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7. Appendix - Computation of LCAF Linear Combination Approximation (Eq. 3-6)

From Eq. 3, for any ¢ and [,
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To simplify the problem, first we flatten every tensors I to a column vector I. The above minimization problem is re-arranged
as following.
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where we define f as above. By using partial derivative with respect to Af’l, we get
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By repeating this to all /\Ek , we get following system of linear equations
Z fllTIle-)\;‘,k _ ill'l'ili
k#i
S RTINS = I
k#i
Z INli—ITI”lk/\;,k _ jli—llei (18)
ki
Z Ile‘-i-lelk:/\;‘,k _ jli+1'rfl¢
ki

SN =1
k#i




This system of linear equations can be further simplified as following form.
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This equation is again arranged as following final form.
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After we forward sample of training images, each feature map value [ is obtained. For the linear combination approxi-
mation, the only thing we need is to solve Equation 20 which contains simple matrix operation. By solving above simplified
problem, we find A without heavy computation. And then, each e values can also be easily calculated with a simple operation.

8. Appendix - Computation of Global Criterion (Eq. 13)

For any feature map [ , the loss difference AL after pruning is a function w.r.t. a feature map /. The tensor [ is composed
of b x h x w elements. Then, the loss difference AL is also a function of each element in I. We denote each element of
I simply as Iy w where b = {1,--- b}, h = {1,--- ,h} and w = {1,--- ,w} for the convenience. This notation is
independent from the notation used in the paper. It is used for the detailed explanation in this appendix.

The first order Taylor polynomial of f at a is generally expressed as following:

f(@) = fla) + f'(a)(x — a) + Ri(x) = f(a) + f'(a)(z — a) 1)

In conventional pruning, for each element Iy, 1, v, when we prune this element ([, b, w becomes 0), the first order Taylor
approximation of the loss L is expressed as following:
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L(0) = L(Ipp,w) — Wfb,h,w (22)
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This approximation can be applied to every element in /. Therefore, the pruning of entire feature map I can be simply
expressed as following:
AL =1 AL(bhw)l
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This is the derivation for the conventional pruning which converts feature map I to 0. Since the pruning in LCAF is equivalent
to converting feature map I to e, the final equation for the proposed LCAF is concluded as following.

oL
AL = e 57 ©3)

where € is the linear combination approximation error of the corresponding feature map I.



9. Results on CIFAR-100
Table 6. Comparison results of ResNet-56 on CIFAR-100 dataset.

| Top-1(%) FLOPs | (%) Params | (%)

Method

Baseline 71.41 - -
MIL [1] 68.37 39.3 -
SFP [3] 68.79 52.6 -
FPGM [4] 69.66 52.6 -
LFPC [2] 70.83 51.6 -
LCAF 70.91 53.1 41.8

The CIFAR-100 dataset demonstrates the generalization ability of the proposed LCAF because it is a much finer dataset
compared to the CIFAR-10. The experimental results are shown in Table 6. The ResNet-56 model was used for this compar-
ison. Among the previous works, LCAF achieved the highest performance while reducing the most FLOPs. Compared with
LFPC [2], we achieve a 0.08% higher Top-1 accuracy while reducing 1.5% more FLOPs. Compared to FPGM [4], it even

shows 1.25% of performance improvement with similar FLOPs reduction.

10. Magnified View of Figure 4
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Figure 6. Magnified version of Figure 4 in manuscript for more clear view. Observations of loss change by gradually decreasing the value
of each feature to zero. (Right) Each graph shows the pruning of six different features. (Left) Magnified view of one graph.
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