Appendix
A. Experimental details

The code for this work was directly adapted from the of-
ficial MixMo [11] codebase: https://github.com/
alexrame/mixmo-pytorch.

We followed similar experimental settings on CIFAR
100 as MixMo [!] and present here the adapted setting de-

scription:
We used standard architecture WRN-28-w, with a fo-
cus on w = 2. We re-use the hyper-parameters con-

figuration from MIMO [2] with batch repetition 2 (bar2).
The optimizer is SGD with learning rate of % X batiggize,
batch size 64, linear warmup over 1 epoch, decay rate 0.1
at steps {75,150, 225}, I3 regularization 3e-4. We follow
standard MSDA practices [14] and set the maximum num-
ber of epochs to 300. Our experiments ran on a single
NVIDIA 12Go-TITAN X Pascal GPU.

All experiments were run three times on three fixed seeds
from the same version of the codebase. Qualitative results
presented in Fig. 3 and Fig. 5 are obtained by visualizing
results for the first set of random seeds. Quantitative results
presented in Tab. 1 are given in the form of mean + std
over the three runs.

B. Complementary adjustments to MIMO pro-
cedures in MixShare

MIMO methods use a number of auxiliary procedures
to train strong subnetworks. However, as MixShare differs
significantly from standard MIMO frameworks, it does not
use these frameworks to the same extent.

CutMix probability in the input block MixMo [1] only
uses cutmix mixing in its input block about half the time,
using a basic summing operation on the two encoded inputs
the rest of the time. This is because the model will use a
summing operation at test time. Therefore, the use of cut-
mix at training induces an strong train/test gap that needs to
be bridged by the use of summing during training.

We cannot afford to use summing half the time as un-
mixing relies on the use of cutmix in the input block. How-
ever, since our two encoders are very similar (due to our ker-
nel alignment), cutmix and summing (or averaging) behave
very similarly and the train/test gap is therefore minimal.

Input Repetition A slight train/test gap still remains
however since the model is rarely presented the same image
as input to both subnetworks at training time. We solve this
by reprising a procedure introduced in the seminal MIMO
paper [2]: input repetition. In our case, we ensure 10% of
inputs of our batches are made of repetition of the same im-
age during training.

Loss rebalancing MixMo [1] introduced a re-weighting
function of the subnetwork training losses that rescales the
mixing ratios used in the inputs block. These ratios are
rescaled to be less lopsided (closer to an even 50/50 split)
before being applied to their relevant subnetwork losses.
This rescaling is necessary as it ensures all parameters re-
ceive sufficient training signal.

We however find in our experiments it is more beneficial
to do away with this re-balancing and keep the original mix-
ing ratios, which we explain by the large amount of features
shared between subnetworks. Since features are shared, we
do not need to worry about some features receiving too little
training signal.

C. A more nuanced discussion on kernel align-
ment

While MixShare uses the exact same initialization of the
encoder kernels for simplicity, it is interesting to note much
weaker versions of kernel alignment are sufficient to obtain
similar results.

Indeed, we found in our experiments that initializing the
kernels to be simply co-linear is more than enough to en-
sure proper feature sharing. In fact, this leads to the exact
same performance as using the same initialization and the
encoder kernels quickly converge to similar values.

This further validates our intuition that MIMO models
need a “common language” to benefit from sharing features:
all that is required is for encoder kernels to extract the same
“type” of features.

D. Analysis of subnetwork features within the
core network

Sec. 2 studies what features each subnetwork uses in the
input block and output block of the multi-input multi-output
model. Studying the importance of features within the core
networks for each subnetworks is more difficult as it is not
possible to consider the model weights. Reprising an anal-
ysis conducted in the Appendix of [1], we identify the in-
fluence of intermediate features on subnetworks with the
variance of the feature with respect to the relevant input.

For the first subnetwork, if we consider the intermedi-
ate feature map (at one point in the network f) M;,;, =
fint(Diest, d), such that M,,¢ is of shape N x C' x H x W
with D, the test set, d a fixed input, N the size of the test
set, C' the number of intermediate feature maps and H x W
the spatial coordinates. We compute the importance of each
of the C' feature map with respect to the first subnetwork as
Mean(Var(Mint, dim = 0),dim = (1,2)). The impor-
tance of intermediate features for the second subnetwork is
obtained similarly by considering M+ = fint(d, Diest)-

Fig. 6 shows the resulting feature importance maps at
after each of the three residual blocks in the core network.

https://github.com/alexrame/mixmo-pytorch
https://github.com/alexrame/mixmo-pytorch

0.15 0.8
e’ £ £
5 50.10 506
=4 0.2 =2 =4
3 o4
i i€ 0.05 i
o1 Var(xo) . Var(xo) . 0.2 Var(xo)
Var(x;) Var(xy) Var(xy)
0.0 0.00 0.0
0 10 20 30 0 20 40 60 0 25 50 75 100 125
Channel Channel Channel
(a) Feature variance after block 1. (b) Feature variance after block 2. (c) Feature variance after block 3.

Figure 6. Checking the variance of feature maps w.r.t. the two inputs at different levels of the network shows clear separation of features
in standard multi-input multi-output architectures.

As can be observed, the subnetworks remain consistently
separated in the core network.

