
Supplementary Material for:

TorMentor: Deterministic dynamic-path, data augmentations with fractals

Anguelos Nicolaou1, Vincent Christlein2, Edgar Riba3, Jian Shi3, Georg Vogeler1, Mathias Seuret2

1University of Graz, 2Friedrich-Alexander-Universität Erlangen-Nürnberg, 3kornia.org

Input

Image

Augmented

Image

GaussianAdditiveNoise

PlasmaBrightness

Wrap

ColorJitter

Flip Perspective Rotate

Random Choice

RandomChoice

Figure 1. The flow network that is defined in listing 1 ventral op-

erations are shown as cyan, dorsal as yellow, and meta augmenta-

tions as white. Notice the arrow thickness represents the probabil-

ity an augmentation instance passes through the specific path.

1. Supplementary

1.1. Meta Augmentations

The most straightforward way of defining a custom aug-

mentation regiment is through meta-augmentations. In List-

ing 1 we can see how someone with domain knowledge

could express the process generating plausible distortions

as an augmentation regiment. In Fig. 1, we can see the flow

network that listing 1 produced. Finally, in Fig. 2 we can

see an application of 24 augmentation instances from the

defined regiment.

1 from tormentor import RandomColorJitter,

RandomFlip, RandomWrap,

RandomPlasmaBrightness, RandomPerspective,

RandomGaussianAdditiveNoise, RandomRotate

2

3 linear_aug = (RandomFlip ^ RandomPerspective ^

RandomRotate) | RandomColorJitter

4 nonlinear_aug = RandomWrap |

RandomPlasmaBrightness

5 final_augmentation = (linear_aug ^ nonlinear_aug)

| RandomGaussianAdditiveNoise

6

7 epochs, batch_size, n_points, width, height = 10,

5, 20, 320, 240

8

9 for _ in range(epochs):

10 image_batch = torch.rand(batch_size, 3,

height, width)

11 segmentation_batch = torch.rand(batch_size,

1, height, width).round()

12 augmentation = final_augmentation()

13 augmented_images = augmentation(image_batch)

14 augmented_gt = augmentation(

segmentation_batch)

15 # Train and do other things.

Listing 1. Meta-augmentations used to define augmentation

routing

1.2. Defining a New Augmentation

TorMentor can be customized by writing custom aug-

mentation operations. An augmentation operation must be

defined as a Python class. Although augmentations can deal

both with samples (3D tensors) The class must implement

the method generate_batch_state which takes as a parame-

ter the input data in order to know its size. If it is a dorsal

operation, it should be inheriting class ColorAugmentation

and implement the functional method functional_image

which takes as parameters a batch of data followed by zero

to many tensors whose first dimension must be batch size.

If on the other hand it is a ventral operation, the functional

method must be applied on a sampling field pointing on the

image pixels. Regardless of the image size, the sampling

field has values between -1 and 1 both horizontally and ver-

tically. In listing 2 the definition of a ventral augmentation

mimicking a lens effect can be seen, while in Fig. 3 we can

see the defined augmentation applied on a sample of the

COCO dataset.

1 import tormentor

2

3 class Lens(tormentor.SpatialImageAugmentation):

4 center_x = tormentor.Uniform((-.3, .3))

1

mailto:anguelos.nicolaou\spacefactor \@m {}gmail.com
vincent.christlein@fau.de
edgar.riba@gmail.com
sj8716643@126.com
georg.vogeler@uni-graz.at
mathias.seuret@fau.de

Figure 2. Application of 24 different augmentation instances from the augmentation regiment defined in listing 1 and described in Fig. 1

Figure 3. Custom lens augmentation applied on MS-COCO seg-

mentation.

5 center_y = tormentor.Uniform((-.3, .3))

6 gamma = tormentor.Uniform((1., 1.))

7

8 def generate_batch_state(self, samples):

9 batch_sz = sampling_tensors[0].size(0)

10 gamma = type(self).gamma(batch_sz, device

=samples[0].device).view(-1)

11 center_x = type(self).center_x(batch_sz,

device=samples[0].device).view(-1)

12 center_y = type(self).center_y(batch_sz,

device=samples[0].device).view(-1)

13 return center_x, center_y, gamma

14

15 @classmethod

16 def functional_sampling_field(cls,

sampling_field, center_x, center_y, gamma):

17 field_x, field_y = sampling_field

18 center_x = center_x.unsqueeze(dim=1).

unsqueeze(dim=1)

19 center_y = center_y.unsqueeze(dim=1).

unsqueeze(dim=1)

20 gamma = gamma.unsqueeze(dim=1).unsqueeze(

dim=1)

21 distance = ((center_x - field_x)**2 + (

center_y - field_y)**2) ** .5

22 field_x, field_y = (field_x + field_x *
distance ** gamma) , (field_y + field_y *
distance ** gamma)

23 return field_x, field_y

Listing 2. Custom augmentation definition of a lens effect

Notice that the pointcloud domain works perfectly well

with polygon defined segmentations.

	. Supplementary
	. Meta Augmentations
	. Defining a New Augmentation

