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Abstract

Deep Learning on microcontroller (MCU) based IoT de-
vices is extremely challenging due to memory constraints.
Prior approaches focus on using internal memory or ex-
ternal memories exclusively which limit either accuracy or
latency. We find that a hybrid method using internal and
external MCU memories outperforms both approaches in
accuracy and latency. We develop TinyOps, an inference
engine which accelerates inference latency of models in
slow external memory, using a partitioning and overlay-
ing scheme via the available Direct Memory Access (DMA)
peripheral to combine the advantages of external memory
(size) and internal memory (speed). Experimental results
show that architectures deployed with TinyOps significantly
outperform models designed for internal memory with up to
6% higher accuracy and importantly, 1.3-2.2x faster infer-
ence latency to set the state-of-the-art in TinyML ImageNet
classification. Our work shows that the TinyOps space is
more efficient compared to the internal or external memory
design spaces and should be explored further for TinyML
applications.

1. Introduction

Deep Neural Networks (DNN) have found success in a
variety of fields [8, 9, 19]. At the same time, the number
of connected IoT devices has been constantly growing with
forecasts that there will be 41.6 billion connected IoT de-
vices by 2025 [12]. This has led to the development of the
field of Tiny Machine Learning (TinyML) which aims to de-
velop models and frameworks suitable for inference locally
on the IoT device. This is desirable for a number of reasons
including security, privacy, latency and cost associated with
using cloud based solutions.

A significant challenge in TinyML is the severe resource

constraints which makes it difficult to achieve satisfactory
accuracy and latency. As such, it is imperative that all of
the available resources are utilised efficiently to maximise
performance of the devices. Existing works [1, 4, 15] have
focused on developing models that can be deployed using
only fast internal memory. While these approaches have
low inference latency, they suffer from low accuracy due
to the constraint on model size imposed by internal mem-
ory. Higher accuracy can be achieved by deploying larger
models using external memories available across the range
of MCUs. However, while external alternatives are larger
(10x↑), they are significantly slower (2x↑) which increases
latency.

In our work, we propose an expand and accelerate ap-
proach to deploy models with high accuracy and low latency
(Figure 1). We use external memories to expand the space
of deployable architectures which can achieve high accu-
racy. To accelerate inference latency, we develop TinyOps,
an inference engine that partitions operations in the model
to meet internal memory constraints and overlays data be-
tween external and internal memory via DMA commonly
available on MCUs. This enables deployment with high ac-
curacy and low internal memory-like inference latency.
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Figure 1. TinyOps accelerates inference of external memory mod-
els (2x↑). We find models from the TinyOps space significantly
outperform internal memory models in accuracy and latency.
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Figure 2. A pipeline is established between the DMA and CPU when executing operations in the inference graph. Inputs (X1) are
partitioned and overlayed in smaller fast SRAM buffers. Filter weights are overlayed in parallel (W3=>B2) for further latency acceleration.

We find that architectures in the TinyOps design space,
derived by simply scaling pre-designed models, are able to
signficantly outperform models specially designed for in-
ternal memory with up to 6% higher accuracy and crucially
1.3-2.2x faster latency as well. This shows that the Tiny-
Ops space is full of efficient architectures that can be stud-
ied further for performance gains over sub-optimal internal
memory only models. Additionally, compared to using ex-
ternal memories exclusively, TinyOps is able to accelerate
inference 1.2-2x.

Related Work: A common approach to deploying larger
models on MCUs includes quantisating weights and activa-
tions to reduce the memory footprint. Various fixed point
precisions have been shown to work using fixed or mixed-
bit schemes [4, 5, 11, 14, 24] in addition to vector quanti-
sation approaches [7, 20]. We use standard INT8 quanti-
sation due to the native support for 8-bit operands in the
MCUs instruction sets. For maximum performance, archi-
tectures can be hand-crafted for low memory and computa-
tional footprint [2, 10, 18, 22]. Recently, automated archi-
tecture design using Neural Architecture Search (NAS) has
also shown very good performance [1, 15, 17, 21, 25, 25].
In our experiments, we use different scalings of NAS de-
signed models to vary complexity according to the required
constraints or performance. MCUs have a number of infer-
ence frameworks [3, 6, 15, 16, 23], however, these perform
inference with all weights and activations in either inter-
nal or external memory while some don’t support the range
of devices limiting portability. In our work, we utilise the
TensorFlowLite-Micro (TFLM) framework with CMSIS-

NN kernels [13] due to their open-source nature and porta-
bility across devices. Other existing kernels [4, 15, 16], are
optimised at the lower level to maximise throughput, how-
ever we focus on high level model design which makes ker-
nel optimisation an orthogonal approach.

2. TinyOps Architecture
The TinyOps engine seamlessly integrates into the soft-

ware stack between the inference graph interpreter and the
Hardware Abstraction Layer (HAL). When the interpreter
invokes the operations (Conv, Add, Pool) in the inference
graph, TinyOps executes the operations by interfacing with
the low-level kernels and DMA via the HAL for portability.
TinyOps uses external memory (SDRAM) as main mem-
ory and overlays only frequently accessed data in internal
memory (SRAM) to reduce inference latency.

Execution Pipeline: TinyOps catches operator calls
from the interpreter and partitions operations with large
SRAM requirement into tiny operations which sequentially
process smaller independent blocks or tiny tensors of the
input tensor. The tiny tensors are produced by partition-
ing input tensors into equally sized blocks which are small
enough to fit into fast internal SRAM. This enables tensors
for tiny operations to be copied in from SDRAM to SRAM
for faster inference. The tiny tensor copying is offloaded
to the DMA which operates independently of the CPU. Us-
ing a ping-pong buffering strategy, a pipeline is established
between the DMA and CPU to efficiently execute the NN
operation (Figure 2). While the CPU processes the first
block of the data, the DMA prepares the second block of
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Figure 3. TinyOps accelerates latency 2x compared to external memory (EM-TFLM) by overlaying only frequently accessed data.

data by copying in from SDRAM to SRAM. After finish-
ing processing of the first block of data, the CPU frees the
first buffer and processes the second block of data while the
DMA begins to load the third data part into the newly freed
buffer by the CPU and so on. The tiny operations with re-
duced peak SRAM usage are sequentially executed in this
manner until the entire operation has been performed.

Partitioning Strategy: Tensor partitioning is performed
in the H dimension since TFLM uses the NHWC data lay-
out format. The H dimensional partitioning therefore pro-
duces tiny tensors occupying contiguous memory blocks
which avoids 2D DMA transfers not natively supported by
on-chip DMAs on MCUs. TinyOps uses a memory bud-
get adaptive partitioning strategy to determine buffer sizes
according to the diverse constraints of different platforms.
The SRAM buffer sizes are determined by the largest tensor
in the model which is partitioned into equally sized tiny ten-
sors according to the constraint. The remaining operations
are then partitioned into the largest tiny tensors that fit the
SRAM buffers.

Data Overlaying: TinyOps’ ping-pong buffering strat-
egy requires four SRAM buffers for overlaying tiny in-
put tensors of two-input Operations (Add). We are able
to further reduce latency as shown in Figure 3 by over-
laying filters and biases of one-input parametric operations
(Conv, DepConv) from external memory in the otherwise
unused buffers. Additionally, TinyOps overlays frequently
accessed quantisation parameters. By using pre-emptive
scheduling between multiple DMA streams (Figure 2), the
overlays are achieved using only a single DMA of the plat-
forms.

3. Experiments and Results
Experimental Setup: We compare accuracy, latency and
energy efficiency of models deployed with TinyOps and
TFLM using internal/external memory (IM/EM-TFLM) on
ImageNet classification. We demonstrate the strength of
models in TinyOps’ design space by comparing scaled vari-
ations of mobile models (ProxylessNAS, MobileNetV3,

MNASNet) in the TinyOps space with the optimal scal-
ing for internal memory and the MCUNet family of mod-
els. MCUNet models were taken from the authors reposi-
tory [15] and deployed with TinyOps as their memory foot-
print was too high for IM-TFLM. All models were quan-
tised with standard INT8 post-training quantisation and de-
ployed to ARM Cortex M4 and M7 based MCUs. Internal
memory and storage were supplemented using SDRAM and
ExtFlash on the Flexible Memory Controller (FMC) and
Quad Serial Port Interface (QSPI) peripherals respectively
with sizes as shown in Table 1.

Table 1. Memory specs of MCU platforms used in experiments.

PLATFORM
INTERNAL MEM (KB) EXTERNAL MEM (KB)

SRAM FLASH SDRAM EXTFLASH

STM32F469 256 1024 8192 8192
STM32F746 320 1024 8192 8192

ImageNet Classification: Compared to the MCUNet-
F746 model designed for internal memory, we achieve up
to a 2% increase in accuracy whilst simultaneously reduc-
ing latency by 2.2x on the F746 with MNASNet-w1.0-r96
as shown in Table 2. TinyOps memory budget adaptive par-
titioning strategy is also able to deploy the MNASNet-w1.0-
r96 model within the tighter memory constraint of the F469
where we observe a 4% higher accuracy than MCUNet-
F469 with 1.2x less latency. Similarly, the optimal scalings
of a ProxylessNAS model for internal memory on both de-
vices are outperformed by better scalings found in the Tiny-
Ops space. We note that in these cases, the TinyOps mod-
els have lower complexity (MACs) than the corresponding
models which might yield lower latency. However, this la-
tency decrease does not purely occur due to the lower num-
ber of MACs. As seen, MNASNet-w1.0-128 outperforms
MCUNet-F746 with 6% higher accuracy and 1.3x lower la-
tency with 1.3x more MACs. This puts into question the as-
sumptions of prior works that end to end latency or accuracy
is correlated with the FLOPs or MACs of a model [1, 15].
It is possible that the assumptions may hold true for only
simplistic memory hierarchies and not carry over to more
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Table 2. Models derived from the TinyOps space outperform optimally scaled models from the internal memory design space (proxyless-
w0.25-r160, proxyless-w0.25-r192)1. TinyOps models also outperform the MCUNet family of models in accuracy and latency on both
devices. The model stats show the amount of memory required to store the weights (Size) and the RAM required for activation tensors.

PLATFORM
MODEL STATS DEPLOYMENT STATS

NAME
DESIGN
SPACE

SIZE
(MB)

RAM
(KB)

MACS
(M)

INT8
ACC (%)

LATENCY
(MS)

CURRENT
(MA)

ENERGY
(MJ)

F469

PROXYLESS-W0.25-R160 INTERNAL 0.72 218 16.1 46.0 1007 41 206
PROXYLESS-W0.40-R080 TINYOPS 1.27 171 10.9 46.6 628 75 236

MBV3-W0.40-R096 TINYOPS 1.13 217 8.9 46.1 512 77 197

MCUNET-F469 INTERNAL 0.96 468 67.3 60.3 3391 70 1186
MNASNET-W1.00-R080 TINYOPS 4.72 330 48.2 60.8 2575 82 1056
MNASNET-W1.00-R096 TINYOPS 4.72 397 58.8 64.0 2922 81 1183

F746

PROXYLESS-W0.25-R192 INTERNAL 0.72 286 23.1 49.2 623 96 299
PROXYLESS-W0.85-R064 TINYOPS 3.48 303 21.5 50.5 410 128 262

MCUNET-F746 INTERNAL 0.97 492 81.8 61.8 1867 124 1157
MNASNET-W1.00-R096 TINYOPS 4.72 397 58.8 64.0 866 126 546
MNASNET-W1.00-R128 TINYOPS 4.72 568 103.5 68.2 1423 127 904

Table 3. Latency, Current and Energy/Inference statistics measured with proxyless-w0.25-r160 and proxyless-w0.25-r192 on the F469 and
F746. Even with higher current consumption on the F746, TinyOps hybrid approach has lower energy per inference due to lower latency.

PLATFORM
LATENCY (MS) CURRENT (MA) ENERGY (MJ)

IM-TFLM EM-TFLM TINYOPS IM-TFLM EM-TFLM TINYOPS IM-TFLM EM-TFLM TINYOPS

F469 1007 2167 1059 41 78 72 206 845 381
F746 623 891 687 96 120 130 299 535 447

holistic views of the MCUs memory architecture. However,
we leave a deeper latency analysis as a future work.

Energy Efficiency: TinyOps is able to reduce energy per
inference on both devices 1.3-2.2x compared to EM-TFLM
by accelerating the inference latency as seen in Table 3. On
the F469, TinyOps lowers the current draw by 6mA com-
pared to EM-TFLM even though it uses the additional DMA
peripheral of the microcontroller. This occurs due to multi-
ple reads of filters and input tensor elements from SDRAM
in Conv and DepConv operations which have higher energy
consumption. On the other hand, TinyOps overlays inputs
and filters from SDRAM to SRAM using the DMA such
that there is only one read from SDRAM and any repeated
reads are from SRAM which have a lower energy cost. This
gives an overall reduction in current draw. The same behav-
ior is not observed in the F746 as the on-chip cache is able
to store frequently accessed SDRAM data and provide low
energy access from cache itself. In this case, the overall
consumption of SDRAM decreases and is outweighed by
the DMA leading to higher current draw. Compared to IM-
TFLM, TinyOps has minimal latency overhead. The cur-
rent draw is higher due to the extra power consumption of

1We evaluated all scalings on the pareto frontier for Proxyless, Mbv2,
Mbv3 and MNASNet out of which Proxyless gave highest accuracy for the
internal memory design space.

SDRAM and the DMA. However, this can be offset by effi-
cient models in the TinyOps space with the same or higher
accuracy as shown in Table 2.

4. Conclusion and Future Work
We introduced TinyOps, which accelerates inference of

high accuracy architectures in external memory by a par-
titioning and overlaying scheme which uses the on-chip
DMA in parallel with the CPU to maximise throughput.
The partitioning scheme was shown to be able to handle di-
verse memory budgets enabling deployment over a range of
devices. TinyOps outperformed the previous state of the art
internal memory models on ImageNet classification with up
to 6% higher accuracy and 2.2x faster inference. The sig-
nificant performance gains demonstrate the efficiency of the
TinyOps space and shows that focusing on internal memory
only deployment is sub-optimal for high performance ima-
genet scale deep learning on MCUs. This opens up interest-
ing avenues of future work including using NAS to derive
efficient architectures from the TinyOps space as opposed
to simply scaling pre-designed mobile models. Deeper la-
tency analysis of the models used in this work can also
give insights into manual model and search space design
for MCUs. At the lower level, kernels could be optimised
orthogonally to the models to further accelerate inference of
the TinyOps space.
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