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Abstract

Few-Shot Learning (FSL) aims to improve a model’s
generalization capability in low data regimes. Recent FSL
works have made steady progress via metric learning, meta
learning, representation learning, etc. However, FSL re-
mains challenging due to the following longstanding diffi-
culties. 1) The seen and unseen classes are disjoint, result-
ing in a distribution shift between training and testing. 2)
During testing, labeled data of previously unseen classes is
sparse, making it difficult to reliably extrapolate from la-
beled support examples to unlabeled query examples. To
tackle the first challenge, we introduce Hybrid Consistency
Training to jointly leverage two types of consistency: 1) in-
terpolation consistency, which interpolates hidden features
to imposes linear behavior locally, and 2) data augmenta-
tion consistency, which learns robust embeddings against
sample variations. As for the second challenge, we use
unlabeled examples to iteratively normalize features and
adapt prototypes, as opposed to commonly used one-time
update, for more reliable prototype-based transductive in-
ference. We show that our method generates a 2% to 5%
improvement over the state-of-the-art methods with similar
backbones on five FSL datasets and, more notably, a 7% to
8% improvement for more challenging cross-domain FSL.

1. Introduction

Despite its successful applications in various computer
vision tasks, deep learning still remains challenging in low
data regimes. Recently, Few-Shot Learning (FSL) has
drawn increasing attention in various computer vision tasks,
including image classification [20,39,46,49,54], object de-
tection [23,24] and semantic segmentation [13,44]. In FSL,
the training classes (i.e., seen or base classes) and the testing
classes (i.e., unseen or novel classes) are disjoint. In order to
perform classification on novel classes using only a few la-
bels, certain form of knowledge must be learned and trans-
ferred from base to novel classes. Such knowledge can be a
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Figure 1. Comparison between Mixup [62] and Hybrid Consis-
tency Training (HCT). Mixup imposes interpolations on lines be-
tween two examples. In HCT, the strongly augmented image is
further away from the original image. Thus, interpolations cover
a wider range in the input/feature space, resulting in a stronger
regularization for FSL (best viewed in color).

metric space [25,46,54], a model initialization [15], a learn-
ing algorithm [39] , or simply an embedding model [7, 50].
While having demonstrated success on few-shot tasks, these
approaches still fall short in addressing the following long-
standing challenges: 1) large semantic gap between base
and novel classes and 2) sparsity of labeled data of novel
classes.

To tackle semantic gaps between base and novel classes,
learning richer features to reduce overfitting on the base
classes via incorporating knowledge learned from the im-
ages themselves is a promising direction [50]. For exam-
ple, self-supervised losses, such as rotation [17] and ex-
emplars [33], are employed in addition to the supervised
loss on base classes for improved features [12, 19, 36]. In
stead of constructing explicit surrogate tasks, another popu-
lar line of works exploit additional regularization such as
consistency losses, inspired by semi-supervised learning.
For example, interpolation consistency [52, 53, 62] encour-
ages a model’s local linearity and data augmentation con-
sistency [2, 47, 58] enforces a model’s local continuity.
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In this paper, we propose Hybrid Consistency Training
(HCT), which uniquely combines the above two consisten-
cies by directly imposing interpolation linearity on top of
weakly and strongly augmented samples across intermedi-
ate features, as opposed to commonly used post-hoc com-
bination of two independent losses (Fig. 1). Specifically,
we construct mixed features at a randomly selected network
layer using a weakly and strongly augmented samples from
a pair of labeled input images. The loss is measured by
the cross entropy between model predictions of such mixed
features and the linear combination of the ground truth la-
bels of the original input images. Intuitively, weakly and
strongly augmented samples reside in a smaller (with lim-
ited variations) and a larger (with richer variations) neigh-
borhood of the original image, respectively. Applying in-
terpolation consistency on strongly augmented samples en-
forces local continuity and linearity in a wider range, lead-
ing to richer yet more regularized embedding space. More-
over, applying interpolation consistency across intermediate
features further smoothens decision boundaries throughout
all network layers. Richer yet flattened (i.e., with fewer di-
rections of variance) representations and smoother decision
boundaries lead to improved generalization capability de-
spite large semantic gaps.

The second challenge stems from the sparsity of labeled
samples from novel classes. In this regard, transductive
inference is introduced to leverage unlabeled data to fill
in the gaps between labeled and query examples [31]. In
this work, we advance prototype-based transductive infer-
ence by introducing an iterative method to calibrate features
and adapt prototypes of novel classes using unlabeled data,
referred to as Calibrated Iterative Prototype Adaptation
(CIPA). While being simple, feature calibration (e.g., power
transformation, centering, normalization) is a critical step
that aligns samples from the support and query/unlabeled
sets, producing an improved common ground for distance
computation. Meanwhile, by estimating pseudo-labels on
unlabeled data and updating prototypes iteratively, proto-
type estimations can be more precise despite the sparse and
non-uniformly distributed labeled samples. Compared to
another iterative method [22], where Sinkhorn [9] mapping
is employed for pseudo labeling unlabeled data, our CIPA
uses simple but effective cosine similarity, which requires
much less computation. More critically, [22] assumes equal
number of examples per class. In contrast, our CIPA does
not rely on such assumptions and can work properly even
under class imbalance.

Our contributions are:
1) We propose a Hybrid Consistency Training method

built upon both interpolation and data augmentation con-
sistencies to enforce local linearity and continuity in a
wider extent (i.e., by incorporating strongly augmented
samples) and across all network layers (i.e., by using Man-

ifold Mixup). This generates significantly stronger embed-
dings to support generalization across large semantic gaps
between the base and novel classes for improved FSL.

2) We propose an iterative prototype-based transduc-
tive inference algorithm to calibrate features and adapt
class prototypes using unlabeled data. This can leverage
unlabeled data to effectively fill the gaps between query
and labeled samples, which are sparse and frequently non-
uniformly distributed.

3) Through extensive experiments we show that our
method generates a 2% to 5% improvement over the state-
of-the-art (SOTA) methods with similar backbones on five
FSL datasets and, more notably, a 7% to 8% improve-
ment for more challenging cross-domain FSL (e.g., mini-
ImageNet to CUB).

2. Related work

2.1. Few-shot learning

Metric learning methods learn a metric function from the
base classes and use it to measure distance for novel data.
Some prior work uses learnable parameters to model the
metric function, for example a linear layer [25], LSTM [54]
or convolutional networks [49]. Others learn a back-
bone network as embedding functions and use fixed met-
ric to compute classification scores, such as euclidean dis-
tance [46], cosine similarity [6, 18] and Mahalanobis dis-
tance [1]. More recently, researchers started looking closer
into image regions for calibrated metric spaces, e.g., [61]
finds correspondences between two sets of image regions
using earth mover’s distance and [21] proposes a cross-
attention network to focus on representative image regions.

Instead of learning a metric function, optimization-based
meta-learning methods extract meta-knowledge from the
training classes and apply it on novel data. MAML [15]
learns a good model initialization that can reach optimum
with a few steps of gradient descent. [39] uses LSTM as a
meta-learner to learn the optimization algorithm itself that
can reach convergence fast on novel classes. LEO [43]
performs meta-learning using a low-dimensional space for
model parameter representations.

Despite the progress in meta-learning, some recent work
shows that by training a representation model on all the
base classes, the resulting embeddings can be quite effec-
tive for FSL. We refer to these as representation learning
based methods. In [7], it is shown that using distances
computed on pre-trained embedding using base classes al-
ready achieve competitive results. [50] shows that learn-
ing a supervised representation from base classes followed
by training a linear classifier on those representations for
novel classes can also be quite effective. Tian et al. [50]
report similar observations. Compared to complex meta-
learning approaches, representation learning based meth-
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ods are much simpler and still effective in generalizing
knowledge learned from base to novel data.

Besides the methods mentioned above, another line of
work incorporates self-supervised learning [4, 5, 12, 14, 19,
36] for FSL. For example, [17] finds that adding a rotation
prediction task alongside the classification task to train a
network leads to better FSL performance. Su et al. [48]
note that self-supervised learning can bring greater im-
provements on smaller datasets or more challenging tasks.
Mangla et al. [33] use Manifold Mixup [52] regularization
as well as self-supervision loss terms (rotation [19] and ex-
emplar [14]) to learn robust representations.

Our HCT method is based on representation learning. It
is orthogonal to self-supervised techniques and can be com-
bined with them by adding more losses in a multi-task learn-
ing manner.

2.2. Semi-supervised learning with consistency

Semi-supervised learning aims at leveraging unlabeled
data in addition to labeled data to perform given tasks.
Here we discuss a few semi-supervised methods using
consistency-based regularization, which is closely related to
our work. Virtual Adversarial Training (VAT) [35] finds lo-
cal adversarial perturbations and enforces consistent model
predictions despite such perturbations. FixMatch [47] is
a combination of pseudo-labeling and data augmentation-
based consistency regularization. For an unlabeled image,
a weakly and a strongly augmented versions are gener-
ated. The weak version is used to obtain the pseudo-label
for the strong version. Interpolation Consistency Training
(ICT) [53] extends Mixup [62] to unlabeled data for semi-
supervised learning. It uses interpolation consistency: given
an interpolation of two examples as input, the model should
be consistent to output the interpolation of their predictions.
These consistency constrains regularize network training so
that the learned networks can generalize better on test data.

Borrowing ideas from semi-supervised learning, our
HCT combines interpolation and data augmentation con-
sistency and applies these consistency-based losses on la-
beled data from base classes. By generating an interpo-
lation between a weakly and a strongly augmented exam-
ples, we enforce the model output to be consistent with re-
spect to the interpolation of their labels. We also regular-
ize network training by not just interpolating the input im-
ages, but also interpolating the hidden features. In so doing,
we introduce stronger regularization and, therefore, expect
smoother manifolds.

3. Method
In FSL, it is commonly assumed that there is a training

dataset Dbase of base classes Cbase and a test dataset Dnovel

of novel classes Cnovel. These two sets of classes are to-
tally disjoint Cbase ∩ Cnovel = ∅. Depending on different

FSL approaches, the base dataset can be used either as a
single dataset Dbase = {xi, yi}Nbase

i=1 (x and y denote image
and label, respectively), or a source for sampling few-shot
tasks (or episodes) Tbase = {(DS

i ,D
Q
i )}

Nepisode

i=1 , where
DS

i = {(xs
i , y

s
i )}NK

i=1 is the support set with NK labeled ex-
amples and DQ

i = {(xq
i , y

q
i )}

NQ
i=1 is the set with NQ query

examples. This is typically referred to as an N -way K-
shot problem. For evaluation, a number of novel tasks are
sampled from the test dataset Tnovel = {(DS

i ,D
Q
i )}

Nepisode

i=1

similarly in N -way K-shot episodes and the average accu-
racy on these episodes is used as the final measure of per-
formance.

3.1. Background

Given the base and novel data, our goal is to learn an
embedding network fϕ from base, so that it can be used to
compute distances between novel images for prediction.
Prototypical Network [46] uses the centroid of support ex-
amples from each class c as its prototype. The distances
between a query example and all the prototypes are com-
puted, and then a softmax operation is applied to output the
class distribution:

pc =
1

K
∑

xs
i∈DS

1[ys
i =c]fϕ(x

s
i ) (1)

pc(xq) =
exp( − τ ⋅ d(pc, fϕ (xq) ))

∑c′ exp( − τ ⋅ d(pc′ , fϕ (xq) ))
, (2)

where d(⋅) is the metric function, e.g., euclidean distance or
negative cosine similarity and τ is a scalar. The network is
trained by minimizing a loss function defined as the cross-
entropy of each query instance for all training episodes:

ϕ
∗
= argmin

ϕ
E

(DS ,DQ)∈Tbase

Lce(DS
,DQ)

= argmin
ϕ

E
(DS ,DQ)∈Tbase

∑
(xq

i ,y
q
i )∈DQ

−log pyq
i
(xq

i ) (3)

The purpose of episodic training is to simulate the few-
shot evaluation protocol and reduce over-fitting on the base
classes.

Classifier Baseline is a simple FSL method that learns an
embedding from all base data. Just as in standard super-
vised learning, a fully connected layer is appended on top
of fϕ to output logits for each base class. By sampling
batches of images from Dbase, the embedding network can
be learned by minimizing the cross entropy loss on model
output and the ground truth labels:

p(x) = softmax(WT
basefϕ (x) + b) (4)

2728



block 1 block 2 block L…

𝜆𝑥#$ + (1 − 𝜆)𝑥*+$

�̅�backbone CNN

ℒ./0

𝑊2345

…

Training Stage Test Stage

𝜃

support query prototypes

𝑥#

𝑥*+

softmax 𝑊2345
7 �̅� + 𝑏

…

𝑓:

𝜆 1− 𝜆

𝜆𝑦# + (1 − 𝜆)𝑦+

…

Figure 2. An overview of our approach. Left: Hybrid Consistency Training (HCT) learns an embedding network on base classes, with both
data augmentation consistency and interpolation consistency combined into a single loss term. Right: In test stage, Calibrated Iterative
Prototype Adaptation (CIPA) calibrates the features for each novel task and iteratively adapt prototypes to unlabeled examples.

and

ϕ
∗
= argmin

ϕ
E

(xi,yi)∈Dbase

Lce(xi, yi)

= argmin
ϕ

E
(xi,yi)∈Dbase

∣Cbase∣
∑
c=1

−yi,c log pc(xi) (5)

The above two methods lay a good foundation, upon
which various techniques can be added to improve FSL.

3.2. Hybrid Consistency Training

In this section, we introduce HCT, which can be viewed
as a regularization technique that improves representation
learning for few-shot task (Fig. 2 left panel). Assume that
the embedding function is a composition of multiple layers
fϕ = f

L ◦⋯ ◦ f
1 ◦ f

0. The hidden representation at layer
l can be obtained by passing the input image through layer
0, 1⋯l: hl

= f
l ◦⋯◦ f1 ◦ f0(x). Note that f0 is the input

layer and h
0
= f

0(x) = x. Given an embedding model,
we optimize its weights by minimizing the following loss
function

L = Lce + ηLhct, (6)

where Lce is the cross entropy loss on the base classes as
in Eq. (5), η is a balancing parameter (we set it to 1 in all
our experiments), and Lhct is our newly introduced hybrid
consistency loss which we explain in details below.

As mentioned in Sec. 2.2, consistency training has been
widely used in semi-supervised learning. In this work, we
propose HCT, combining two different consistency training
approaches into a unified framework to regularize model
training. Given any two images x1 and x2, we perform
weak augmentation, e.g. horizontal flip, to x1 so that the
augmented image is still close to the original image. We
overload the notation x1 to represent both the original im-
age and its weakly augmented version. For x2, we apply
strong augmentation (see details in Sec. 4.1) so that it is
heavily distorted and has a higher chance of being out of

the local data distribution. We denote this example as x̃2.
To generate an interpolation between x1 and x̃2, we feed
them both into the embedding network and then randomly
choose a layer l to get their hidden representations:

x
l
1 = f

l
◦⋯f

1
◦ f

0(x1)
x̃
l
2 = f

l
◦⋯f

1
◦ f

0(x̃2). (7)

The hidden representations are mixed and passed through
remaining layers to get the final feature representation x̄:

x̄
l
= λ ⋅ x

l
1 + (1 − λ) ⋅ x̃l

2

x̄ = f
L
◦⋯f

l+1(x̄l). (8)

The corresponding target ȳ is the interpolation of the ground
truth one-hot label vectors y1 and y2 of the original input
samples x1 and x2:

ȳ = λ ⋅ y1 + (1 − λ) ⋅ y2. (9)

Then, the loss function on these interpolated examples is

Lhct = E
(x1,y1)∈Dbase

(x2,y2)∈Dbase

λ∼Beta(α,α), l∼U(0,L)

∣Cbase∣
∑
c=1

−ȳc log pc(x̄). (10)

HCT combines interpolation consistency [53, 62] and
data augmentation consistency [2, 47, 58] in a unique and
tightly integrated way: the generated new data points not
only cover linear space between examples, but also expand
further to the regions where heavily distorted examples re-
side. By doing this at a random layer each time, hidden
representations at all levels are regularized. This leads to a
smoother manifold that generalizes better to novel classes.
HCT can also be combined with other representation learn-
ing techniques, e.g., self-supervised rotation classification
Lrot, by simply adding another head and performing multi-
task learning (denoted as HCTR), which often results in fur-
ther improved representations.
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3.3. Calibrated Iterative Prototype Adaptation

We use the embedding model fϕ∗ trained by HCT to in-

fer predictions for novel data. Given a novel task T (i)
novel =

(DS
i ,D

Q
i ), we first extract features of both the support ex-

amples and the query examples. A straightforward way to
get class probabilities is to compute class prototypes and
then the distances between query examples and each proto-
type followed by softmax, as in Eq. (1).

However, due to the sparsity and sporadicity (i.e., non-
uniformly distributed) of the support examples, the quality
of prototypes varies substantially from episode to episode.
In order to better estimate class prototypes as well as better
adapt to specific tasks, we need to make full use of unla-
beled query examples for semi-supervised or transductive
inference. As described in [40], pseudo-labels obtained by
Eq. (2) can be used to update prototypes in a K-means step:

p̃c =

∑
(xs

i ,y
s
i )∈DS

1[ys
i =c]fϕ∗(xs

i ) + ∑
x
q
j∈DQ

pc(xq
j)fϕ∗(xq

j)

∑
(xs

i ,y
s
i )∈DS

1[ys
i =c] + ∑

x
q
j∈DQ

pc(xq
j)

(11)
Another problem of centroid-nearest neighbor method is

that, since only a few data points are sampled, the data dis-
tribution of tasks vary heavily from each other. Thus, cer-
tain transformations [22,56] are needed to calibrate the fea-
tures. To this end, we propose CIPA that: 1) calibrates the
features for better distance computation, and 2) iteratively
predicts pseudo-labels on unlabeled data and updates the
estimation of prototypes progressively (Fig. 2 right panel).
The inference procedure is shown in Algorithm 1.

In our experiments, we have found that this straightfor-
ward iterative inference algorithm can greatly improve FSL
performance when unlabeled data is available. Hu et al. [22]
also uses an iterative approach to update class centers. How-
ever, they assume that the test set has an equal number of
examples for each class and use Sinkhorn mapping [9] to
find the best match. While improved FSL performace is
demonstrated, this is, to certain degree, due to the fact that
episodes constructed under the evaluation protocols of FSL
datasets do have uniform class distribution. Their method,
therefore, may find it difficult in dealing with imbalanced
classes. Our CIPA does not rely on such assumptions and
will work properly under class imbalance, which is critical
for real-world applications.

In Algorithm 1, we use query examples to update the
prototypes. However, CIPA is not limited to such a trans-
ductive setting and can be extended to semi-supervised FSL,
where another auxiliary set of unlabeled data is used in-
stead of query examples themselves. We have conducted
experiments and verified the effectiveness of CIPA for semi-
supervised FSL (see the supplementary materials).

Algorithm 1: Calibrated Iterative Prototype Adap-
tation (CIPA)

Input: T (i)
novel = (DS

,DQ), fϕ∗ , Niter, σ, τ
Output: p̂(xq

i ) for each x
q
i ∈ DQ

/* power transformation */

x
s
i ←

(xs
i )β

∥(xs
i )β∥

, xq
i ←

(xq
i )

β

∥(xq
i )β∥

/* zero-mean */

x
s
i ← x

s
i −

1
NK

∑xs
i∈DS x

s
i

x
q
i ← x

q
i −

1
NQ

∑x
q
i∈DQ x

q
i

/* l2 normalization */

x
s
i ←

x
s
i

∥xs
i∥

, xq
i ←

x
q
i

∥xq
i ∥

/* compute and update prototypes */

Initialize p
(0) using Eq. (1).

for t = 1, 2, . . . Niter do
p
(t)(xq) ← softmax(τ ⋅ cos(xq

,p
(t−1)))

Compute new p̃
(t) using Eq. (11) and p

(t)(xq)
p
(t)

← σp̃
(t) + (1 − σ)p(t−1)

/* predict using the final prototypes */

p̂(xq) ← softmax(τ ⋅ cos(xq
,p

(Niter)))
return p̂(xq)

4. Experiments

4.1. Settings

Datasets. We conducted experiments on five FSL
datasets: 1) mini-ImageNet [54] is derived from the
ILSVRC2012 [42] dataset. It contains 100 randomly sam-
pled classes and is split into 64, 16 and 20 classes for
train, validation and test, respectively. Each class has
600 images. 2) tiered-ImageNet [40] is also a subset of
ILSVRC2012 [42]. It contains in total 34 super categories
and is split into 20, 6 and 8 for train, validation and test,
respectively. The corresponding class numbers are 351, 97
and 160. On average, each class has around 1280 images.
3) CIFAR FS [3] is a few-shot learning dataset that con-
tains all 100 classes from CIFAR100 [26]. The dataset is
randomly split into 64, 16 and 20 classes for train, valida-
tion and test. Each class has 600 images. 4) FC 100 [3]
is also derived from CIFAR100 [26]. But it is instead split
into 60, 20 and 20 classes that are from 12, 4 and 4 super
categories. 5) CUB [55] is a dataset of 200 fine-grained bird
species. We follow [6] to split the dataset into 100, 50 and
50 for train, validation and test and each class has around
59 images. For all these five datasets, we resize the images
into 84 × 84 if they are not so already.

Training settings. In all our experiments, we use ResNet-
12 [7] as our backbone network. To train the network,
we use the Adam optimizer with a learning rate of 0.001
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Setting Method Backbone 5-way mini-ImageNet 5-way tiered-ImageNet
1-shot 5-shot 1-shot 5-shot

In.

TADAM [37] ResNet12 58.50 ± 0.30 76.70 ± 0.30 − −
ProtoNet [46]† ResNet12 59.25 ± 0.64 75.60 ± 0.48 61.74 ± 0.77 80.00 ± 0.55
MetaOptNet-SVM [27] ResNet12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
SNAIL [34] ResNet15 55.71 ± 0.99 68.88 ± 0.92 − −
SimpleShot [56] ResNet18 62.85 ± 0.20 80.02 ± 0.14 69.09 ± 0.22 84.58 ± 0.16
DeepEMD [61] ResNet12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
LEO [43] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09
CC+rot [17] WRN-28-10 62.93 ± 0.45 79.87 ± 0.33 70.53 ± 0.51 84.98 ± 0.36
S2M2R [33] WRN-28-10 64.93 ± 0.18 83.18 ± 0.11 73.71 ± 0.22 88.59 ± 0.14

Trans.

TPN [31] ResNet12 59.46 75.65 58.68
§

74.26
§

Trans. Fine-Tuning [11] ResNet12 62.35 ± 0.66 74.53 ± 0.54 68.41 ± 0.73 83.41 ± 0.52
TEAM [38] ResNet18 60.07 75.90 − −
LR + ICI [57] ResNet12 66.80 79.26 80.79 87.92
DSN-MR [45] ResNet12 64.60 ± 0.72 79.51 ± 0.50 67.39 ± 0.82 82.85 ± 0.56
EPNet [41] ResNet12 66.50 ± 0.89 81.06 ± 0.60 76.53 ± 0.87 87.32 ± 0.64
FEAT [59] ResNet18 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16
LaplacianShot [63] ResNet18 72.11 ± 0.19 82.31 ± 0.14 78.98 ± 0.21 86.39 ± 0.16
HCTR + CIPA (ours) ResNet12 76.94 ± 0.24 85.10 ± 0.14 81.70 ± 0.25 87.91 ± 0.15
ICA+MSP [29] DenseNet 77.06 ± 0.26 84.99 ± 0.14 84.29 ± 0.25 89.31 ± 0.15
PT+MAP [22] WRN⋄/DenseNet∗ 82.92 ± 0.26

⋄
88.82 ± 0.13

⋄
85.67 ± 0.26

∗
90.45 ± 0.14

∗

Table 1. Results on mini-ImageNet and tiered-ImageNet. In. and Trans. stand for inductive and transductive, respectively. Methods
marked with † are reported in Lee et al. [27], while those with § are from Wang et al. [57]. Our accuracies are averaged over 10k episodes.

and train for 300 epochs (60 on tiered-ImageNet). Dur-
ing the first 1/3 of total epochs we use Lce + Lrot, for
the remaining 2/3 of the epochs we add the Lhct loss
term. To interpolate examples, by default we use α = 2
to sample λ∼Beta(α, α) unless stated otherwise. For the
weak augmentation, we use random crop and random flip at
50% chance. For the strong augmentation, we follow Fix-
Match [47] and use RandAugment [8]. Each time, 2 out of
14 augmentations are randomly selected and applied to the
image, after which a random square region in the image is
cut out [10]. We use the same settings for all datasets to
obtain our main results. Performance on validation data is
monitored during training for model selection.

Evaluation settings. In the test phase, we fix the trained
backbone network and use it as a feature extractor. The ex-
tracted features of the support and query samples are used
by CIPA to predict their classes. We use β = 0.5, σ = 0.2,
τ = 10 and Niter = 20 for all experiments. In each experi-
ment, a number of novel episodes (600 or 10,000) are sam-
pled. Each episode contains N classes, and each class has
K support and 15 query examples. Note that we do not use
any auxiliary unlabeled examples as did in semi-supervised
FSL [28, 60] and thus these methods are not comparable to
ours. We report the average accuracy and 95% confidence
interval as performance measurements.

4.2. Main results

Standard few-shot learning. We separate comparison
methods into the inductive and transductive groups. In both

groups, we list SOTA results with a similar backbone (e.g.,
ResNet12, ResNet 18) as well as those with heavier back-
bones (e.g., WRN and DenseNet). Note that performance
achieved with deeper backbones are not directly compara-
ble to our results, those are listed just for reference.

We summarize the results on mini-ImageNet and tiered-
ImageNet in Tab. 1. Our method, HCTR+ CIPA, has
achieved the best performance among all comparison meth-
ods on the mini-ImageNet dataset. Comparing to Lapla-
cianShot [63], the best performing method reported us-
ing a ResNet18 backbone, we achieve more than 4% and
nearly 3% improvements on 1-shot and 5-shot, respectively.
For tiered-ImageNet, HCTR+CIPA yields the best perfor-
mance on 1-shot while being on par with EPNet [41] and
LR+ICI [57] on 5-shot. The results on CIFAR FS and
FC100 are summarized in Tab. 2. Similarly, our method
achieves the best performance across all settings. Note that
some of the methods in the inductive group, such as CC+rot
and S2M2R, use a larger network (e.g., WRN-28-10). Our
method still outperforms them, showing that our training
method combined with transductive inference can compen-
sate for the disadvantages of using a lighter network.

Results on CUB, a dataset of fine-grained bird species,
are summarized in Tab. 3. Again, our approach has
achieved the best performance on both 1-shot and 5-shot
with an improvement of ∼5% and ∼2%, respectively, over
LR+ICI [57], the best reported method in literature using a
ResNet12 backbone. Notably, even comparing to transduc-
tive methods with a larger backbone of WRN-28-10 (e.g.,
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Setting Method Backbone 5-way CIFAR FS 5-way FC100
1-shot 5-shot 1-shot 5-shot

In.

ProtoNet [46]† ResNet12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
MetaOptNet-SVM [27] ResNet12 72.0 ± 0.7 84.2 ± 0.5 41.1 ± 0.6 55.5 ± 0.6
TADAM [37] ResNet12 − − 40.1 ± 0.4 56.1 ± 0.4
SimpleShot [56] ResNet10 − − 40.13 ± 0.18 53.63 ± 0.18
DeepEMD [61] ResNet12 − − 46.47 ± 0.78 63.22 ± 0.71
CC+rot [17] WRN-28-10 76.09 ± 0.30 87.83 ± 0.21 − −
S2M2R [33] WRN-28-10 74.81 ± 0.19 87.47 ± 0.13 − −

Trans.

TPN [31] ResNet12 65.89
§

79.38
§ − −

TEAM [38] ResNet18 70.43 81.25 − −
Transductive Fine-Tuning [11] ResNet12 70.76 ± 0.74 81.56 ± 0.53 41.89 ± 0.59 54.96 ± 0.55
LR + ICI [57] ResNet12 73.97 84.13 − −
DSN-MR [45] ResNet12 75.6 ± 0.9 86.2 ± 0.6 − −
HCTR + CIPA (ours) ResNet12 85.72 ± 0.21 89.69 ± 0.14 53.30 ± 0.25 64.90 ± 0.20
PT+MAP [22] WRN-28-10 87.69 ± 0.23 90.68 ± 0.15 − −

Table 2. Results on CIFAR FS and FC100. Our accuracies are averaged over 10k episodes.

Method Backbone 5-way CUB
1-shot 5-shot

DeepEMD [61] ResNet12 75.65 ± 0.83 88.69 ± 0.50

S2M2R [33] WRN-28-10 80.68 ± 0.81 90.85 ± 0.44

TEAM [38] ResNet18 80.16 87.17
LaplacianShot [63] ResNet18 80.96 88.68
LR+ICI [57] ResNet12 88.06 92.53
HCTR + CIPA (ours) ResNet12 93.03 ± 0.15 94.90 ± 0.08
BD-CSPN [30] WRN-28-10 87.45 91.74
PT+MAP [22] WRN-28-10 91.55 ± 0.19 93.99 ± 0.10

Table 3. Results on CUB. Ours are averaged over 10k episodes.

Method Backbone mini-ImageNet→ CUB
1-shot 5-shot

Mat. Net [54] + FT† ResNet10 36.61 ± 0.53 55.23 ± 0.83

Rel. Net [49] + FT† ResNet10 44.07 ± 0.77 59.46 ± 0.71

S2M2R [33] WRN-28-10 48.24 ± 0.84 70.44 ± 0.75

GNN [16] + FT† ResNet10 47.47 ± 0.75 66.98 ± 0.68
LaplacianShot [63] ResNet18 55.46 66.33
HCTR + CIPA (ours) ResNet12 62.15 ± 1.08 74.25 ± 0.77
PT+MAP [22] WRN-28-10 62.49 ± 0.32 76.51 ± 0.18

Table 4. Results for cross-domain FSL. Our accuracies are aver-
aged over 600 episodes. † are reported in Tseng et al. [51].

PT+MAP [22]) , our method still remains the best. The
results on CUB strongly suggest that regularizing learned
embedding in a wider extent and across network layers can
help to learn rich and robust representations to significantly
benefit FSL on fine-grained classes.

Cross-domain FSL. To study the robustness of represen-
tations learned via our HCT across datasets with certain
amounts of covariate shift, we evaluate its performance un-
der cross-domain scenarios as an outreaching test. We train
models on mini-ImageNet and test them on CUB. From
Tab. 4, our method achieves the best performance on both
1-shot and 5-shot tasks, with an improvement of 7% and 8%

over LaplacianShot, respectively. The 1-shot accuracy is on
par with PT+MAP despite that HCT uses a shallower net-
work. This manifests that our method not only works under
in-domain settings, but also can generalize well under the
more challenging cross-domain settings.

4.3. Ablation studies

HCT for embedding learning. To better understand how
each component of HCT affects the learning of representa-
tions, we design our experiments in two directions (Tab. 5):
1) how the embedding is trained (row-wise) and 2) what
inference algorithm is used (column-wise). To train an em-
bedding model, we start with “Classifier Baseline”, which
only uses Lce. We then add Lmm for Manifold Mixup, or
Lhct for our HCT. Beyond these, adding another rotation
loss Lrot yields S2M2R and HCTR. As for inference, we
compare our CIPA against ProtoNet [46], a centroid-nearest
neighbor based method, and SemiPN [40], an extension of
ProtoNet that makes use of unlabeled data.

From Tab. 5, we have several observations: 1) Com-
paring three inference algorithms, our CIPA is consistently
the best across all experiments. 2) Comparing Classifier
Baseline and HCT, adding Lhct leads to 2∼3% improve-
ments across all inference algorithms on mini-ImageNet.
On CUB, the improvements are marginal in inductive set-
tings (i.e., using PN), but more noticeable in transduc-
tive settings (i.e., using SemiPN or CIPA). 3) Comparing
S2M2R and HCTR, i.e., Lmm v.s. Lhct on top of Lce+Lrot,
HCTR is significantly better than S2M2R on CUB while be-
ing on par with it on mini-ImageNet. For a more thorough
comparison between Manifold Mixup and HCT on different
α values, please see details in the supplementary materials.

Based on these observations, we conclude that the ben-
efit introduced by HCT depends on: 1) the method onto
which HCT is added and 2) the dataset to which HCT is
applied. Overall, HCT brings improvements for FSL, espe-
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Method Train PN SemiPN CIPA
Lce Lmm Lhct Lrot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

mini-ImageNet
Classifier Baseline ✓ 56.48 75.62 66.14 77.72 70.84 80.59
Manifold Mixup ✓ ✓ 57.07 78.09 68.25 80.12 73.69 83.06
HCT ✓ ✓ 58.54 78.43 69.38 80.33 74.74 82.91
S2M2R ✓ ✓ ✓ 59.66 77.60 68.77 79.99 76.54 85.16
HCTR ✓ ✓ ✓ 60.33 77.66 69.38 80.32 77.26 84.89

CUB
Classifier Baseline ✓ 67.56 85.63 79.57 87.95 84.96 89.84
Manifold Mixup ✓ ✓ 65.78 86.53 79.26 88.84 86.12 90.95
HCT ✓ ✓ 67.90 86.73 80.43 89.20 86.79 91.02
S2M2R ✓ ✓ ✓ 73.84 88.26 83.52 90.05 88.40 91.93
HCTR ✓ ✓ ✓ 81.68 92.39 89.47 93.22 93.27 94.77

Table 5. Ablation study on HCT. Accuracies are averaged over 600 episodes.

mini-ImageNet
center l2 norm. pow. σ Niter 1-shot 5-shot

(a) N/A 0 60.33 77.66
(b) ✓ N/A 0 63.48 78.39
(c) ✓ ✓ N/A 0 63.48 78.73
(d) ✓ ✓ ✓ N/A 0 65.96 81.35
(e) ✓ ✓ ✓ 1.0 1 72.92 83.94
(f) ✓ ✓ ✓ 1.0 20 78.19 84.74
(g) ✓ ✓ ✓ 0.2 20 77.26 84.89

Table 6. Ablation study on CIPA. Accuracies are averaged over
600 episodes on mini-ImageNet.

cially when used in combination with our CIPA.

CIPA for transductive inference. We then study how each
component of CIPA affects the final performance in Tab. 6.
Comparing rows (a) and (b), we find that simply subtract-
ing the mean induces a nearly ∼3% improvement on 1-shot.
This indicates the existence of shift between the data distri-
butions of few-shot tasks and the true data distribution and a
simple centering can effectively compensate for such a shift.
Comparing (c) and (d), we note that power transform [22]
also introduces an improvement of ∼2% for both 1- and 5-
shot. As expected, the greatest increase, 7% on 1-shot and
∼3% on 5-shot, comes from adapting the prototypes using
unlabeled examples ((e) vs. (d)). Tuning the adaptation
parameters also helps improving the performance of CIPA
((e) to (g)). For a more detailed parameter sensitivity analy-
sis please see the supplementary materials. Finally we plot
a randomly sampled task in Fig. 3 for an intuitive under-
standing of the inner workings and effect of CIPA. We can
see that, initial prototypes are those 1-shot labeled exam-
ples, which are sub-optimal for prediction. Through itera-
tive adaptation, those prototypes gradually move toward the
center of each class, generating better predictions.

5. Conclusion
Few-Shot Learning is a critical problem to be addressed

for a wider utilization of deep learning. In this paper, We
tackled two longstanding difficulties in FSL. 1) To general-
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Figure 3. Visualization of a 10-way 1-shot task from mini-
ImageNet using t-SNE [32]. Colors represent ground truth labels.
“⭐” with black outline are initial prototypes and those with red
outline are adapted prototypes. Dashed lines show how they grad-
ually evolve. Circles with no outline are unlabeled query examples
and those with black outline are labeled support examples (over-
laied with initial prototypes).

ize from base to novel classes, we proposed hybrid consis-
tency training (HCT), a combination of interpolation con-
sistency and data augmentation consistency to regularize
the learning of representations. 2) To bridge the gap be-
tween sparse support and query examples, we developed
a transductive inference algorithm, i.e., CIPA, to calibrate
features and adapt prototypes iteratively. Through extensive
experiments, we have shown that our method can achieve
SOTA performance on all five FSL datasets. Ablation stud-
ies also justified the necessity and quantified the effective-
ness of each component in HCT and CIPA.
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Pérez, and Matthieu Cord. Boosting few-shot visual learning
with self-supervision. In ICCV, 2019. 1, 3, 6, 7

[18] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In CVPR, 2018. 2

[19] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In ICLR, 2018. 1, 3

[20] Bharath Hariharan and Ross Girshick. Low-shot visual
recognition by shrinking and hallucinating features. In
ICCV, 2017. 1

[21] Ruibing Hou, Hong Chang, MA Bingpeng, Shiguang Shan,
and Xilin Chen. Cross attention network for few-shot classi-
fication. In NeurIPS, 2019. 2

[22] Yuqing Hu, Vincent Gripon, and Stéphane Pateux. Leverag-
ing the feature distribution in transfer-based few-shot learn-
ing. arXiv preprint arXiv:2006.03806, 2020. 2, 5, 6, 7, 8

[23] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,
and Trevor Darrell. Few-shot object detection via feature
reweighting. In ICCV, 2019. 1

[24] Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz,
Amit Aides, Rogerio Feris, Raja Giryes, and Alex M Bron-
stein. Repmet: Representative-based metric learning for
classification and few-shot object detection. In CVPR, 2019.
1

[25] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese neural networks for one-shot image recognition. In
ICML deep learning Workshop, 2015. 1, 2

[26] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 5

[27] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex op-
timization. In CVPR, 2019. 6, 7

[28] Xinzhe Li, Qianru Sun, Yaoyao Liu, Shibao Zheng, Qin
Zhou, Tat-Seng Chua, and Bernt Schiele. Learning to
self-train for semi-supervised few-shot classification. In
NeurIPS, 2019. 6

[29] Moshe Lichtenstein, Prasanna Sattigeri, Rogerio Feris, Raja
Giryes, and Leonid Karlinsky. Tafssl: Task-adaptive fea-
ture sub-space learning for few-shot classification. In ECCV,
2020. 6

[30] Jinlu Liu, Liang Song, and Yongqiang Qin. Proto-
type rectification for few-shot learning. arXiv preprint
arXiv:1911.10713, 2019. 7

[31] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho
Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate
labels: Transductive propagation network for few-shot learn-
ing. In ICLR, 2019. 2, 6, 7

[32] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008. 8

[33] Puneet Mangla, Nupur Kumari, Abhishek Sinha, Mayank
Singh, Balaji Krishnamurthy, and Vineeth N Balasubrama-
nian. Charting the right manifold: Manifold mixup for few-
shot learning. In WACV, 2020. 1, 3, 6, 7

[34] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. A simple neural attentive meta-learner. In ICLR,
2018. 6

[35] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
TPAMI, 41(8):1979–1993, 2018. 3

[36] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In ECCV,
2016. 1, 3

2734



[37] Boris Oreshkin, Pau Rodrı́guez López, and Alexandre La-
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