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Abstract

The key challenge in neural architecture search (NAS) is
designing how to explore wisely in the huge search space.
We propose a new NAS method called TNAS (NAS with
trees), which improves search efficiency by exploring only
a small number of architectures while also achieving a
higher search accuracy. TNAS introduces an architecture
tree and a binary operation tree, to factorize the search
space and substantially reduce the exploration size. TNAS
performs a modified bi-level Breadth-First Search in the
proposed trees to discover a high-performance architecture.
Impressively, TNAS finds the global optimal architecture on
CIFAR-10 with test accuracy of 94.37% in four GPU hours
in NAS-Bench-201. The average test accuracy is 94.35%,
which outperforms the state-of-the-art. Code is available
at: https://github.com/guochengqian/TNAS.

1. Introduction

Neural architecture search has spurred increasing inter-
est in both academia and industry for its ability in finding
high-performance neural network architectures with min-
imal human intervention. To achieve the most accurate
NAS algorithm, one can explore all candidate architectures,
training each one to convergence, and picking the best-
performing architecture. However, this brute-force NAS is
infeasible due to the enormous search space. Therefore, one
of the key questions towards a successful NAS algorithm is:
how to efficiently explore the search space?

One-shot NAS [6, 27, 3, 24] impressively improved
the efficiency of NAS. One-shot NAS leverages a weight-
sharing strategy and approximately trains only one network,
called the supernet, which subsumes all candidate architec-
tures. Each candidate architecture directly inherits weights
from the supernet without training. Despite the efficiency

(a) The entire search space. Each
dot represents an architecture.

(b) The pruned search space af-
ter the first search stage.

(c) The pruned search space after
the second search stage.

(d) The single candidate architec-
ture found after the third stage.

Figure 1: TNAS hierarchically factorizes the search space and
gradually prunes the unpromising architectures. The colorbar
shows the global rankings of architectures on CIFAR-10 [18] in
NAS-Bench-201 [13]. Red stars indicate top-10 architectures.

of one-shot NAS algorithms, they incur architecture evalua-
tion degradation, i.e. the architecture performance evaluated
using the weight-sharing is not correctthat, which leads to a
degraded search accuracy [38, 21].

In this work, we diverge from the paradigms set by early
NAS, and instead design a new algorithm to explore the
search space in a wiser manner. Consider a search space
A where the number of candidate operations is M and the
number of architecture layers to search is L. The size of the
entire search space |A| equals to ML. If M = 2 or L = 1,
|A| can be drastically reduced to 2L or M . The intuition

2782

https://github.com/guochengqian/TNAS


behind our work is to develop a method that factorizes the
operation space (size M ) and the architecture layers (size
L), and thus reduces the exploration size exponentially.

Contributions. (1) We introduce an architecture tree and
a binary operation tree to factorize the search space L and
M , respectively. By combining the two trees, we iteratively
branch a search space into two exclusive subspaces. (2) We
propose a novel, flexible, accurate, and efficient NAS al-
gorithm, called TNAS: NAS with trees. TNAS performs
a modified bi-level Breadth-First Search (BFS) in the two
proposed trees. By adjusting the expansion depths of the
BFS, TNAS explicitly controls the exploration size N and is
able to exponentially reduce N from ML to O(L log2 M).
The essence of TNAS is illustrated in Figure 1. (3) TNAS
is is able to find the global optimal architecture on CIFAR-
10 [18] (94.37% test acc.) in NAS-Bench-201 [13] within
4 GPU hours on one GTX2080Ti GPU. TNAS outperforms
the RL and EA based NAS [45, 28] as well as one-shot NAS
[27, 9], with a similar search cost.

2. Related Work

The computational bottleneck of NAS is exploring can-
didate architectures in this huge search space and exploit-
ing each one (i.e. score the architecture by training to con-
vergence). Through the work, we name the number of ar-
chitectures to score as the exploration size, denoted as N .
To alleviate the computational bottleneck, NAS algorithms
should consider: (i) how to explore wisely, where time can
be saved if the algorithm explores more among the “good”
architectures and less on the “bad” ones, and (ii) how to
exploit wisely, where training each network to convergence
just to know the architecture’s performance then throwing
weights away is inefficient.

Explore wisely. Early methods adopt Reinforcement
Learning [44, 2, 45] or Evolutionary Algorithms [30, 29,
28] to auto-explore the huge search space. Although early
NAS methods have been able to discover architectures that
outperform manually designed networks, they consume sig-
nificant computational resources. This is primarily because
these algorithms require a large exploration size to achieve
a decent search accuracy. Progressive NAS is a method
that factorizes the search space into a product of smaller
search spaces and can greatly reduce the exploration size.
PNAS [23] and P-DARTS [9] start searching with shallow
models and gradually progress to deeper ones. Li et al. pro-
pose block-wise progressive NAS [19, 20] that consider the
architectures is built by sequential blocks and search the ar-
chitecture block by block. SGAS [21], GreedyNAS [36],
and [17, 41, 34] progressively shrink the search space by
dropping unpromising candidates. These progressive NAS
methods require a much smaller exploration size, but their
greedy nature hampers their search accuracy. Our TNAS

designs a new paradigm for exploring wisely by introduc-
ing two trees to factorize the search space.

Exploit wisely. A straightforward idea of reducing ex-
ploitation is to train fewer epochs as done in Block-
QNN [42]. A more advanced solution is to share weights
among child networks, apart from training them from
scratch. This weight-sharing strategy was first proposed by
ENAS [6, 27] and has inspired many following works, in-
cluding one-shot NAS [3, 24, 15, 32, 26, 37, 10, 14]. To al-
leviate the evaluation degradation [38, 4, 21] issues of one-
shot NAS caused by weight-sharing, few-shot NAS [40, 31]
were proposed by training k supernets instead of training
only one. Another line of work to exploit wisely is ac-
curacy prediction [23, 11, 43], where an accuracy predic-
tor is learned to directly estimate an architecture’s accuracy
without training it completely. Recently, metric-based NAS
methods [25, 8, 1, 39, 17, 7] have emerged, using well-
designed metrics to score the sampled architectures quickly
with significantly less training or even no training. Since
our paper focuses on how to wisely explore the NAS search
space, wise exploitation is an orthogonal direction. In fact,
we highlight here that our TNAS can be applied with nearly
all the aforementioned exploit-wise NAS methods.

3. Methodology

We present TNAS (NAS with trees) to efficiently find a
high-performance architecture by performing a modified bi-
level Breadth-First Search in the proposed architecture tree
TA and binary operation tree TO.

3.1. Architecture Tree TA

Given a search space with L layers and M operations
per layer, we propose an architecture tree TA to factorize
the one-shot architecture and to exponentially reduce the
exploration size. The architecture tree TA is illustrated in
Figure 2(a). Each node in the tree represents an architec-
ture. The root node is the M -path L-layer one-shot archi-
tecture. Each path in a layer denotes a distinct operation
from M candidate operations. TA has a maximum depth
level equal to L. For each node (architecture) at depth i
(i ∈ [0, 1, . . . , L−1), the tree separates the M operations in
layer i into M branches each with a single operation. Such
branching is repeated for each node, until the leaf nodes are
reached. Each leaf node represents a distinct single-path ar-
chitecture. The union of the leaf nodes is the set of all can-
didate architectures. Note that if layer i contains multiple
operations, the output of this layer will be the summation of
the outputs of all operations at this layer, as inspired by the
one-shot NAS [3] and is formulated as:

ōi(x) =
∑
oj∈O

oij(x), (1)
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(c) BFS with da = L = 3 explores ML architectures

Figure 2: Illustration of the architecture tree TA and the proposed Breadth-First Search (BFS).

where O = {oj | j = 1, 2, . . . ,M} denotes M different
operations and x denotes the input feature map.

Breadth-First Search (BFS) in TA. Here, we show that
the architecture search can be done by performing our mod-
ified BFS in the architecture tree TA. Our BFS requires a
hyperparameter, the expansion depth denoted as da, where
the subscript a denotes “architecture”. BFS starts at the root
node (the one-shot model) at depth 0, expands all its succes-
sors until depth da, and obtains up to Mda leaf nodes after
expansion. BFS scores the subnets defined by these leaf
nodes, and picks the node with the highest score as the root
node for the next step. The above procedure is defined as
a decision step, and is repeated until a single-path architec-
ture is determined. The score function can be chosen to be
the validation performance after training, or a metric func-
tion proposed by any metric-based NAS method such as the
number of linear regions [25]. For simplicity, we choose
the scoring function to be validation performance in our ex-
periments. The expansion depth da of the BFS denotes how
many layers to branch at each decision step. As illustrated
in Figure 2(b), the BFS with da = 1 is a sequential, greedy
NAS algorithm that decides the operation for the architec-
ture layer by layer, similar to the progressive NAS method
SGAS [21]. The BFS with da = L as shown in Figure 2(c)
works as the brute-force NAS, where only 1 decision step
is required. The BFS explores all ML subnets and decides
the operation for all of the layers at the same decision step.
When da = k ∈ {2, · · · , L − 1}, k layers are branched in
each decision step, Mk subnets need to be scored, and

⌈
L
k

⌉
decision steps are required. This case works similar to the
block-wise NAS [19], while our BFS does not require any
block-level supervision.

3.2. Binary Operation Tree TO

We propose a binary operation tree TO that hierarchi-
cally factorizes the operation space to further reduce the ex-
ploration size. Each node in TO is an operation group con-

entire operation search space

None Not None

Convolution Topology

conv1x1 conv3x3 residual maxpool

depth 0

depth 1

depth 2

depth 3

Figure 3: The binary operation tree TO .

sisting of one or more distinct operations. The root node
represents O, the entire operation space containing all M
operations. TO starts from the root node and branches it
into two child nodes that represent two exclusive operation
groups. Such branching is repeated for each node until a
leaf node that represents a single operation is reached. TO
has M leaf nodes. The union of leaf nodes is O. Taking
NAS-Bench-201 [13] operation space as an example, we il-
lustrate the TO in Figure 3.

Breadth-First Search (BFS) in TO. The expansion depth
of our modified BFS in TO is denoted as do. BFS starts
at the root node (the entire operation space) at depth 0, ex-
pands all its successors until depth do, and obtains up to
2do leaf nodes after expansion. These leaf nodes represent
the current candidate operation groups. BFS scores the ar-
chitectures equipped with these different operation groups,
and picks the node defined by the operation group with the
highest score as the root node for the next stage. The above
procedure is defined as a decision stage, and is repeated
until a single operation is picked. Note that each archi-
tecture layer can choose different operation groups at each
decision stage. If do = 1, the BFS decides the operation
groups per depth following TO. In this case, BFS consists
of ⌈ log2 (M−1)+1

do
⌉ = 3 decision stages. At the 1st stage,

BFS decides among None or Not None for each architec-
ture layer. At the 2nd stage, for those layers that chose Not
None, the algorithm decides among the Convolution group
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Stage 0 Step 0
Branch operations of chosen layers 

Choose the best subnet
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The end of Stage 0. All layers are decided. Start Stage 1  

Search Stage 1 Step 0 

Search Stage 1 Step 1 

Start Stage 2 Step 0 

Search Stage 2 Step 0 

Search Stage 2 Step 1 

Final result: a single-path model

Figure 4: Illustration of TNAS (da = 2, do = 1).

or Topology group. At the final stage, the algorithm will
pick a single operation for each layer. If do = 3, BFS only
needs one decision stage to decide which single operation
to choose for each layer.

3.3. TNAS

We present a new NAS algorithm: Neural Architecture
Search with Trees (TNAS). Given a search space with M
candidate operations and L layers, TNAS constructs a bi-
nary operation tree TO and an architecture tree TA. TNAS
starts from the M -path L-layer one-shot model, and per-
forms bi-level Breadth-First Search on TO and TA. At
the outer loop, TNAS performs BFS with the expansion
depth do = 1 on TO by default, to make a large da fea-
sible. The outer loop requires ⌈log2 (M − 1) + 1⌉ decision
stages. Each stage branches each operation group of the
chosen layers into two child operation groups, which de-
fine the operation search space for the inner loop. The outer
loop repeats the decision stage until every architecture layer
reaches a leaf node of TO, i.e. all the layers pick a single
operation. In the inner loop, TNAS performs BFS with
an expansion depth da on TA. The inner loop takes

⌈
L
da

⌉
decision steps. Each step chooses da undecided layers to
branch, obtains 2da subnets, scores each subnet, and then
chooses the highest scoring one. The chosen subnet will be
used to replace the one-shot model and become the starting
point for the next step. The inner loop repeats the above de-
cision step until it chooses a leaf node of TA, i.e. all layers
of the architecture have decided their operation group at the
current decision stage. We illustrate the TNAS algorithm
(do = 1, da = 2) in Figure 4. The NAS-Bench-201 [13]

Table 1: State-of-the-art comparison on NAS-Bench-201. Top-
1 test accuracy (mean and standard deviation over 5 runs) are re-
ported. For each dataset, optimum indicates the best test accuracy
achievable in the NAS-Bench-201 search space.

Architecture CIFAR-10 CIFAR-100 ImageNet-16-120 Search Cost (hours) Search Method

optimum 94.37 73.51 47.31 - -

ResNet [16] 93.97 70.86 43.63 - -

REA [28] 93.92± 0.30 71.84± 0.99 45.54± 1.03 3.3 EA
REINFORCE [35] 93.85± 0.37 71.71± 1.09 45.24± 1.18 3.3 RL
RS [5] 93.70± 0.36 71.04± 1.07 44.57± 1.25 3.3 random

NAS w.o. Training [25] 91.78± 1.45 67.05± 2.89 37.07± 6.39 - training-free
TE-NAS [8] 93.90± 0.47 71.24± 0.56 42.38± 0.46 - training-free

RSPS [22] 87.66± 1.69 58.33± 4.34 31.14± 3.88 2.2 random
ENAS [27] 54.30± 0.00 15.61± 0.00 16.32± 0.00 3.7 EA
DARTS (2nd) [24] 54.30± 0.00 15.61± 0.00 16.32± 0.00 8.3 gradient
GDAS [12] 93.61± 0.09 70.70± 0.30 41.84± 0.90 8.0 gradient
DARTS- [10] 93.80± 0.40 71.53± 1.51 45.12± 0.82 3.2 gradient
VIM-NAS [33] 94.31± 0.11 73.07 ± 0.58 46.27± 0.17 - gradient

TNAS (ours) 94.35±0.03 73.02±0.34 46.31±0.24 3.6 tree
TNAS (best) 94.37 73.09 46.33 3.6 tree

search space (i.e. M = 5 and L = 6) is used as an example.
Exploration size analysis. Given a search space with M
operations and L layers, TNAS reduces the exploration size
exponentially from ML to:

N = O

(
2doda ×

⌈
L

da

⌉
×

⌈
log2 (M − 1) + 1

do

⌉)
(2)

4. Experiments

Setup. We evaluate TNAS on NAS-Bench-201 [13] with
(do = 1, da = 6). We train each architecture over 2 epochs
and use the top-1 accuracy on validation set as the score for
the architecture. If the architecture consists of a layer with
multiple operations, the output of this layer is the sum of
all outputs as Equation 1. Note that other scoring methods
aforementioned in Section 2 can also be applied.
Results. Table 1 compares TNAS with SOTA. TNAS
finds the global optimal architecture in CIFAR-10 [18]
within 4 GPU hours. TNAS achieves 94.35% average
test accuracy, outperforming all other NAS methods. We
highlight that TNAS outperforms the REA [28], REIN-
FORCE [35] and random search (RS [5]) with a similar
search cost, which clearly demonstrates the benefit of our
NAS paradigm. TNAS also performs significantly better
than the one-shot based methods, such as ENAS [27],GDAS
[12] and DARTS- [10], while being more efficient.

5. Conclusion
We present a novel NAS algorithm, TNAS, that per-

forms bi-level BFS on the proposed binary operation tree
and the architecture tree. By adjusting the search depths on
the trees, TNAS can explicitly control the exploration size.
TNAS finds the global optimal architecture in NAS-Bench-
201 [13] with a search cost of less than 4 GPU hours.
Acknowledgments This work was done when Guocheng
was remotely interned at Megvii technology. This work
was also supported by the KAUST Office of Sponsored Re-
search (OSR) through VCC funding.
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