
1. Appendix
Before we provide the proof for Proposition 1, we list

two useful lemmas that are used repeatedly in the following.

Lemma 1 ( [2]). The non-increasingly ordered singular

values of a matrix M obey 0 ≤ σi ≤
∥M∥F√

i
, where ∥ · ∥F

denotes the matrix Frobenius norm.

Lemma 2 ( [3]). Let σi(M) and σi(N) be the non-
increasingly ordered singular values of matrices M,N ∈
Ra×b. Then, tr{MNT } ≤

∑r
i σi(M)σi(N), where r =

min(a, b).

Proof of Proposition 1

Proof. The Fishers Criterion can be rewritten as ψ =
tr{S̄−1SB}, where S̄ = FFT (F is the matrix contain-
ing all features of the unlabeled set, arranged in columns)
and SB =

∑N
c=1Mcµcµ

T
c =

∑N
c=1 Sc (µc is the mean

feature vector of class c). For notation clarity and simplic-
ity, we assume that all data are centered and that data mean
does not change after only one sample is removed. This is
justifiable when the number of unlabeled data is sufficiently
large, which is the case we consider here.

Suppose the removed instance has pseudo-label belong-
ing to class u. After removing the instance f(xu), the
two scatter matrices becomes: S̄′ = S̄ − f(xu)f(xu)

T

and S′
B = SB + S′

u − Su = SB + EB , where S′
u =

(Mu − 1)µ′
uµ

′T
u and µ′

u = (µuMu − f(µu))/(Mu − 1).
Then, we can rewrite:

EB =
Muµuµ

T
u −Muµuf(xu)

T −Muf(xu)µ
T
u + f(xu)f(xu)

T

Mu − 1
(1)

We can then define the IDA as:

dψu = tr{S̄−1SB − S̄′−1S′
B} (2)

= tr{S̄−1SB − (S̄− f(xu)f(xu)
T )−1(SB +EB)}

The latter term can be reformulated by the Woodbury iden-
tity [1]:

(S̄− f(xu)f(xu)
T )−1(SB +EB) (3)

= (S̄−1 +
S̄−1f(xu)f(xu)

T S̄−1

1− f(xu)T S̄−1f(xu)
)(SB +EB)

Substitute this term into the above IDA equation, we have:

dψu = tr{ S̄
−1f(xu)f(xu)

T S̄−1SB

f(xu)T S̄−1f(xu)− 1
+ S̄−1ẼB +

S̄−1f(xu)f(xu)
T S̄−1EB

f(xu)T S̄−1f(xu)− 1
}

(4)

where ẼB = −EB . To upper-bound dψu, we derive an
upper-bound for the three terms respectively, given that
trace operation is additive.

Upper-bound for tr{ S̄
−1f(xu)f(xu)

T S̄−1SB

f(xu)T S̄−1f(xu)− 1
}: From

Lemma 2, we have:

tr{ S̄
−1f(xu)f(xu)

T S̄−1SB

f(xu)T S̄−1f(xu)− 1
} (5)

≤
∑

i σi(S̄
−1SBS̄

−1)σi(f(xu)f(xu)
T )

f(xu)T S̄−1f(xu)− 1

≤ f(xu)
T f(xu)σ1(S̄

−1SBS̄
−1)

f(xu)T S̄−1f(xu)− 1

where σ1(·) denotes the largest singular value. Given that
the largest singular value is actually the spectral norm,
based on the norm submultiplicative, we have:

σ1(S̄
−1SBS̄

−1) ≤ ∥S̄−1∥22∥SB∥2 (6)

For the first norm, ∥S̄−1∥2 = 1/σmin(S̄). Typically, S̄
is regularized by a ridge parameter ρ > 0, i.e. S̄ + ρI,
it can be said that σmin(S̄) > ρ, so that ∥S̄−1∥2 < 1/ρ.
For the second norm, ∥SB∥2 = ∥

∑N
c=1Mcµcµ

T
c ∥2 ≤∑N

c=1Mc∥µcµ
T
c ∥2 =

∑N
c=1Mcµ

T
c µc = δ. It fol-

lows that σ1(S̄−1SBS̄
−1) ≤ δ/ρ2. Finally, based on

the von Neumann [3] property, f(xu)
T S̄−1f(xu) − 1 =

tr{f(xu)
T S̄−1f(xu)} − 1 = Cσ1(S̄

−1)f(xu)
T f(xu) −

1, where C ∈ [−1, 1]. Hence, for simplicity, we use
the following approximation: f(xu)

T S̄−1f(xu) − 1 ≈
f(xu)

T f(xu)/ρ− 1. Then, we can derive the upper-bound

for tr{ S̄
−1f(xu)f(xu)

T S̄−1SB

f(xu)T S̄−1f(xu)− 1
} as:

tr{ S̄
−1f(xu)f(xu)

T S̄−1SB

f(xu)T S̄−1f(xu)− 1
} ≤ δf(xu)

T f(xu)

ρ(f(xu)T f(xu)− ρ)
(7)

Upper-bound for tr{S̄−1ẼB}: From Lemma 2, we have:

tr{S̄−1ẼB} ≤
4∑

i=1

σi(S̄
−1)σi(ẼB) (8)

since rank(ẼB) ≤ 4 [1]. Then, with Lemma 1, we have

σi(ẼB) ≤
∥ẼB∥F√

i
=

∥EB∥F√
i

. By substituting the defini-

tion of EB and using the triangular inequality, we have:

σi(ẼB) ≤
∥Muµuµ

T
u −Muµuf(xu)

T −Muf(xu)µ
T
u ∥F + ∥f(xu)f(xu)

T ∥F
(Mu − 1)

√
i

(9)
Based on the property that ∥M∥2F = tr(MTM):

σi(ẼB) ≤
νu + f(xu)

T f(xu)

(Mu − 1)
√
i

(10)

where the definition of νu is listed in Theorem 3 of our pa-
per. With the bound on σ1(S̄−1) < 1/ρ, we can derive the



upper-bound for tr{S̄−1ẼB} as:

tr{S̄−1ẼB} ≤
∑4

i=1

νu + f(xu)
T f(xu)

ρ(Mu − 1)
√
i

≤
H4,1/2(νu + f(xu)

T f(xu))

ρ(Mu − 1)

(11)

Upper-bound for tr{ S̄
−1f(xu)f(xu)

T S̄−1EB

f(xu)T S̄−1f(xu)− 1
}: With

similar derivation as in the first term, we have:

tr{ S̄
−1f(xu)f(xu)

T S̄−1EB

f(xu)T S̄−1f(xu)− 1
} (12)

≤ f(xu)
T f(xu)σ1(S̄

−1EBS̄
−1)

f(xu)T f(xu)/ρ− 1

Again, based on the norm submultiplicative,
σ1(S̄

−1EBS̄
−1) ≤ ∥S̄−1∥22∥EB∥2. From the

derivation in the second term, we readily get

∥EB∥2 = σ1(∥EB∥2) ≤ ∥EB∥F ≤ νu + f(xu)
T f(xu)

(Mu − 1)
.

Using the upper-bound for ∥S̄−1∥2, we can obtain the

bound σ1(S̄−1EBS̄
−1) ≤ ∥EB∥F ≤ νu + f(xu)

T f(xu)

(Mu − 1)ρ2
.

Finally, we can derive the upper-bound for the third term:

tr{ S̄
−1f(xu)f(xu)

T S̄−1EB

f(xu)T S̄−1f(xu)− 1
} ≤ f(xu)

T f(xu)(νu + f(xu)
T f(xu))

ρ(f(xu)T f(xu)− ρ)(Mu − 1)
(13)

Finally, we can conclude the upper-bound for dψu by
combining the upper-bounds for three additive terms to-
gether.
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