
Conjugate Adder Net (CAddNet) - a Space-Efficient Approximate CNN

Lulan Shen
McGill University
Montreal, Canada

Maryam Ziaeefard
McGill University
Montreal, Canada

Brett Meyer
McGill University
Montreal, Canada

Warren Gross
McGill University
Montreal, Canada

James J. Clark
McGill University
Montreal, Canada

james.j.clark@mcgill.ca

Abstract

The AdderNet was recently developed as a way to im-
plement deep neural networks without needing multiplica-
tion operations to combine weights and inputs. Instead,
absolute values of the difference between weights and in-
puts are used, greatly reducing the gate-level implemen-
tation complexity. Training of AdderNets is challenging,
however, and the loss curves during training tend to fluc-
tuate significantly. In this paper we propose the Conjugate
Adder Network, or CAddNet, which uses the difference be-
tween the absolute values of conjugate pairs of inputs and
the weights. We show that this can be implemented sim-
ply via a single minimum operation, resulting in a roughly
50% reduction in logic gate complexity as compared with
AdderNets. The CAddNet method also stabilizes training as
compared with AdderNets, yielding training curves similar
to standard CNNs.

1. Introduction
Deep learning techniques have revolutionized many in-

formation processing tasks. But these methods come with
a heavy computational burden, providing a challenge for
embedded systems engineers who would like to use these
on edge devices with restrictive computational and energy
constraints. This has led to the development of compressed
networks, which are smaller versions of standard deep neu-
ral networks. Even these compressed networks have sig-
nificant computational demands. In trying to reduce the
computational burden even further, designers have looked
towards approximation techniques [6]. One example is the
recently proposed AdderNet, which replaces the multiplica-
tions found in convolution operations by addition (actually
subtraction) operations followed by absolute values. This

results in a reduction in the logic complexity of special pur-
pose implementations. In this paper, we modify the Adder-
Net approach by using a related, yet simpler, approximation
to multiplication that involves addition and absolute value
operations. As we will see, this not only reduces circuit
complexity, but also provides a more stable training process
than the AdderNet approach.

2. Adder Networks
An important component of deep neural networks is the

discrete cross-correlation operation:

Y (m,n) =

d∑
i=0

d∑
j=0

c∑
k=0

X(m+i, n+j, k)∗W (i, j, k) (1)

In the deep learning literature this is usually referred to as
“convolution”, although strictly this requires the sign of the
indices i and j to be negated in the X term. Here X are
the neuron inputs and W are the neuron weights, which are
learned.

Chen et al ([2,3,10]) introduced Adder Networks, which
replace the convolutions in neural networks by sums of the
absolute values of differences:

Y (m,n) = −
d∑

i=0

d∑
j=0

c∑
k=0

|X(m+ i, n+ j, k)−W (i, j, k)|

(2)
The form in equation (2) only requires addition and ab-

solute value operations, whereas the convolution approach
requires additions and multiplications. Hence the adder net-
work will require less computing hardware than the convo-
lutional network.

The Adder Network papers demonstrate that the form
represented by equation (2) can yield neural network perfor-
mance comparable to that of convolutional networks. The

2793

Adder Network approach is not without some challenges,
however. The first is that applying backpropagation of er-
rors directly using equation (2) does not work well, as the
gradients are all either +1 or -1. To counteract this problem,
Adder Networks are actually trained using the gradients of
the square of the absolute values. The second problem is
that, unlike convolution, the outputs Y in equation (2) are
always negative due to the absolute value. The Adder Net-
works papers handle this by applying a batch normaliza-
tion stage after the summation. As noted by Dong et al [4]
the Adder Network exhibits a rather unstable test loss curve
during training (see figure 3 later in this paper).

3. Conjugate Adder Multiplier
We propose an approach related to Adder Nets which

better approximates the convolution operation, while still
avoiding the need for multiplication operations.

The main idea is to replace the multiplication operation
in a convolution by differences of even nonlinear functions
of conjugate pairs g(X +W)− g(X −W) where g() is an
even convex function.

The key point here is that, because of the even order of
the nonlinearities, the difference of the nonlinear functions
is, to lowest order, proportional to the product of X and W :

X ∗W ≈ g(X +W)− g(X −W) =

a11X ∗W + a13X ∗W 3 + a31X
3 ∗W + ...

(3)

If we take the nonlinearity to be the square, g(x) = x2/4,
then the higher order terms disappear leaving only the
X ∗W term with a11 = 1, and equation (3) will be equiv-
alent to the convolution equation (2). This implementation
of multiplication as the difference of squares is well known
as the “Quarter-Square Multiplier” [11], and has been used
to create space-efficient analog neural network circuits [9].
For other types of even nonlinearities there will be some dif-
ference fromX ∗W , and so equation (3) will not be exactly
equivalent to a convolution in these cases. However, equa-
tion (3) may be a close approximation to a convolution, and
adaptation of the weights W during network optimization
may result in good performance of the network as compared
with a convolutional network, much as is the case for adder
networks.

The most direct implementation is to use the quarter-
square function as is, and use this as a direct drop-in re-
placement for the multiplication operations in a CNN. The
advantage of this is that a circuit-level implementation will
be more compact than creating a fully parallel two-operand
multiplier. A lookup table can be used to implement a
quantized version of the square function. For low-bit-width
representations these lookup tables can be relatively small
compared to that of a two-operand multiplication, since they

only have one input dimension. For larger bit-widths, how-
ever, lookup tables become impractically large and power
hungry.

Piecewise linear functions could be used to allow for
good approximations to the squaring operations over a
given range, avoiding the need for multiplications, need-
ing only addition/subtraction and/or comparison opera-
tions. The simplest piecewise linear implementation comes
from using an absolute value operation as the nonlinearity:
g(x) = |x|/2.

X ∗W ≈ |X +W | − |X −W |
2

(4)

This is seen to be very similar to the Adder Network ap-
proach (equation 2) except that there is an additional term
involving the absolute value of the sum of the input and
weight, whereas the Adder Network has just the absolute
value of the difference of the input and weight. We refer to
equation (4) as the Conjugate Adder Multiplier, or CAdd, as
it involves the difference of absolute values of the conjugate
pair (X +W), (X −W).

It may appear that the Conjugate Adder approach is more
computationally expensive than the Adder Networks, as it
seems to require three addition operations as compared to
the single addition of the Adder Network. However, it can
be shown that one can implement the difference of the ab-
solute value of conjugate pairs with no additions at all, only
a single comparison operation. To see this, we consider the
various cases as to the signs of X and W and their relative
magnitudes.

sgn(X) = sgn(Y)⇒|X + Y | = |X|+ |Y |
|X − Y | = | |X| − |Y | |

sgn(X) 6= sgn(Y)⇒|X + Y | = | |X| − |Y | |
|X − Y | = |X|+ |Y |

(5)

Combining these four identities we can see that

|X+Y |−|X+Y | = sgn(X) sgn(Y){|X|+|Y |−| |X|−|Y | |}
(6)

Next, we consider the relative magnitudes of X and Y :

|X| > |Y | ⇒| |X| − |Y | | = |X| − |Y |
⇒|X + Y | − |X − Y |
=2 sgn(X) sgn(Y)|Y | = 2Y sgn(X)

(7)

|X| < |Y | ⇒| |X| − |Y | | = |Y | − |X|
⇒|X + Y | − |X − Y |
=2 sgn(X) sgn(Y)|X| = 2X sgn(Y)

(8)

We can merge these two results into a single expression as
follows:

|X+Y |−|X−Y | = 2 sgn(X) sgn(Y)min(|X|, |Y |) (9)

2794

Thus, we see that we can compute the difference of the ab-
solute values of the conjugate pairs merely with a single
comparison or minimum operation (assuming the sign op-
erations come for free through the sign bits of the operands).

The Conjugate Adder multiplication is functionally
equivalent to the idealized diode ring modulator circuit,
which is often used to multiply analog signals [5, 8]. Fig-
ure 1 shows the output of the CAdd operation acting on two
sinusoidal inputs. It looks quite similar to the action of the
standard multiplication operation for these inputs. This is
misleading however, as the CAdd operation is very nonlin-
ear and if one of the inputs was scaled quite differently than
the other then the output would be saturated or clipped. In
using this type of approximation to the multiplication opera-
tion it is important that the two operands be scaled properly.

Figure 1. Standard multiplier output (left) and Conjugate Adder
multiplier output (right) for 2 sinusoids

To evaluate the accuracy of the CAdd approximation to
the multiplication operation, we performed a Monte-Carlo
analysis of the Mean Relative Error Distance (MRED),
which is given by 1

Ns

∑
(
|P−Papprox|

P), where P is the true
product value, Papprox is the approximate value and Ns is
the number of sample cases contributing to the average. For
16-bit unsigned integers, the MRED is 0.425. This is higher
than other approximate multipliers, such as the efficient log-
arithmic multiplier of Ansari et al [1], which has an MRED
of 0.0289, but has a much lower circuit complexity.

We will refer to a convolutional neural network where
the weight-input product is replaced by the Conjugate
Adder Multiplier as a CAddNet. CAddNets are even more
computationally efficient than AdderNets, in that the addi-
tion operation is replaced by a single comparison operation.
In terms of logic gate complexity and power dissipation, a

comparator circuit is less complex than an adder (roughly
half as many logic gates are needed), as it can be imple-
mented by computing just the sign bit of a subtraction op-
eration, whereas a full subtraction also requires generation
of all the sum bits. The speed of the operation will be sim-
ilar in both cases, since the main determiner of speed in an
adder circuit is its carry chain, which is also present in the
comparator circuit.

Another advantage of CAddNets over Adder Networks is
that the output of neurons can be both positive and negative.
Also, the use of the standard convolution gradient signal
during training is better justified in the case of CAddNets as
compared with Adder Networks, as there is a closer approx-
imation to the convolution operations. Thus the training
process is expected to be closer to that of convnets in terms
of learning rate schedules, and again avoids the need for
batch normalization to tame the training process (although
batch normalization may still be useful to speed up training,
as it is for standard convolutional networks).

4. Experiments
We trained AdderNet and CAddNet versions of a stan-

dard ResNet20 convolutional neural network on the CIFAR-
10 dataset [7]. The relative accuracy after training for 400
epochs with a batch size of 256 for CAddNets and of 128
for standard ResNet20 is shown in Table 1. We also include
the accuracy for the binarized network of Zhou et al [12] for
comparison. Note that [3] lists a higher accuracy value of
91.84 for the AdderNet version than our value of 91.54.

We follow the same experiment settings as the Adder-
Net paper [3] for training and testing except that the ini-
tial learning rate is set to 0.5 (for CAddNets and stan-
dard ResNet) and the hyper-parameter η is set to 0.7 (for
CAddNets only). The CAddNet approach has the same
drawback as the AdderNet in that the gradients of the out-
put with respect to the weights and inputs are not very in-
formative, yielding only sign information. For this reason
we follow the practice in the AdderNet paper [3] and during
backpropagation compute the gradients of the square of the
output. As in the AdderNet paper, to prevent explosion of
the gradients with respect to the inputs, we clamp these to
a range of [-1,1]. Also, to have a fair comparison with the
AdderNet paper [3] and the Binarized Net of [12], we use
full precision standard convolution operations for the first
and last layers of the ResNet.

Figure 2 shows that the classification accuracy of the
CAddNet method increases more quickly, and with much
less variability, than the AdderNet approach. Similarly, in
figure 3 we see that the loss on the CIFAR-10 test set for
the CAddNet is much less variable during training than for
the AdderNet. The reason for this may be due to more in-
formative gradient directions during early training for the
CAddNet than for the AdderNet. Figure 4 shows that the

2795

histogram of weight values obtained after training is very
similar for both the CAddNet and AdderNet. Dong et al [4]
point out that the variance of the weights of a standard con-
volutional network is much lower than that of the AdderNet,
and propose that this is what result in the highly variable test
loss training curve for AdderNets as compared with convo-
lutional nets. However, we see that the CAddNet has less
test loss variability but still has high weight variance. So
the explanation proposed by Zhou et al [12] for the test loss
variability of the AdderNet cannot be completely correct.
Further investigation and analysis is required to see where
the stability provided by the CAddNet approach in spite of
large weight variance arises.

Table 1. ResNet20 classification accuracy on CIFAR-10.

Method Accuracy (%)
Standard ResNet 92.59
AdderNet 91.54
CAddNet 91.18
Binary Net 84.87

Figure 2. Accuracy of Standard ResNet, CAddNet and AdderNet
during training.

5. Conclusions
In this paper we have presented a modified version of the

AdderNet approach, where the single absolute value of the
difference between the input and the weight is replaced by
a conjugate pair of the absolute value of the sum and differ-
ence of the input and weight. Although this may seem to re-
sult in a more complex implementation, we show that it can
be expressed in a simplified form that reduces the conjugate
pair operation to a single minimum operation. Thus, the ef-
fective implementation complexity is roughly cut in half as
compared with the AdderNet. We observe, after training,
an accuracy on the CIFAR-10 dataset very close to that ob-
tained by the AdderNet, but with a more rapid increase in
accuracy with training, and exhibits less instability during
training.

Figure 3. Training (top) and Test (bottom) loss curves for Standard
ResNet, AdderNet and CAddNet.

Figure 4. Histogram of learned weight values for AdderNet (top)
and CAddNet (bottom).

2796

References
[1] Ansari, M.S., Cockburn, B.F. and Han, J., “A

hardware-efficient logarithmic multiplier with im-
proved accuracy”. In 2019 Design, Automation and
Test in Europe Conference and Exhibition (DATE),
pp. 928-931, March 2019. 3

[2] Chen, H., Wang, Y., Xu, C., Xu, C., Xu, C. and
Zhang, T., “Universal Adder Neural Networks,” arXiv
preprint arXiv:2105.14202, 2021. 1

[3] Chen, H., Wang, Y., Xu, C., Shi, B., Xu, C., Tian, Q.
and Xu, C., “AdderNet: Do we really need multiplica-
tions in deep learning?” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion. pp. 1468-1477, 2020. 1, 3

[4] Dong, M., Wang, Y., Chen, X. and Xu, C., “Towards
stable and robust addernets.” Advances in Neural In-
formation Processing Systems, 2021. 2, 4

[5] Goodman, B., “Diode Modulators,” QST Magazine,
pp 39-43, April 1953. 3

[6] Han, J. and Orshansky, M., “Approximate Computing:
An Emerging Paradigm For Energy-Efficient Design,”
in IEEE ETS, 2013. 1

[7] Krizhevsky, A. “Learning Multiple Layers of Features
from Tiny Images.” Technical Report, University of
Toronto, 2009. 3

[8] Parker, J., “A Simple Digital Model of the Diode-
Based Ring-Modulator,” Proc. 14th Int. Conf. Digital
Audio Effects, January 2011. 3

[9] Saxena, N. and Clark, J.J., “A four-quadrant CMOS
analog multiplier for analog neural networks,” IEEE
Journal of Solid State Circuits, pp 746-749, June 1994.
2

[10] Wang, Y., Huang, M., Han, K., Chen, H., Zhang, W.,
Xu, C. and Tao, D., “AdderNet and its minimalist
hardware design for energy-efficient artificial intelli-
gence,” arXiv preprint arXiv:2101.10015, 2021. 1

[11] Whitbread, J. and Glaisher, L., “The method of quarter
squares,” Nature, 40(1041), pp 573–576, 1889. 2

[12] Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H. and Zou,
Y. “Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients.” arXiv
preprint arXiv:1606.06160, 2016. 3, 4

2797

	. Introduction
	. Adder Networks
	. Conjugate Adder Multiplier
	. Experiments
	. Conclusions

