1. Appendix

Before we provide the proof for Proposition 1, we list
two useful lemmas that are used repeatedly in the following.

Lemma 1 ( [2]). The non-increasingly ordered singular
[M]le

Vi

values of a matrix M obey 0 < o; < , where || - | ¢

denotes the matrix Frobenius norm.

Lemma 2 ( [3]). Let 0;(M) and o;(N) be the non-
increasingly ordered singular values of matrices M,N €
R¥Y. Then, tr{MN”} < Y7 0;(M)o;(N), where r =
min(a,b).

Proof of Proposition 1

Proof. The Fishers Criterion can be rewritten as ¢ =
tr{S~!Sp}, where S = FFT (F is the matrix contain-
ing all features of the unlabeled set, arranged in columns)
and Sp = Zivz1 M.p pul = Zi\/:l S¢ (i, is the mean
feature vector of class c). For notation clarity and simplic-
ity, we assume that all data are centered and that data mean
does not change after only one sample is removed. This is
justifiable when the number of unlabeled data is sufficiently
large, which is the case we consider here.

Suppose the removed instance has pseudo-label belong-
ing to class u. After removing the instance f(x,), the
two scatter matrices becomes: S’ = S — f(x,)f(x.)7
and Sy = Sp + 8], — S, = Sg + Ep, where S], =
(M, — Vg, and g, = (po, My — f(p,)/ (M — 1).
Then, we can rewrite:

Es = A/[uu'uuz — ]V[u:uuf(xu)T — ]Wuf(xu)ﬂg + f(Xu)f(XU)T
5=
M, —1
(1)
We can then define the IDA as:
dip, = tr{S7'Sp — S'7!1S}} )

= tr{S7'Sp — (S — f(xu)f(xu)") ' (Sr + En)}

The latter term can be reformulated by the Woodbury iden-
tity [1]:

(S — f(xu)f(xu)") " (Sp + EB) 3)
_ /a-1 Silf(xu)f(xu)Tsil
= T F TS ()

Substitute this term into the above IDA equation, we have:

)(Ss + Ep)

S f XIJ)f(Xu)TS 1SB Silf(xu,)f(xu)TsilEB

W = e TS T =1 T PP )T () 1
“4)
where E 5 = —Epg. To upper-bound dv,,, we derive an

upper-bound for the three terms respectively, given that
trace operation is additive.

S~ f(xu)f(xu)"S™'Sp

Upper-bound for tr = : From
TS ) 1 )
Lemma 2, we have:
Q-1 Tq-1
tI‘{ S f(xu)f(xu) S™'Sp (5)

fxu)TS7 f (%) — 1
> 01(8718BS ™o (f (xu) f (xu) ")
Foxu) TS f(xu) =1
)T (x)1 (81858
T fx)TSTH (%) — 1
where o (+) denotes the largest singular value. Given that

the largest singular value is actually the spectral norm,
based on the norm submultiplicative, we have:

<

01(S7'8587Y) < [ST'I3ISs]2 (6)
S7l2 = 1/omin(S). Typically, S
is regularized by a ridge parameter p > 0, i.e. S + pl,

it can be said that 0,,i,(S) > p, so that |S71|s < 1/p.

For the second norm, 2 = || Zi\f:l MoppT|s <
N

Zc IM ||[,L“u,(. ||2 Zc:l MCH?F’C = ¢. It fol-

lows that o1(S™1SpS~!) < §/p®. Finally, based on

the von Neumann [3] property, f(x,)7S7!f(x,) — 1 =

tr{f(xu)"ST f(xu)} — 1 = Cor(S71) f(xu)" f(xu) —

1, where C € [—1,1]. Hence, for simplicity, we use

the following approximation: f(x,)7S™!f(x,) — 1 =~

f(x.)T f(x4)/p — 1. Then, we can derive the upper-bound
1 (%) (x.)7S 1S

for tr{ T TS 1 (%) = } as

S_lf(quf(xu)TS_lsB
fx)TS™ 1 f(xu) — 1

6f(xu)Tf(Xu)
p(f(xa)T f(xu) — p)
(7

Upper-bound for tr{S~'Eg}: From Lemma 2, we have:

tr{

P <

4
tr{S_lf)B} S ZO’i(S_l)Ui(EB) (8)
=1

since rank(EB) < 4 [1]. Then, with Lemma 1, we have
IBsllr _ [Eslr

ai(]:]B) < . By substituting the defini-

i
tion of Ep and using the triangular inequality, we have:

U(E )< H]\'Iu#uﬂz - Zwul‘uf<xu)T - quf(xu”‘EHF + ”f(xu)f(XU)T”F
e (M, —1)Vi
©)
Based on the property that || M||% = tr(M T M):
. T
o) < et T e T ) (10)

T (Mu 1)V

where the definition of v, is listed in Theorem 3 of our pa-
per. With the bound on o1 (S™!) < 1/p, we can derive the



upper-bound for tr{S~'Ep} as:

vy + f(Xu)Tf(Xu,) < H4,1/2(Vu + f(xu)Tf(Xu))

S—11 4
{8 B} < ey p(M, —1)Vi ~ p(M, —1)

(11)
S~ f(xu)f(xu)"S'Ep .
Upper-bound for tr{ T S f(xu) — 1 }: With
similar derivation as in the first term, we have:
a—1 Tq-1

S(xu)TS™1f(xy) — 1
fxu)" f(xu)o1(ST'ERSTY)
- fxa)T f(xu)/p—1

Again, based on the norm submultiplicative,

a1 (ST'EgS™YH < [ISTYEIEB].. From the
derivation in the second term, we readily get
vy + f(xu)Tf(Xu)

IEzllz = o1(|Ezll2) < [|Ezlr <

_ (M, —1)
Using the upper-bound for ||[S~!||2, we can obtain the
a—1 a—1 Vy + f(xu)Tf(Xu)
bound o1 (ST!ES™!) < ||Eg|lF < 0L, -T2

Finally, we can derive the upper-bound for the third term:

S’lf(xu)f(xu)TS’IEB} < Fxa) " f (%) (a4 f (%) f (%))

TS ) =1 ) = AT )= 00 1)

Finally, we can conclude the upper-bound for di, by
combining the upper-bounds for three additive terms to-
gether. O
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