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Abstract

Despite the huge success of object detection, the training
process still requires an immense amount of labeled data.
Active learning has been proposed as a practical solution,
but existing works on active object detection do not utilize
the concept of epistemic uncertainty, which is an important
metric for capturing the usefulness of the sample. Previ-
ous works also pay little attention to the relation between
bounding boxes when computing the informativeness of an
image. In this paper, we propose a new active object detec-
tion strategy that improves these two shortcomings of exist-
ing methods. We specifically consider a Bayesian frame-
work and propose a new module termed model evidence
head (MEH), to take advantage of epistemic uncertainty in
object detection. We also propose hierarchical uncertainty
aggregation (HUA), which realigns all bounding boxes into
multiple levels and aggregates uncertainties in a bottom-up
order, to compute the informativeness of an image. Exper-
imental results show that our method outperforms existing
state-of-the-art methods by a considerable margin.

1. Introduction

Computer vision tasks such as semantic segmentation
[3, 13, 16] and object detection [ 10, 12, 15] typically require
a large labeled dataset to train the model. Labeling all data
samples in complex vision tasks requires intensive labor of
human experts. Active learning, which gradually labels a
set of samples based on the informativeness (e.g., uncer-
tainty), is a promising solution for this problem.

Although active learning has been extensively studied for
classification, only a few past works focus on active object
detection [6, 8, 19,21, 22] despite its practical importance.
Furthermore, existing works on active object detection have
two limitations. First, when computing the informativeness
of an image, most previous works only use the aleatoric
uncertainty, not taking the epistemic uncertainty into ac-
count. Epistemic uncertainty, also known as knowledge un-
certainty, captures the lack of knowledge of a model (caused
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by a lack of data) and can be reduced when we have large
amounts of data. Aleatoric uncertainty, on the other hand,
captures the noise inherent in the observed data and is ir-
reducible. As stated in [7,9, 14], epistemic uncertainty can
reflect the usefulness of samples better than aleatoric uncer-
tainty. Secondly, previous works on active object detection
generally ignore the relation between objects when com-
puting the informativeness of an image: informativeness is
often defined as the maximum or mean of the uncertainty
values of all bounding boxes capturing the image. This can
be a problem because a cluttered image with many objects
belonging to various categories can be enforced to have a
similar uncertainty value relative to just a simple image with
only a few objects belonging to a single category.
Contributions. In this paper, we propose a new active
learning method tailored to object detection which can solve
the above two problems. First, we propose to utilize epis-
temic uncertainty in object detection to select samples in
low density region. To this end, we adopt a Bayesian frame-
work which employs Dirichlet-Categorical distribution and
design a new module termed model evidence head (MEH),
which solely predicts the model evidence independently of
the class confidence. Secondly, we propose hierarchical
uncertainty aggregation (HUA), a new method for comput-
ing the informativeness of an image. HUA reorganizes all
bounding boxes into several levels and aggregates uncer-
tainties corresponding to each level in a bottom-up manner.
The proposed method beats SoOTA works with RetinaNet
and SSD as base models on PASCAL VOC and MS-COCO.

2. Proposed Method

Active learning has multiple cycles. At each cycle, the
network selects the most informative data from the unla-
beled data pool. Human oracles then label the selected data
and update labeled/unlabeled data pools. In the following,
we describe our method for computing the informativeness
of an image in object detection. Subsection 2.1 describes
how we estimate epistemic uncertainty of a bounding box.
Based on the results in Subsection 2.1, we describe how we
compute the informativeness of an image in Subsection 2.2.
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Figure 1. An overview of uncertainty computation of a bounding box in an unlabeled image. (a) First, an image goes through the network
and classification head produces class confidences 8 = {;}1<; while model evidence head (MEH) produces model evidence X. 8 and )
are used to compute a parameter set v of Dirichlet distribution Dir(0|a). (b) Now based on «, parameters 6 of categorical distribution
Cat(0) are sampled from Dir(60|a). Epistemic uncertainty is then computed. Note that a larger A indicates a larger «, making Dir(6|«)
sharper; sharp Dir(6|«) produces similar Cat (@), decreasing the epistemic uncertainty.

2.1. Evidential Learning for Epistemic Uncertainty

Fig. 1 shows the process for computing epistemic uncer-
tainty. Under Dirichlet-Categorical Bayesian framework,
we propose to predict class confidences 8 = {8},
and model evidence A, to obtain concentration parameter
a = {ox}< | and construct prior Dirichlet distribution
Dir(6|a) for each bounding box. Epistemic uncertainty is
then computed using model ensembles 6 ~ Dir(f|a) as

Iz, 0] = H[Epoja [p(x]0)] — Epo1a) [Hp(]0)] (1)
—_—

Total Unc. Aleatoric Unc.

Epistemic Unc.

where #H denotes Shannon entropy, and 6 parameteriezes
categorical likelihood Cat(f). p(x|#) and p(f|«) are prob-
ability functions of categorical and Dirichlet distributions.

Evidential object detector. Typical object detectors,
where classification head predicts parameters 6 of categori-
cal distribution, cannot compute epistemic uncertainty. In-
spired by evidential deep learning (EDL) [2, 18, 23], we
adopt a classification head that predicts high-order Dirichlet
distribution Dir(6|«), which is a conjugate prior of lower-
order categorical likelihood Cat(8). To fit our evidential
model to data, we first compute the marginal likelihood
p(zla) = [p(x|0)p(f)a)dd, which can be written in a
closed-form thanks to the Dirichlet-Categorical conjugacy:

Ak
(o= Ha) = = @
The network is then optimized to minimize negative log
marginal likelihood Ly = — ), yrlog(p(z = kl|a)),
where y is an one-hot label vector. At inference, the ex-
pected probability for the k-th category is computed as
Pr = ag/S, where S = > « is the Dirichlet strength.

To obtain the concentration parameter «, previous works
[18,23] apply ReLU as «;, = ReLU(f) + 1. However, the
absence of exponential terms in ReLU tends to make model
overly underconfident, resulting in much lower mAP perfor-
mance. For example, in the case of 80-way classification,
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B should be 7820 to achieve pr, = 0.99 even when 3; = 0
for i # k. Instead, we apply softmax as ay = SXTP)ES&% to
produce sufficiently confident prediction.

Model evidence head (MEH). Although softmax en-
ables confident prediction, it enforces the Dirichlet strength
S to be 1. This makes the entropy of Dirichlet unchange-
able and deprives the model of the ability to predict model
evidence. To tackle this issue, we introduce a model ev-
idence head (MEH) which solely predicts model evidence
A. When X is obtained from MEH and class confidences
{Bk}_ | are obtained from classification head, we propose
to re-scale the concentration parameter « as

exp(Br)
Zc exp(f.) .

Here, X re-scales S and makes the distribution Dir(6]c)
either concentrated or flat. Fig. la describes the role of
MEH and Fig. 1b illustrates the effect of A\. We further
validate the effects of softmax and A in Section 3.

When training MEH, we start from the intuition that the
model would be uncertain when it predicts a high loss from
its prediction. We interpret the inverse of the output of
MEH, 1 > as a predictive value for target loss: when the tar-
get loss Is; and loss prediction ZASJ- = %si are given for
bounding box ¢ at scale s, the loss for imagé 1 is defined as

Z Z(l“ - @)

Note that A is utilized only for re-scaling the Dirichlet
strength; A has no effect on p(z|6) or pi, since A will natu-
rally vanish when division ay /S occurs. Hence, the MEH
network ® /gy and remaining network ® \ ® /gy can be
updated in a disjoint manner. We in turn optimize ® ;g
and ® \ ®p/pp, thus training of ® gy never affects the
performance of the primary object detector; this resolves
the instability issue of previous EDL approaches.

ap =\ 3)

LMEH s ’L
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Figure 2. An overview of the proposed hierarchical uncertainty aggregation. (a) Bounding boxes are grouped or ignored based on IoU
with the near objects. (b) Bounding boxes in an image are hierarchically realigned based on object, scale, category to which the boxes
belong. Uncertainty of bounding boxes in the same level are aggregated and then passed to the higher level. For the above example, a set
of functions (sum, max, sum) is chosen for each information level (object, scale, class).

Applications. Evidential learning can be applied not
only to softmax-based object detectors like SSD [12] but
also to sigmoid-based detectors like RetinaNet [10]: given
sigmoid-based prediction p € [0, 1], focal loss can be de-
fined as FL(p;) = —(1 — py)"og(pe), pr = pify = 1,
i 1 — p otherwise. To enable evidential learning,
we replace sigmoid-based binary prediction p by Dirichlet-
Categorical multiclass prediction p(x|c) in equation (2).

2.2. Hierarchical Uncertainty Aggregation (HUA)

Based on the epistemic uncertainty of a bounding box,
in this subsection, we propose a new method for computing
the total informativeness score (or uncertainty) of an image.
It is evident that informativeness of an image cannot be fully
captured by a single bounding box. However, recent ac-
tive object detection methods [4,21,22] typically compute
informativeness of an image as the mean/maximum of all
bounding boxes. Instead, we propose to realign bounding
boxes into multiple levels and aggregate uncertainties in a
bottom-up order, as described in Fig. 2.

Filtering bounding boxes. Single-stage object detec-
tors such as RetinaNet [ 10] and SSD [12] generate bounding
boxes at every scale, pixel and anchors. Since most boxes
correspond to background, we first filter out background
boxes whose maxy, (py,) is lower than threshold score-

Realigning bounding boxes. Besides uncertainty score,
each bounding box contains much more information: ob-
ject, scale, category it belongs to. Based on these infor-
mation, we propose to realign the boxes into a hierarchi-
cal structure. First, boxes are matched to the nearest object
depending on the IoU score. For example in Fig. 2a, the
blue box is matched to “object”, but the green box is ig-
nored since IoU is lower than the threshold v;7,¢7. Secondly,
boxes are further grouped based on the scale to which they
belong. Lastly, boxes are divided based on the category
(argmaxy, Pi) to which they belong.

Uncertainty aggregation. Once the bounding boxes are
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fully realigned, individual uncertainty scores are unified in a
hierarchical order. As shown in Fig. 2b, uncertainties of the
boxes in a lower level (e.g., class) are aggregated into a sin-
gle value through a predefined aggregation function; the ag-
gregated value is then passed to an upper level (e.g, scale).
This aggregation repeats from the “class level” to “object
level”. Note that different types of aggregation functions
can be adopted at different levels of information. We specif-
ically propose to adopt sum operation when aggregating the
uncertainties at the object level, since this reflects the num-
ber of objects in total informativeness of the image.

2.3. Selection of Informative Image

Now the epistemic uncertainties of all unlabeled images
can be computed at each active learning cycle. While pre-
vious works typically select the top-k uncertain images, we
propose to select filtered-out images as well. We stress that
these images are also valuable since the machine was inca-
pable of sensing any objects due to a lack of knowledge. We
empirically found that composing 15% of selections with
filtered images considerably increases the performance.

3. Experiments

Experimental details. For fair comparisons with previ-
ous works [1,20,22], we adopt RetinaNet [ 10] and SSD [12]
which use ResNet50 and VGG16 as backbones. The struc-
ture of MEH is the same as the regression head. As for
hyperparameter setting, we follow the settings of [1,20,22].

Dataset. Our work is validated on PASCAL VOC [5]
and MS-COCO [!1]. In the first active learning cycle for
PASCAL VOC, 5% from 16,551 samples are randomly se-
lected and 2.5% of the remaining set is additionally labeled
until it reaches 20%. As for MS-COCO with 117,267 sam-
ples, labeled sets increased from 2% to 10% in steps of 2%.

Baselines. We compare our work with state-of-the-art
works of MI-AOD [22], CDAL [1], LL4AL [20], Core-
set [17]. Also, as basic baselines, entropy sampling, ran-
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Figure 3.

dom sampling with vanilla RetinaNet/SSD are considered.
5 independent networks are trained with different seeds and
the averaged performance is reported. For our scheme, we
adopted (sum, max, sum) operations for each information
level (object, scale, class) when applying HUA.

Comparison with state-of-the-arts. Fig. 3 shows mAP
scores under various settings. Our proposed method ex-
hibits a clear edge over other baselines giving the best per-
formance. In Figs. 3a and 3c, the proposed method shows
superiority in early cycles, proving that the proposed evi-
dential focal loss is effective when labeled data is extremely
limited. In Fig. 3b, SSD lags a bit at early cycles due to
the inability of using evidential focal loss. However, our
proposed methods (MEH and HUA) gradually increase the
performance by selecting informative images.

Effects of MEH and HUA. Table 1 shows ablation stud-
ies on the proposed methods. While ReLU computes e with
ReLU asin [18,23], Soft uses softmax. All methods except
HUA compute uncertainty of an image as the mean of all
boxes, asin [4,22]. Atevery cycle, proposed methods (Soft,
MEH, HUA) increase the performance by a large margin.

Method Ratio (%) of Labeled Samples

50 [ 75 J100]125]150] 17.5 | 20.0
Random 29.13 [50.35 | 58.45 | 61.27 | 62.31 | 64.67 | 66.72
Entropy 29.13 [49.41 | 56.02 | 59.83 | 64.03 | 65.96 | 67.08
ReLU 22.46 27.83 | 31.39 | 33.18 | 35.61 [ 37.03 | 38.95
ReLU+MEH 22.46[29.10 | 32.71 | 34.95|37.16 | 38.47 | 39.84
Soft 52.53 [58.26 | 61.13 | 65.05 | 66.44 | 68.41 | 69.55
Soft+MEH 52.53 [59.68 | 64.78 | 67.80 | 68.28 | 70.85 | 71.84
Soft+MEH+HUA | 52.53 | 62.02 | 66.84 | 69.82 | 71.31 | 72.86 | 74.08

Table 1. mAP (%) of RetinaNet on PASCAL VOC.

Effect of model evidence \. Fig. 4 illustrates the effect
of A. It can be seen that in a region where A is high (warm
area in 2% column), uncertainty becomes much smaller
(compare 374 and 4" columns).

Examples of easy and hard samples. For intuitive un-
derstanding, we display examples of easy and hard samples
in Fig. 5. Easy examples tend to have just one unoccluded
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Figure 4. Effect of model evidence (\) when calculating epistemic
uncertainty. Warm color indicates high value. In the area with high
model evidence, epistemic uncertainty decreases.

object. But, hard examples tend to have numerous objects,
which are unclear or heavily occluded.
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Figure 5. Examples of easy and hard samples. Images and their
informativeness score are displayed together.

4. Conclusion

We proposed a new active learning method for object
detection. With Bayesian framework and model evidence
head, our scheme estimates the epistemic uncertainty of a
bounding box. Also, our hierarchical aggregation strategy
provides a new guideline for computing informativeness of
an image. Our scheme presents an up-and-coming direc-
tion for active object detection, where estimating epistemic
uncertainty accurately yet quickly is of crucial importance.
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