
Cyclical Pruning for Sparse Neural Networks

Suraj Srinivas1 Andrey Kuzmin2 Markus Nagel2 Mart van Baalen2 Andrii Skliar2

Tijmen Blankevoort2

1 Idiap Research Institute & EPFL, Switzerland
2 Qualcomm AI Research, Netherlands

Abstract

Current methods for pruning neural network weights
iteratively apply magnitude-based pruning on the model
weights and re-train the resulting model to recover lost ac-
curacy. In this work, we show that such strategies do not
allow for the recovery of erroneously pruned weights. To
enable weight recovery, we propose a simple strategy called
cyclical pruning which requires the pruning schedule to be
periodic and allows for weights pruned erroneously in one
cycle to recover in subsequent ones. Experimental results
on both linear models and large-scale deep neural networks
show that cyclical pruning outperforms existing pruning al-
gorithms, especially at high sparsity ratios. Our approach
is easy to tune and can be readily incorporated into existing
pruning pipelines to boost performance.

1. Introduction
The dominant paradigm for training and inference of

deep neural networks uses dense parameter tensors and
hardware optimized for dense computations. However,
sparse tensor multiplications can be more compute, mem-
ory and power efficient, all of which are important con-
siderations for low-power mobile devices. To utilize spar-
sity, we require methods to either train sparse neural net-
works from scratch or convert existing dense models to
sparse ones. Fortunately, it has been shown that pre-trained
dense deep neural networks can be easily sparsified us-
ing simple heuristics involving magnitude pruning and re-
training [15, 37]. One such commonly-used heuristic is
gradual pruning, which iteratively prunes weights and fol-
lows it with re-training, each time increasing the number of
weights pruned.

On the other hand, recent review papers [3, 13] have
shown that is difficult to improve upon these simple heuris-
tics, and as a result, current state-of-the-art approaches [13]
still rely on such techniques. In this work, we connect
these heuristics to projected gradient descent (PGD), a well-

known algorithm for constrained optimization. Similar to
gradual pruning, PGD involves alternating between magni-
tude pruning and re-training. However, as we show in the
paper, this analogy breaks down for the simple case of prun-
ing a single weight. To bridge this gap, we propose cyclical
pruning, a simple strategy that uses a cyclical schedule for
pruning rather than a monotonically increasing one. Our ex-
perimental results show that cyclical pruning outperforms
gradual pruning across datasets on various models, espe-
cially at large sparsity ratios. This approach does not intro-
duce any hard-to-tune hyper-parameters and can be readily
incorporated into existing pruning pipelines.

Overall, our contributions are:

• We propose cyclical pruning, a simple pruning strat-
egy that allows for recovery of previously pruned
weights.

• We show that recovery of pruned weights is crucial in
the context of pruning linear models, especially when
the solution space is non-degenerate.

• We show improvements over gradual pruning on
CIFAR-10 and Imagenet datasets across several mod-
els, especially at large sparsity ratios.

2. Related Work
Pruning in neural networks involves either structured

pruning which removes entire neurons, or unstructured
pruning which removes individual weights. Structured
pruning [17, 19, 27], typically does not require any special-
ized hardware support, as opposed to unstructured prun-
ing which requires explicit support for sparse computa-
tions [6, 18], and is the main focus on this paper.

Methods for unstructured pruning of neural network
weights typically rely on magnitude pruning and re-
training [14, 15, 37], and our paper extends these methods
to allow for recovery of pruned weights. In these works,
each layer can either be pruned to the same level of sparsity
by applying magnitude pruning on each layer separately, or

2762

it can be applied once globally. While in this work we use
local uniform layerwise sparsity, [1,24] propose to improve
global sparsity by automatically tuning thresholds for mag-
nitude pruning.

Another orthogonal line of work involves replacing mag-
nitude pruning with alternatives that explicitly consider the
impact of pruning on the final loss. To this end, second-
order [16,26], and Fisher approximations [34,35] of the loss
function have been employed. However, recent work [25]
has shown that these methods do not necessarily improve
upon magnitude pruning, especially when combined with
fine-tuning.

Distinct from the approaches considered above, prob-
abilistic approaches to pruning involve approximating the
original pruning problem via stochastic relaxations [7, 29,
30,32]. These typically involve stochastic optimization over
binary gate variables, in addition to the usual optimization
over weights. However, recent work [13] has shown that
such techniques often perform on par with, simpler magni-
tude pruning based approaches, which is the focus of this
paper.

Also related is the lottery-ticket hypothesis [11, 12],
which states that there exists a pruning mask for every ini-
tialization of a deep model that allow for training only the
the resulting sparse model from scratch, without the need
to alter the pruning mask. While we propose to refine the
mask during pruning using our method, we do not check
whether these masks also correspond to lottery tickets, as
this is outside the scope of this work.

Weight recovery has been an important consideration
recently in the context of training sparse neural networks
from scratch. While [10, 21] use gradient updates to per-
form weight recovery, [9] use momentum to do the same.
However, both methods place the constraint that intermedi-
ate models obtained during the course of optimization are
also sparse, which places heavy restrictions on the weight
recovery methods. However, no such restrictions apply to
our case. [14,28] use gradient updates computed on a proxy
sparse model by using the straight-through estimator (STE)
similar to [36] and claim that this can lead to weight recov-
ery. However these methods also use gradual pruning, for
which we show that weight recovery is unlikely in practice.

3. Methods
In this section, we discuss existing approaches for un-

structured pruning which involve magnitude pruning and
re-training, and introduce the cyclical pruning algorithm.
Given the similarity among these approaches, it is helpful to
discuss these as instances of a more general framework for
pruning, which we call time-varying projected gradient de-
scent (TV-PGD), shown in Algorithm 1. The distinguishing
features of this algorithm when compared to classical PGD
are the usage of an iteration-dependent (or time-varying)

sparsity and learning rate function and updating the prun-
ing mask every ∆t iterations. Here, magprune(θ, s(ti))
refers to magnitude pruning of θ with a sparsity ratio of
s(ti), which refers to global pruning in the literature. When
this is applied separately layerwise, it is called local prun-
ing. Global pruning can result in different sparsity rates
for every layer, whereas local pruning ensures every layer
is pruned to the same sparsity ratio. In this work, we only
consider local pruning, but these methods equally apply to
global pruning.

Algorithm 1 Time-Varying Projected Gradient Descent
θ ∈ Rd : model weights, `(θ) ∈ R+ : loss function
T ∈ N : # iterations, ∆t ∈ N : pruning interval
M ∈ {0, 1}d : pruning mask, ti ∈ N0: iteration number
s(ti) ∈ [0, 1] : sparsity function, η(ti) ∈ R+ : learning rate

1: procedure TV-PGD(θ)
2: for ti ∈ [0, T − 1] iterations do
3: θ ← θ − η(ti) ∇θ`(θ) . (S)GD update
4: if ti mod ∆t = 0 then
5: M ← magprune(θ, s(ti)) . Get Mask
6: end if
7: θ ← θ �M . Prune weights in-place
8: end for
9: end procedure

One-Shot Pruning: This simple procedure involves two
steps: first magnitude pruning the dense model according
to the target sparsity ratio, and then fine-tuning the result-
ing sparse model [15]. This corresponds to TV-PGD with
∆t > T and a sparsity function such that s(0) = st equal
to the final target sparsity. The learning rate η(ti) is mono-
tonically decreasing in accordance with common training
practices in deep learning, except at ti = 0, where we have
η(0) = 0.

Gradual Pruning: This involves pruning with a gradu-
ally increasing sparsity schedule, with pruning interspersed
with fine-tuning. There are two broad variants of this proce-
dure. The first, also called ‘iterative pruning’ [15] typically
performs pruning in few steps (5-10), interspersed with fine-
tuning for a large (usually 10+) number of epochs. This cor-
responds to TV-PGD with linearly increasing s(ti) = st ti

T ,
∆t ∼ 10+ epochs, and a cyclical learning rate schedule
η(ti) such that η(ti mod ∆t) is a monotonically decreas-
ing function according to standard training practices, except
for η(ti mod ∆t = 0) = 0. Note that one-shot pruning
emerges as a special case if ∆t > T .

On the other hand, the ‘cubic pruning’ performs prun-
ing several times (typically 100+), interspersed with a short
fine-tuning stage of about few hundred iterations [37]. This
corresponds to TV-PGD with a smaller ∆t ∼ 100 iterations,
and monotonically decreasing η(ti) (as opposed to cyclic)
learning rate schedule, and a monotonically increasing cu-

2763

bic sparsity schedule as follows. Here sinit is the initial
sparsity value and st is the target sparsity value.

s(ti) = st + (sinit − st)
(

1− ti
T

)3

(1)

Note that specific implementations of these pruning al-
gorithms may differ slightly from the TV-PGD interpreta-
tion, specifically in the usage of in-place pruning which in-
volves directly zero-ing out weights in the weight tensor, but
in practice we found no difference in performance between
these different variants.

One characteristic of both one-shot and gradual pruning
is their lack of a mechanism for weight recovery, i.e., the
ability of pruned weights to be recovered in future steps,
which we define below.

Definition. (Weight Recovery) is said to have occurred in
TV-PGD for some weight j if at any two iterations t1, t2
such that t2 > t1, we have the pruning masks Mj(t1) = 0
and Mj(t2) = 1.

Intuitively, we expect weight recovery to help in cases
where identification of the correct weights to prune are crit-
ical, and where one-shot magnitude pruning does not iden-
tify these. In such cases, weight recovery can help correct
mistakes made by magnitude pruning, and allow pruning of
different weights in subsequent steps. However if correct
identification of weights to prune does not matter, then we
do not expect weight recovery to help. We further elaborate
upon this in §4. We observe that in TV-PGD, weight recov-
ery can only occur if a magnitude pruning step immediately
follows a gradient update step, resulting in a dense weight
tensor.

For one-shot pruning and iterative pruning, we observe
that weight recovery is impossible as the magnitude prun-
ing step never occurs immediately after performing a dense
SGD update step. For cubic pruning, while weight recovery
is technically possible, we found that it is highly improba-
ble in practice. We hypothesize that this happens because
weight recovery requires the magnitude of weights after a
single update for some pruned weight at j to be larger than
that of the smallest unpruned weight, which is improbable
owing to usage of relatively small and monotonically de-
creasing learning rates η(ti) used for fine-tuning. In other
words, we require (η(ti)∇θ`(θ))2j > mink,θk>0 θ

2
k, for

pruned weights θ, which is difficult to satisfy when η(ti)
is small, and training diverges if η(ti) is set high. We thus
require a procedure that can reliably grow back weights that
have been pruned previously, and for this purpose, we intro-
duce a simple strategy called cyclical pruning.

Cyclical Pruning: We propose to perform pruning
with a cyclical pruning schedule rather than a monotoni-
cally increasing one. Specifically, we divide the overall
pruning schedule into k cycles, and within each cycle the

0.2

0.4

0.6

0.8

Sp
ar

sit
y

0 10 20 30 40 50 60
Epochs

0.0

0.1

0.2

0.3

0.4

Fr
ac

tio
n

of
 w

ei
gh

ts
 re

gr
ow

n 0.2

0.4

0.6

0.8

LR
 (×

10
4)

64.5

65.0

65.5

66.0

Ac
cu

ra
cy

 (%
)

Figure 1. Illustration of cyclical pruning for ResNet18 on Ima-
genet with k = 4 cycles, which specifies both the sparsity and the
learning rate schedules. This procedure results in an increase in
the number of weights recovered during pruning, and also a corre-
sponding increase in pruned model accuracy across cycles. Note
that a weight is considered regrown if it was pruned during any
previous training step, but unpruned at the current step.

pruning schedule is monotonically increasing. This corre-
sponds to TV-PGD with a periodic s(ti), where each cy-
cle has a monotonically increasing s(ti mod T/k), and a
periodic η(ti) corresponding to a monotonically decreas-
ing η(ti mod T/k), and ∆t ∼ 100 iterations. We observe
that weight recovery always occurs here due to the peri-
odic resetting of the sparsity rates, i.e., s(t2) < s(t1) for
t2 > t1 ensures weight recovery. Further, the recovered
weights are likely to recover on par with unpruned weights
due to the periodic re-setting of learning rates, as this al-
lows for sufficient updates for important weights to recover.
In practice, we use the same per-cycle sparsity schedule as
in equation 1, and use a different value of sinit for the first
cycle (sinit = 0), and subsequent cycles (sinit ∼ 0.5st),
although we did not find this to be crucial.

PGD Pruning: A classical method to perform con-
strained optimization is projected gradient descent (PGD),
which in this case corresponds to TV-PGD with ∆t = 1
and constant functions η(ti), s(ti). We notice that similar
to cyclical pruning, PGD also allows for weight recovery
at all steps. However, in practice we find this to be ineffec-
tive for pruning deep neural networks, owing to the possible
instability caused by pruning at every iteration, and the im-
probability of recovery due to (η(ti)∇θ`(θ))2j being small.
Hence practical considerations such as mini-batching and
usage of relatively small, monotonically decreasing learn-

2764

ing rates reduce its effectiveness in practice.
Thus weight recovery is a distinguishing feature of both

cyclical pruning and PGD. In the next section, we take a
closer look at weight recovery in PGD while pruning lin-
ear models, where practical considerations of training deep
models do not apply.

4. Is Weight Recovery Necessary?
In this section we study the importance of weight re-

covery in the simple case of sparse linear regression with
a single pruned weight. Formally, let ŷ = w>X, where
y ∈ Rn,X ∈ Rd×n,w ∈ Rd. Also assume that out-
puts are generated from an underlying sparse vector, i.e,
y = α>X, where ‖α‖0 = d − 1, and αc = 0 for some
index c ∈ {1, ..., d}. Also assume that the problem is over-
parameterized (d > n). Here, we wish to solve the follow-
ing.

w∗ = arg min
w,‖w‖0≤d−1

‖y −w>X‖2 (2)

In general, sparse linear regression is NP-hard [31], how-
ever if X satisfies the Restricted Isometry Property (RIP)
[5], then efficient polynomial time solutions are known to
exist (i.e., PGD) [4]. Note that specifics of the RIP condi-
tion are not relevant to our discussion here, and we refer
interested readers to [20]. In practice, it is easy to con-
struct approximately RIP matrices by sampling matrix en-
tries from a scaled unit normal distribution [2]. As a result,
we henceforth assume that X satisfies RIP, and begin by
making the following observation.

Observation 1. For problem 2, gradual pruning (with
η(0) = 0) is equivalent to one-shot pruning, and cyclical
pruning (with ∆t = 1) is equivalent to projected gradient
descent.

This is true because for pruning a single weight, s(ti)
for any strictly monotonically increasing schedule reduces
to a step function, and the cyclical schedule s(ti) reduces a
constant function s(ti) = st for ∆t = 1. Further, the usage
of mini-batches is unnecessary here, and we use full-batch
gradient descent instead. We thus only study one-shot prun-
ing and PGD as proxies for studying gradual and cyclical
pruning respectively. For PGD, strong recovery guarantees
hold for the sparse linear regression problem under some
regularity conditions [4, 20]. Note that discussion of these
conditions is out of scope for this paper.

Unfortunately, such guarantees do not hold for one-shot
pruning. This is easy to see by applying one-shot prun-
ing on randomly initialized weights. Here the first step in-
volves magnitude pruning which effectively prunes a ran-
dom weight, and the probability of pruning the correct in-
dex c at initialization is only 1

d . The second step involves

re-training, which cannot change the pruned weight. Thus
with overwhelming probability (d−1d), random initialization
followed by one-shot pruning fails to recover α. This sim-
ple counter-example illustrates why such recovery guaran-
tees cannot hold for one-shot pruning.

However this analysis does not reflect standard practice
in pruning where one-shot pruning is typically after dense
training, and not on randomly initialized weights. For the
linear case, dense training corresponds to solving an uncon-
strained version of equation 2, which is solved via regular-
ized least-squares method.

Assuming some λ > 0 for regularized least-squares, let
A = (X>X + λI)−1X>X, then it is easy to see that the
least-squares solution is w = Aα. We can use this to con-
struct a problem (i.e, pick α) such that for some index c
with αc = 0, we have c 6= arg miniw

2
i . This ensures that

magnitude pruning performed on the least squares solution
w does not select the correct index c. One such choice of α

is as follows: αi =

{
A[c, i], i 6= c

0, i = c
.

This ensures that w = Aα has a large magnitude on
the cth co-ordinate, causing magnitude pruning to select an
incorrect index, which we call the adversarial choice of α.

Running simulations on this problem with d = 5, n =
4, c = 3, and sampling 104 different RIP matrices X, we
find that magnitude pruning succeeds in picking the correct
index c only ∼ 3% of the time. We also empirically ob-
serve that if we set d >> n, then this probability tends to
zero. We summarize the results of the simulations in the
following statement.

Observation 2. We find empirically that it is possible to
choose solutions α for problem 2 such that dense training
followed by one-shot pruning fails to recover α with high
probability.

This shows that even in the realistic setting of one-shot
pruning applied after dense training, there exists problems
such that one-shot pruning fails to select the correct index.
Note that PGD is immune to this in principle as the recovery
guarantees are independent of initialization.

4.1. When does PGD fail?

Having considered instances where one-shot pruning
fails, we now ask the converse question: when does PGD
fail? The regularity conditions of PGD recovery [20] indi-
cate that this can happen for severely over-parameterized
problems, i.e., n << d. In this case, the linear system
y = w>X not only maintains infinitely many dense so-
lutions for w, but also has multiple sparse solutions. To see
this, we rewrite the linear system as (w−α)>X = 0, which
implies that w−α lies in the left-nullspace of X. As an ex-
ample, assume that the dimensionality of the left null-space
is dnull = 2 for problem dimension d = 5, n = 3 and the

2765

Table 1. Simulation results for 100 runs of sparse linear regression
performed after regularized least squares on a problem with d = 5.
We observe that when the problem is severely over-parameterized,
both PGD and one-shot pruning perform similarly, while PGD
outperforms one-shot pruning in other scenarios. This property
also holds for larger image datasets and deep neural networks (see
§5.1).

samples
(n)

Choice of
α

Prob. of
one-shot
recovery

Prob. of
PGD

recovery

2 (n << d)
random 0.33 0.32

adversarial 0.12 0.11

4 (n < d)
random 0.22 0.36

adversarial 0.02 0.23

10 (n > d)
random 0.35 0.64

adversarial 0.04 0.44

task of pruning a single weight. Let v1, v2 ∈ Rd be the ba-
sis vectors of the left null-space. Then, it is possible to find
γ1, γ2 ∈ R such that the system of equations γ1 × v1,i +
γ2 × v2,i = wi − αi and γ1 × v1,j + γ2 × v2,j = wj − αj
is satisfied for any two arbitrary indices i, j ∈ {1, .., d}, as-

suming that the determinant of
[
v1,i v2,i
v1,j v2,j

]
is nonzero. In

particular, we can set i = c, such that αc = wc = wj = 0
and the system still maintains a solution. This implies that
we have a valid solution ‖w‖0 = 3 which is sparser than
the ground truth solution ‖α‖0 = 4. A simple generaliza-
tion states that a (n, d) over-parameterized (d > n) sparse
linear regression problem has at least a d − n-dimensional
left null-space, which contains at most

(
d

d−n
)

number of
n−sparse solution vectors.

Thus when the problem is severely over-parameterized,
we can always find n-sparse solutions w irrespective of the
sparsity of the ground truth solution α. If ‖α‖0 > n, then
sparse recovery is not possible and we are able to prune
more weights (n) than the solution α requires. This impos-
sibility of sparse recovery renders PGD ineffective, making
it no more effective than simple one-shot pruning.

To verify this, we run simulations on problems with dif-
ferent number of samples n and different choices for α,
chosen either randomly or adversarially. The results of this
simulation are given in Table 1. Note that in all cases we
perform either one-shot pruning or PGD on the regularized
least squares solution. We observe that one-shot pruning
recovers the optimal solution at the same rate as PGD for
the severely over-parameterized case, but PGD outperforms
one-shot pruning in other cases. We attribute the less than
perfect solution recovery of PGD to the non-adherance to
the regularity conditions for both PGD and gaurantees for
gaussian matrices to be RIP 1.

1Specifically, we do not ensure the RIP with an order > 3(d − 1) is
maintained, as this would not allow for (d − 1)-sparsity that applies to

Summarizing this section, we first find that one-shot
pruning can fail for linear models, while PGD is more likely
to converge to the correct solution, both in theory and prac-
tice. We next find that when the problem is severely over-
parameterized, we can prune more weights than the solu-
tion requires and thus sparse recovery is not possible, which
renders PGD no more effective than one-shot pruning. We
stress here that the analysis done here is limited to the case
of linear models, as notions such as RIP do not apply to
non-linear regression using deep neural networks. How-
ever as we shall see in the next section, this behaviour of
one-shot pruning and PGD on linear models carries over
to their respective proxies, i.e., gradual and cyclical prun-
ing applied to deep neural networks trained on large image
datasets. This is because the underlying principle is same in
both cases, i.e., when the decision of which weight to prune
is not important, then weight recovery does not help.

5. Experiments
In this section, we show detailed experimental results

and ablation studies examining various aspects of cycli-
cal pruning. Our experiments are done using the Pytorch
framework [33], and are organized as follows. In § 5.1, we
compare cyclic pruning with state-of-the-art pruning algo-
rithms. Here, we show results on CIFAR10 [23] and Ima-
genet [8] datasets across various models. In § 5.2, we per-
form controlled ablation experiments to study the impact of
the sparsity and learning rate schedules, and the behaviour
of the algorithm across different cycles.

5.1. Comparison with Gradual Pruning

Here we shall compare cyclical pruning with two base-
lines: one-shot pruning and gradual pruning. These are in
accordance with the best practices suggested by [3]. In par-
ticular, we consider overall 8 architecture-dataset pairs with
modern architectures, we report values along the trade-off
curve for all methods, we compare different methods us-
ing an identical model, library and optimizer setup, and we
report standard deviations whenever possible. We do not re-
port explicit compression ratio and speedup as we use local
layerwise sparsity, and hence these numbers are identical
across different methods for the same sparsity ratio.

We first discuss results on the CIFAR10 dataset across
two models. We present results at sparsity ratios from 90%
to 99%, for Resnet56, and 70% to 95% for Mobilenet owing
to the compact nature of this model. For rigorous compar-
isons, we perform pruning from the same baseline model in
all cases, and allow each method the same amount of com-
putation. Specifically, we train for 100 epochs for one-shot
pruning and gradual pruning, and use 20 epochs with 5 cy-
cles for cyclical pruning. We use SGD with momentum as

Observation 1

2766

Table 2. Accuracy (%) after pruning various models on the CIFAR-10 dataset, with gradual pruning and one-shot pruning run for 100
epochs, and cyclical pruning for 5 cycles of 20 epochs each. We observe that cyclical pruning offers an advantage primarily at larger
sparsity values, while being competitive at smaller values, in accordance with the theory in §4.

Methods

Model Baseline
One-Shot

Pruning [15]
Gradual

Pruning [37]
Cyclical Pruning

(Ours)
Pruning

ratio

ResNet-20 92.24

90.10 ± 0.2 90.78 ± 0.4 90.90 ± 0.1 90%
86.52 ± 0.9 89.14 ± 0.2 89.29 ± 0.2 95%
78.55 ± 0.2 83.44 ± 0.1 85.79 ± 0.1 98%
33.43 ± 0.0 50.77 ± 2.7 66.04 ± 2.4 99%

ResNet-56 93.28

92.35 ± 0.1 92.44 ± 0.0 92.41 ± 0.1 90%
90.85 ± 0.0 91.69 ± 0.1 91.90 ± 0.2 95%
79.22 ± 0.0 89.57 ± 0.1 90.54 ± 0.0 98%
58.03 ± 0.3 68.20 ± 0.1 70.99 ± 0.3 99%

VGG-14 93.57

92.98 ± 0.1 93.25 ± 0.1 93.03 ± 0.1 90%
92.17 ± 0.1 92.36 ± 0.2 92.47 ± 0.0 95%
89.29 ± 0.1 90.64 ± 0.3 91.71 ± 0.1 98%
85.75 ± 0.0 88.59 ± 0.0 89.59 ± 0.7 99%

Mobilenet 89.75

90.22 ± 0.2 90.25 ± 0.0 89.83 ± 0.1 70%
88.44 ± 0.0 89.49 ± 0.2 89.37 ± 0.0 80%
84.99 ± 0.3 85.51 ± 0.7 86.99 ± 0.3 90%
75.05 ± 1.0 73.42 ± 0.0 79.07 ± 0.6 95%

our optimizer, and use the same learning rate schedules in
all cases within a single cycle, i.e., we start fine-tuning with
a learning rate of 1e− 2 and drop it to 1e− 3 after complet-
ing 75% of the allocated epochs, and use a batch size of 256.
For the cyclical sparsity, the allocated epochs corresponds
to the number of epochs for a single cycle, in this case being
20. Our experimental results in Table 2 shows that cycli-
cal pruning outperforms gradual pruning, especially at high
sparsity ratios. This aligns perfectly with the observations
made for pruning of linear models, where PGD showed no
benefits for the case of severe over-parameterization, which
in this case corresponds to pruning with smaller sparsity ra-
tios.

We also show experimental results on Imagenet in Table
3, where we show results on four pre-trained models with
varying sparsity levels. In this case, for one-shot pruning
and gradual pruning we allow 60 epochs of training, and use
20 epochs with 3 cycles for cyclical pruning. We use an ex-
ponential learning rate schedule. The learning rate is always
decreased at the halfway mark, i.e., by a factor of 10 every
10 epochs for the cyclical pruning and every 30 epochs for
gradual pruning. We use starting learning rate 1e − 4 and
Adam optimizer [22], with a batch size of 64 for all the ex-
periments in Table 3. The experiments show that cyclical
pruning outperforms gradual pruning for higher compres-
sion ratios for all the models. This further supports the ob-
servations made earlier for pruning of linear models.

In addition to this, we also make informal comparisons
with other reported results in literature in Table 4. Note that
comparisons with reported results are not recommended
practice [3], and this only provides an approximate indica-
tion of the relative performance of different methods. Fur-
thermore, other methods in literature are trained sparse net-
works from scratch, whereas we prune pre-trained models.
Although it is possible to apply our method to train from
scratch as well, we do not do this here due to lack of re-
sources to tune hyper-parameters for full Imagenet train-
ing. Also here we only make comparisons with methods
which use local sparsity, similar to us. For instance, [10,13]
also provide pruning results with global sparsity, but we do
not compare against those.2. The highest claimed perfor-
mance in literature that we are aware of is by [10] who run
500 epochs of training on Imagenet, which is several times
larger than our computational budget. For cyclical pruning
of Resnet 50 in Table 4 we use SGD with momentum with a
learning rate of 1e−2 and momentum 0.9, instead of Adam
which was used to obtain results of Table 3.

5.2. Ablation Experiments

Here we perform controlled experiments to understand
the behaviour of cyclical pruning across successive cycles.
First, we consider the effect of the pruning schedule within
a single cycle by comparing the evolution of the model upon

2For results of [13] see: https://bit.ly/39KSC6Z

2767

Table 3. Accuracy (%) after pruning various models on the Imagenet dataset, with gradual pruning and one-shot pruning run for 60 epochs,
and cyclical pruning for 3 cycles of 20 epochs each. We observe that cyclical pruning offers an advantage primarily at larger sparsity
values, while being competitive at smaller values, in accordance with the theory in §4.

Methods

Model Baseline
One-Shot
Pruning

[15]

Gradual Pruning
[37]

Cyclical Pruning
(Ours)

Pruning
ratio

ResNet18 69.7

69.9 69.9 69.6 60%
69.2 69.2 69.4 70%
68.2 67.8 68.3 80%
63.5 63.6 64.9 90%

ResNet50 76.16

75.9 76.1 75.8 60%
75.9 75.8 75.7 70%
75.4 74.9 75.3 80%
72.8 71.9 73.3 90%
67.1 64.7 68.7 95%

EfficientNet 74.8

73.9 74.0 74.1 40%
73.2 73.2 73.4 50%
71.2 71.8 72.4 60%
68.0 68.2 69.9 70%
65.1 65.2 67.5 75%

MobilenetV2 71.7

70.8 70.9 69.8 40%
67.6 69.8 70.1 50%
66.7 67.6 68.4 60%
61.3 62.7 64.4 70%

Table 4. Informal comparison of cyclical pruning with published results on Resnet50 trained on Imagenet. We only compare with methods
that use local sparsity. For cyclical pruning, we start from a dense pre-trained ResNet-50 trained for 90 epochs, and use a cycle length of
20 epochs for pruning. Thus the total number of epochs corresponds to 130 epochs = 90 + 2 cycles × 20 epochs, and similarly for 110 &
150 epochs. Note that 110 epochs of cyclical pruning corresponds to one cycle, thus being identical to gradual pruning. Other methods in
literature train from scratch.

Method Pruning ratio Dense Baseline Pruned Difference

SNFS (100 epochs) [9] 72.4% 75.95 74.59 -1.36
DPF (90 epochs) [28] 73.5% 75.95 75.48 -0.47
Cyclical Pruning (110 epochs, Ours) 73.5% 76.16 75.46 -0.7
Cyclical Pruning (130 epochs, Ours) 73.5% 76.16 75.84 -0.32
Cyclical Pruning (150 epochs, Ours) 73.5% 76.16 76.00 -0.15

SNFS (100 epochs) [9] 82.0% 75.95 72.65 -3.30
RigL (100 epochs) [10] 80.0% 76.80 74.60 -2.2
RigL (500 epochs) [10] 80.0% 76.80 76.60 -0.2
DPF (90 epochs) [28] 82.6% 75.95 74.55 -1.44
Gradual Pruning (100 epochs) [13] 80.0% 76.69 75.58 -1.11
Cyclical Pruning (110 epochs, Ours) 82.6% 76.16 74.65 -1.51
Cyclical Pruning (130 epochs, Ours) 82.6% 76.16 75.29 -0.87
Cyclical Pruning (150 epochs, Ours) 82.6% 76.16 75.40 -0.75

using a cubic schedule, with that of linear and step sched-
ules. Here, step schedule corresponds to one-shot pruning,
which can be thought of as using heaviside step function for

the sparsity schedule. In all cases, each cycle consists of 20
epochs, and within each cycle, 16 epochs are used for alter-
nating pruning and re-training, and the final 4 epochs con-

2768

Table 5. Comparison of different per-cycle pruning schedules used with cyclical pruning, on Resnet20 / CIFAR10 @ 99% sparsity. ‘Mask
distance’ refers to a Jaccard distance computed between a given mask and the mask obtained after the first cycle. We observe that while
cubic schedule performs the best, we observe that in all cases the accuracy increases and the pruning mask changes every cycle. This
provides evidence for weight recovery in cyclical pruning. We also observe that simply training longer using cyclical learning rates is
insufficient.

Cycle # 1 2 3 4 5

Cubic schedule Accuracy (%) 62.74 ± 0.2 65.89 ± 0.6 66.89 ± 0.7 67.23 ± 0.6 67.56 ± 0.7

Mask distance 0 0.38 0.49 0.55 0.58

Linear schedule Accuracy (%) 47.63 ± 1.2 52.035 ± 0.9 56.33 ± 0.9 57.65 ± 1.2 58.27 ± 1.2

Mask distance 0 0.48 0.58 0.62 0.64

Step schedule Accuracy (%) 39.88 ± 0.5 47.47 ± 0.4 50.94 ± 0.4 53.64 ± 0.2 55.36 ± 0.6

Mask distance 0 0.46 0.59 0.65 0.68

Finetune with
cyclical learning

rates

Accuracy (%) 63.01 ± 0.0 63.73 ± 0.1 64.11 ± 0.2 63.8 ± 0.2 64.06 ± 0.2

Mask distance 0 0 0 0 0

sist of purely fine-tuning of the sparse model. For step prun-
ing, we prune at the halfway mark, i.e., at 10 epochs. The
results shown in Table 5 indicate that regardless of the spar-
sity schedule, cyclical pruning always shows accuracy im-
provements over successive cycles, with cubic pruning per-
forming the best overall. Further, we also compute the Jac-
card distance of pruning masks obtained at the end of cycles
to understand the extend of mask evolution. Table 5 also
shows that the mask changes drastically across cycles in all
cases, thus confirming our hypothesis that cyclical pruning
allows for correction of erroneously pruned weights.

Second, we decouple the effect of cyclical pruning with
cyclical learning rates and show that the improvement
across cycles is precisely due to the pruning schedule and
not due the learning rate schedule. To test this, we run a
control experiment referred to as ‘Finetune with cyclical
learning rates’ in Table 5, where the first cycle is identical
to cyclical pruning, and in the subsequent cycles only fine-
tuning is performed for the obtained sparse model without
additional pruning. For this fine-tuning, we maintain the
learning rate schedule used for cyclical sparsity. We ob-
serve that increasing the number of fine-tuning epochs does
lead to improved accuracy across cycles as expected, but not
as much as that obtained for cyclical sparsity. As expected,
fine-tuning also cannot allow any changes in the pruning
mask which leads to zero Jaccard distances.

Overall, the experiments in Table 5 here show that, (1)
Accuracy improves across rounds in cyclical pruning re-
gardless of the sparsity schedule, and weight recovery in-
deed takes place as indicated by the Jaccard distances. (2)
Cubic pruning outperforms linear and one-shot (step) prun-
ing. (3) Improved performance of cyclical pruning is not
explained by longer training, as shown by the comparison

with cyclical learning rates.

6. Discussion

In this work, we introduce cyclical pruning, a simple
strategy that allows for recovery of erroneously pruned
weights, leading to an improved sparsity-accuracy trade-off
across various datasets and models. The cyclical paradigm
can be used in conjunction with any per-cycle sparsity
schedule. In addition, the cycle-wise accuracy improve-
ments also show that cyclical sparsity can also be used to
improve performance of existing sparse models obtained
via any other method. Our theory and experiments reveal
that cyclical pruning offers an advantage primarily for prun-
ing with large sparsity ratios, when the solution space is
not degenerate and the choice of weights to prune is crit-
ical. This method introduces only two additional hyper-
parameters, the number of cycles k and the initial sparsity
sinit for subsequent cycles. We found that it is generally
beneficial to keep the number of cycles, and the number of
epochs per cycle to be as large as possible within the com-
putational budget. These indicate that the method is also
easy to tune.

Future work involves understanding why cubic pruning
works well, and whether it is possible to use cyclical prun-
ing in a more efficient manner that decouples its dependence
on cubic pruning. Our unified view of pruning methods
via TV-PGD also leads to a natural open problem: how do
we optimally set (s(ti), η(ti),∆t) in TV-PGD to guarantee
convergence for neural network pruning?

2769

References
[1] Kambiz Azarian, Yash Bhalgat, Jinwon Lee, and Tijmen

Blankevoort. Learned threshold pruning. arXiv preprint
arXiv:2003.00075, 2020. 2

[2] Richard Baraniuk, Mark Davenport, Ronald DeVore, and
Michael Wakin. A simple proof of the restricted isometry
property for random matrices. Constructive Approximation,
28(3):253–263, 2008. 4

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Fran-
kle, and John Guttag. What is the state of neural network
pruning? arXiv preprint arXiv:2003.03033, 2020. 1, 5, 6

[4] T Blumensath and ME Davies. Iterative hard thresholding
for compressed sensing. 2008. 4

[5] Emmanuel J Candès, Justin Romberg, and Terence Tao. Ro-
bust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information. IEEE Transac-
tions on information theory, 52(2):489–509, 2006. 4

[6] Jack Choquette and Wish Gandhi. Nvidia a100 gpu: Perfor-
mance & innovation for gpu computing. In 2020 IEEE Hot
Chips 32 Symposium (HCS), pages 1–43. IEEE Computer
Society, 2020. 1

[7] Bin Dai, Chen Zhu, and David Wipf. Compressing neural
networks using the variational information bottleneck. arXiv
preprint arXiv:1802.10399, 2018. 2

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 5

[9] Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance. arXiv
preprint arXiv:1907.04840, 2019. 2, 7

[10] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all tickets
winners. In International Conference on Machine Learning,
pages 2943–2952. PMLR, 2020. 2, 6, 7

[11] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018. 2

[12] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M
Roy, and Michael Carbin. The lottery ticket hypothesis at
scale. arXiv preprint arXiv:1903.01611, 8, 2019. 2

[13] Trevor Gale, Erich Elsen, and Sara Hooker. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019. 1, 2, 6, 7

[14] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-
work surgery for efficient dnns. Advances in Neural Infor-
mation Processing Systems, 2016. 1, 2

[15] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing both weights and connections for efficient neural net-
work. Advances in neural information processing systems,
28:1135–1143, 2015. 1, 2, 6, 7

[16] Babak Hassibi and David G Stork. Second order derivatives
for network pruning: Optimal brain surgeon. In Advances
in neural information processing systems, pages 164–171,
1993. 2

[17] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,
pages 1389–1397, 2017. 1

[18] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang,
Max Wu, Tim Hartley, and Luc Van Gool. Ai benchmark:
Running deep neural networks on android smartphones. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV) Workshops, pages 0–0, 2018. 1

[19] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low rank
expansions. arXiv preprint arXiv:1405.3866, 2014. 1

[20] Prateek Jain and Purushottam Kar. Non-convex optimization
for machine learning. Foundations and Trends® in Machine
Learning, 10(3-4):142–363, 2017. 4

[21] Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon
Osindero, and Erich Elsen. Top-kast: Top-k always sparse
training. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 20744–20754. Curran
Associates, Inc., 2020. 2

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[23] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. 2009. 5

[24] Aditya Kusupati, Vivek Ramanujan, Raghav Somani,
Mitchell Wortsman, Prateek Jain, Sham Kakade, and Ali
Farhadi. Soft threshold weight reparameterization for learn-
able sparsity. In Proceedings of the International Conference
on Machine Learning, July 2020. 2

[25] César Laurent, Camille Ballas, Thomas George, Pascal Vin-
cent, and Nicolas Ballas. Revisiting loss modelling for un-
structured pruning, 2021. 2

[26] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in neural information processing
systems, pages 598–605, 1990. 2

[27] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In-
ternational Conference on Learning Representations (ICLR),
2017. 1

[28] Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and
Martin Jaggi. Dynamic model pruning with feedback. In In-
ternational Conference on Learning Representations, 2020.
2, 7

[29] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian
compression for deep learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Information Process-
ing Systems 30, pages 3288–3298. Curran Associates, Inc.,
2017. 2

[30] Christos Louizos, Max Welling, and Diederik P. Kingma.
Learning sparse neural networks through l0 regularization.
In International Conference on Learning Representations,
2018. 2

[31] Balas Kausik Natarajan. Sparse approximate solutions to lin-
ear systems. SIAM journal on computing, 24(2):227–234,
1995. 4

2770

[32] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and
Dmitry P Vetrov. Structured bayesian pruning via log-normal
multiplicative noise. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 30,
pages 6775–6784. Curran Associates, Inc., 2017. 2

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
Torch: An Imperative Style, High-Performance Deep Learn-
ing Library. In H Wallach, H Larochelle, A Beygelzimer,
F d\textquotesingle Alché-Buc, E Fox, and R Garnett, ed-
itors, Advances in Neural Information Processing Systems,
volume 32, pages 8026–8037. Curran Associates, Inc., 2019.
5

[34] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient
second-order approximations for model compression. Ad-
vances in Neural Information Processing Systems, 2020. 2

[35] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Fer-
enc Huszár. Faster gaze prediction with dense networks and
fisher pruning. arXiv preprint arXiv:1801.05787, 2018. 2

[36] Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari.
Discovering neural wirings. In Advances in Neural Informa-
tion Processing Systems, 2019. 2

[37] Michael H. Zhu and Suyog Gupta. To prune, or not to prune:
Exploring the efficacy of pruning for model compression.
2018. 1, 2, 6, 7

2771

