
0.1. Training Configuration.

To demonstrate the efficiency of on-device training, we
use Nvidia Jetson Nano GPU with 4-GB memory as our
training platform. We evaluate the model performance us-
ing PyTorch as the simulation platform 1.Note that, the re-
ported activation memory usage is calculated by our defini-
tion in Table.1, since PyTorch does not support explicit fine-
grained memory management. In the training, for ResNet-
50, we use Adam as the optimizer with cosine learning rate
decay, an initial rate of 1e-3, and the number of iteration was
set to 30. For ResNet-26 training on the challenge dataset,
we use an SGD optimizer with an initial learning rate of 0.1.
We schedule the learning rate decay at 40,80 and 100 epoch
with a rate of 0.1. Again, as shown in Fig.1, we use right
configuration of DA3 for ResNet-50 and left configuration
to train ResNet-26 model.

3X3

3X3

Adaptor

1X1

3X3

Adaptor

1X1

Figure 1. Illustration of integrating the proposed DA3 in popular
basic block and bottleneck block in ResNets. Note, black indicates
pre-trained backbone model, blue indicates added modules

0.2. Learning the dynamic spatial gate

First, we adopt a continuous logistic function:

σ(G(Hs(A))) =
1

1 + exp(−βG(Hs(A)))
, (1)

where β is a constant scaling factor. Note that the logistic
function becomes closer to the hard thresholding function
for higher β values.

Then, to learn the binary mask, we leverage the Gumbel-
Sigmoid trick, inspired by Gumbel-Softmax [1] that per-
forms a differential sampling to approximate a categorical
random variable. Since sigmoid can be viewed as a special
two-class case of softmax, we define p(·) using the Gumbel-
Sigmoid trick as:

p(G(Hs(A))) =
exp((logπ0 + g0)/T )

exp((logπ0 + g0)/T ) + exp((g1)/T )
,

(2)

1https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-7-
0-now-available/72048

where π0 represents σ(mr). g0 and g1 are samples
from Gumbel distribution. The temperature T is a hyper-
parameter to adjust the range of input values, where choos-
ing a larger value could avoid gradient vanishing during
back-propagation. Note that the output of G(Hs(A)) be-
comes closer to a Bernoulli sample as T is closer to 0. We
can further simplify Eq.2 as:

p(G(Hs(A))) =
1

1 + exp(−(logπ0 + g0 − g1)/T )
(3)

Benefiting from the differential property of Eq.1 and
Eq.Eq. (3), the real-value mask mr can be embedded with
existing gradient based back-propagation training. To rep-
resent p(G(Hs(A))) as binary format Gb, we use a hard
threshold (i.e., 0.5) during forward-propagation of training.
Because most values in the distribution of p(mr) will move
towards either 0 or 1 during training, generating the binary
mask by p(G(Hs(A))) could have more accurate decision,
resulting in better accuracy.


