 4. The ablation studies for ρ, frq and dr. All models are
trained on CIFAR-10 and use a MobileNetV2 structure with a
fixed pruning ratio of 90%. It should be noticed that the MoCo
losses are less than those in Table. 2 because a shorter queue for
negative samples is adopted.

In this section, the ablation studies for ρ in Eq. (7) and
frq and dr in smooth transition are carried out. ρ is a hyper-
parameter in ADMM to constrain the parameter sparsity. A
large ρ increases such sparsity in the network that brings
the parameter closer to zero, causing the network to con-
verge worse on the loss function (InfoNCE in MoCo). In
the upper part of Table. 4, different values of ρ are tested.
The results indicate that a compromised ρ can balance the
ADMM loss and MoCo loss, thus facilitating optimal trans-
fer performance. We can also conclude from the MoCo
loss column that a smaller ρ enlarges the representation dif-
ference between encoder and momentum subnet. The set-
ting of this hyper-parameter depends on the datasets and
network structure. When training on CIFAR-10 with Mo-
bileNetV2 structure, it’s recommended to be set to 0.01. For
other datasets and network structures, it can be determined
by binary search [40]. ρ = 0.01 is used for the rest of the
ablation study.

The hyper-parameters frq and dr together control the
length and decay rate of the smooth transition. A larger frq

and smaller dr indicate a smoother transition of operation
from the momentum encoder to the momentum subnet. We
experiment with several representative combinations, and
the results are shown in the lower part of Table. 4. frq = 1
and dr = 0 means that momentum encoder and momen-
tum subnet always alternate to produce keys. frq = 0 and
dr = 0 denotes all keys are encoded by momentum subnet
with no smooth transition. From the second and the fourth
row, we can find that a smoother transition (frq = 100 and
dr = 1) can obtain a better performance.

4.4. Limitations and discussion

This work lacks the following experiments because of
the limitation of computing power and time. 1) Trials on the
ImageNet dataset. 2) Transferring the pretrained model to
other downstream tasks such as segmentation and detection.
3) Transferring the pretrained subnet from a large unsuper-
vised dataset to a small supervised dataset to highlight the
advantages of contrastive learning.

In this paper, we mainly study unsupervised pruning
based on MoCo. It shows that for the pruned subnetwork,
the performance on the pretext task guarantees the perfor-
mance after being transferred to downstream tasks. There-
fore, the lack of the above experiments will not affect the
effectiveness of our method.

In addition, we pursue pruning in an unsupervised man-
ner because it allows the backbone to be pruned only once.
The pruned subnet can be directly deployed when trans-
ferred to the downstream tasks. However, many down-
stream tasks need extra components. For example, an ad-
ditional decoder is required in segmentation, and a feature
pyramid network and some heads are required in detection.
These components account for a large part of the network.
For such tasks, it may be better to prune the backbone with
these components together after transferring.

5. Conclusion
In this paper, we propose a self-supervised pruning al-

gorithm MCP for solving the problem that the traditional
pruning algorithm is not applicable for MoCo. Our MCP
can prune the momentum encoder properly by applying
ADMM on the encoder and the smooth transition. Experi-
ments show that MCP’s performance outperforms other un-
supervised pruning algorithms significantly. In industrial
scenarios, MCP is able to prune the model only once with-
out regard to the iterations and types of the downstream
task. Then the model can be directly deployed when trans-
ferred to downstream tasks. At present, many works based
on MoCo have surged and brought about improved self-
supervised learning methods. We hope MCP can provide
some insights and experience for these algorithms.
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