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Abstract

We propose SymDNN, a Deep Neural Network (DNN)
inference scheme, to segment an input image into small
patches, replace those patches with representative sym-
bols, and use the reconstructed image for CNN inference.
This approach of deconstruction of images, and the recon-
struction from cluster centroids trained on clean images,
enhances robustness against adversarial attacks. The in-
put transform used in SymDNN is learned from very large
datasets, making it difficult to approximate for adaptive ad-
versarial attacks. For example, SymDNN achieves 23% and
42% robust accuracy at Lo, attack strengths of 8/255 and
4/255 respectively, against BPDA under a complete white
box setting, where most input processing based defenses
break completely. SymDNN is not a future-proof adversar-
ial defense that can defend any attack, but it is one of the few
readily usable defenses in resource-limited embedded sys-
tems that defends against a wide range of attacks. Our code
is available at: https://github.com/swadeykgp/
SymDNN.

1. Introduction

Convolutional Neural Networks (CNNs) can automati-
cally learn effective features from images, making those
suitable in many computer vision tasks as classifiers and
backbone feature extractors. Since the past few years, Edge
Computing is showing explosive growth [51], with mo-
bile and embedded computer vision being one of the killer
apps [2], and CNNs dominating that landscape [13].

Albeit being one of the most popular architectures for
image tasks, a CNN inference can be forced to generate un-
expected output on images that contain visually impercepti-
ble, well crafted modifications [8], referred to as adversarial
perturbations [57]. Brittleness of CNNs against adversarial
attacks make those unsuitable for deployment in safety crit-
ical systems. With adversarial attacks very much possible
in a real world setting [32], the mobile and embedded vision
tasks on resource-limited systems are also affected by this.

Despite significant progress in the research on adversar-

ial robustness, there are hardly any studies targeting robust-
ness under adversarial attacks on embedded systems.
Brief Background of Adversarial Robustness. Adversar-
ial attacks aim to perturb a benign input with small changes
to create a malicious input, such that the CNN output differs
by a significant extent. For instance, in a successful zargeted
attack on the input to a CNN based classifier, the classifier
is forced to assign a class that is desired by the adversary.
Whereas in a successful untargeted attack, a CNN classi-
fier fails to assign the same class to the benign example and
the visually similar adversarial example. The difference be-
tween a clean and the corresponding adversarial example is
often quantified using /, norms (p € {1,2, c0}).

Adversarial examples can be generated in a complete
white box setting, where the model parameters (e.g., ar-
chitecture, loss function etc.), and the defense parameters
(e.g., transform, randomness) are known. Effective adver-
sarial inputs [43] can also be generated in a complete black
box setting, where the adversary has no access to the model
and defense. Defenses against the adversarial attacks of-
ten claim robustness in the above two and several different
intermediate threat models.

In summary, some of the very strong attacks include
enhancements of PGD [37] attack (e.g., APGD [19],
EOTPGD [5]), translation invariant versions of FGSM [26]
attack (e.g., TI-FGSM [23], MI-FGSM [23]), ensemble at-
tacks (e.g., AutoAttacks [19]), and finally customized at-
tacks adapted [58] to each defense.

We refer the reader to a recent survey [48] and a series
of works [4,8,9,11,15,19,23,26,37,43,44,57,58] that have
shaped the field of adversarial robustness during the past
eight years.

The adversarial defenses render a CNN inference robust
to the adversarial attacks. It is believed that the process
of training a DNN, that tries to generalize on an uncon-
strained, real-valued input space, based on a finite training
set example, leads to imperfect generalization [7,26,44].

Adversarial Defenses for Embedded Systems? To ad-
dress the problem of adversarial attacks, the strongest de-
fenses, that is, the ones that are provably robust [15, 16,40,
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,63], attempts to identify convex regions that include the
non-convex manifolds where the adversarial examples be-
long to and includes those as a part of the loss function to
train a CNN. However, the scalability of these methods
are not yet proven on larger networks.

Adversarial training [26,37] is a type of defense that
precisely defines the perturbation capabilities of an adver-
sary and harnesses the adversarial examples generated by
that adversary into the empirical risk minimization prob-
lem [60]. This approach is considered reliable under strin-
gent evaluations [4, 58]. However, this approach also
has some limitations e.g., failure to scale to very large
datasets [33], failure to resist examples under a different
dissimilarity measure [54]. We highlight a different prob-
lem associated with this approach. In [37] authors ob-
serve that the adversarially trained models use a robust de-
cision boundary to classify adversarial examples, which,
in turn, needs a relatively larger model capacity than stan-
dard models. We find that adversarially trained models on
the CIFAR-10 dataset, available from RobustBench [17],
are very large in size, compared to a standard model.
For instance, model sizes for [47] and [53] are 705Mb
and 291Mb respectively, whereas a ResNet-18 architecture
trained on CIFAR-10 in a non-adversarial manner, has a
size of 1IMb. It is not feasible to deploy such large foot-
print models in resource-limited devices. The model sizes
remain huge even after pruning [53].

There is another line of defenses that post-processes [ 10,

,27,39,42,55,61,67] a tampered image before CNN
inference. These defenses are often simple, and require
lightweight processing, unless an Autoencoder or another
Deep Neural Network is used for the purification process.
Unfortunately, most of these works are shown to defend
only against the gradient based attacks, and fail completely
against attacks that bypass obfuscated gradients [4], in a
complete white box setting.

Based on our study of the current state-of-the-art in
adversarial defense strategies, we can conclude that the
robust and reliable defenses are either not scalable or
have large model footprints, making those unsuitable for
embedded vision applications. Some input processing
based defenses are computationally efficient, however most
of these are broken by recent adaptive attacks [4,58].

Proposed Approach. In this context we propose SymDNN,
yet another input processing based defense that enhances
adversarial robustness of a CNN for small attack strengths,
and under various threat models. The broad working prin-
ciple of SymDNN is shown in Fig. 1.

¢ In the offline training phase we take all the images from
the training set, divide them into small patches, accumu-
late these patches into a single patch dataset, and apply
unsupervised clustering on this dataset.

* We associate symbols with the clusters and store these
associations in a codebook.

* The image is coded using the codebook by replacing each
patch with a symbol. The symbolic coded image is orders
of magnitude smaller than the original image, which may
be useful for communication and / or storage.

» For CNN inference, an approximation of the image is re-
constructed by replacing each symbol with the centroid of
the cluster it represents. The reconstructed image is then
used as input by CNN.

* When the image is adversarially perturbed, this re-
construction process removes some of the adversarial
changes, as the centroids that are used to replace the im-
age patches are learned from the clean images.

In practice, we implement SymDNN training and index
search with a fast similarity search [29], to handle large
patch datasets. The theoretical and algorithmic basis for
this approach has been detailed in this paper.

SymDNN is a model agnostic pre-processing step that
can boost the accuracy of any arbitrary CNN for adversar-
ial images with a limited change per pixel. We observe
this gain in robust accuracy under complete black box and
partial white box threat models, where the model param-
eters and dataset are known. We have extensively evalu-
ated SymDNN under these threat models and we show that
SymDNN boosts the robust accuracy of a ResNet model in
the face of several recent strong attacks, namely enhanced
PGD variants [5,19,37], translation invariant attacks [22,23]
and ensemble attacks [19], by 30-50% at attack strength of
4/255 and by at least 10% at attack strength of 8/255.

In a complete white box setting, where the transfor-
mation due to the defense is also known to the adversary,
SymDNN exhibits the gradient shattering property [4].
We believe that the transformations used in earlier input
processing based defenses [10,27,67] were based on some
analytical formulation, which made it possible for the
adaptive attacks to easily use a surrogate approximation to
perform gradient descent and find the adversarial examples
even if the gradients were obfuscated. For SymDNN, the
computational overhead of building this transformation
function from large image datasets, is prohibitive even
using a fast indexing and clustering library. For the same
reason, approximating such a function is difficult, even
if gradients are obfuscated [4]. To support this belief,
SymDNN accuracy drops to 23%, far better than other
defenses that drop to 0% [4, 58] under Backward Pass
Differentiable Approximation (BPDA) attack.

We do not claim that SymDNN can defend any adver-
sarial attack, which is what the adversarial research com-
munity aims at. The major contributions of SymDNN are
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as follows: (A) Forming a first line of readily usable de-
fense against a wide range of adversarial attacks with very
little computational overhead that embedded vision systems
currently lack, and (B) Significant reduction in the size of
the images in their symbolic forms without any significant
negative impact on their classification post reconstruction.

2. Related Work

The method proposed in this paper is in principle simi-
lar to all input processing based defenses, which cleans or
purifies an image before DNN inference.

Previous works [6, 14,27,35,36,39,67] have used spe-
cialized processing on the input or features to nullify the
effects of adversarial perturbations. In [27] total variance
minimization is used to reconstruct pixels of an image
based on its neighboring pixels, with an aim of smooth-
ing out small and localized perturbations. This work also
uses image-quilting, where an image is reconstructed using
patches from an image patch dataset. This is very similar
to SymDNN. However, neither this paper [27], nor the orig-
inal paper on patch based texture synthesis [25], elaborate
on the patch dataset, resolution of the patches and the com-
putation overhead for texture synthesis. For SymDNN, this
patch K-nearest neighbor graph is built from the full train-
ing dataset, rendering the image reconstruction process hard
to approximate.

Another approach is using discretization or quantization
of attacked image pixels [10, 62, 69]. In [62,69] K-means
clustering is used to quantize each pixel of an attacked im-
age into 2-5 levels to reduce perturbation and achieve ro-
bustness against simple untargeted attacks. However, there
are no details on how such a clustering model is trained
for quantizing image pixels. In [10] a specialized ther-
mometer encoding is proposed that preserves image prop-
erties, inference accuracy and enhances adversarial robust-
ness for a limited set of adversarial attacks. However, most
of these input processing based defenses are now consid-
ered ineffective, as these methods obfuscate gradients and
therefore are often only effective against gradient based at-
tacks [4, 58]. These methods are ineffective in the face of
strong black-box attacks that are not gradient dependent and
against adaptive attacks that can easily approximate the sim-
ple transformation function to perform gradient descent.

In [45] it is shown that a series of transforms can pre-
vent adaptive attacks. Another recent input processing de-
fense [42] using an autoencoder based purifier, shows gains
in adversarial robustness under various threat models ex-
cept complete white box. However, a series of transforms
or autoencoders are computationally demanding.

SymDNN addresses these problems of adversarial ro-
bustness under different threat models, with a single, com-
putationally efficient transformation function that is hard to
approximate.

3. The Goal of Symbolic Abstraction

Our goal is to create a symbolic abstraction of an im-
age which is compact, inference preserving, and robust
to adversarial attacks. In formal terms, given an input
x € RIn*TwxC from an input space X' and a set of labels
Y1, Y2, .. ., Y, from an output space ), a DNN learns a non-
linear mapping Ny : X — Y, where 8 denotes the network
parameters, and [y, I,,, and C are respectively the height
(in pixels), width (in pixels), and number of channels of the
image, z. We aim to learn a mapping, 7 : X — X%, where
>* is a symbolic abstraction. We also define the mapping:
Tr @ X* — X, which reconstructs an image from the sym-
bolic abstraction. We address the following requirements:

1. Compaction. We show that 7(x) is orders of magnitude
smaller than x. This is useful when the image has to
be communicated, say, from an edge device to an edge
server.

2. Inference Preserving. Our experiments show that the ab-
straction is almost always inference preserving, that is,

No(z) = Ny(TrT(x)).

3. Enhancing Robustness to Adversarial Attacks. If an ad-
versarial attack modifies x to @/, we show that MV (z) =
Ny(mrT(z’)) in most cases, even when the attack suc-
ceeds on the original image, that is, Ny(z) # Np(x').
We propose a model agnostic scheme to defend a DNN
inference against adversarial attacks.

In cases where enhancing robustness is the primary goal, we
do not need to learn 7 and 7 separately. Instead, it suffices
to learn the combined function, 7z7 : X — X, and pass on
TrT(2') instead of 2’ to the DNN classifier.

4. The SymDNN Methodology

The SymDNN methodology has two broad stages. The
first stage learns an alphabet X from the training dataset,
which forms the basis for defining the mapping 7 : X —
>*. In the second stage, the symbolic abstraction is used
for new images. The workflow of SymDNN is illustrated in
Figure 1.

4.1. Symbolic Abstraction Design

The proposed method for symbolic abstraction design
works on a given training set, D, of images. The steps are
as follows:

1. We choose a patch dimension, P (a parameter of our al-
gorithm). For the chosen, P, we extract patches of di-
mension P x P pixels from all the images in D and pop-
ulate them into a patch dataset, Dpqych.

2. We use a similarity based clustering algorithm to par-
tition Dpyer, into disjoint clusters {C1, Ca,...,Car},
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Figure 1. The two stages of SymDNN methodology: (a) learning of symbols & mapping (b) using the symbolic abstraction for new images.

such that D,g¢cp Uf\il C;. We associate a sym-
bol, «;, with each C;. We define the alphabet X

{Oél, .. .,a]u}.

. We identify the cluster centroid, p;, for each partition,
C;. Note that y; is a P x P image patch. Let p =
{p1, ..., pun} be the set of cluster centroids.

. We prepare a Codebook containing two mappings,
namely:

* Patch to symbol. 1 : Dpgien, — X, such that for
each patch p € Dpgicn, We have n(p) = «; iff
pE Cz

e Symbol to patch. ng : ¥ — u, such that for each
symbol, a; € 3, we have ng(a;) = p;.

It may be noted that z7(p) maps the patch p to the cen-
troid of the cluster containing p.

4.1.1 Clustering the Patches

Lloyd’s algorithm, also known as, k-means clustering can
be used to achieve the above partitioning. The basic steps
of the above algorithm are as follows:

1. For each cluster, C; the initial cluster centroid, p; is se-
lected. Selected centroids generate the initial partition-
ing CY. It may be noted that y; is a P x P image patch.

The Euclidean distance of each patch is calculated from
all the centroids, that is, ||p; — uj||2.

Based on the distance computed, the cluster assignment

for patch p; is obtained by finding the nearest centroid,

thatis, argmin ||pu; — pill?

M2, M

For each partition, a new centroid is obtained by com-

puting the average of all the patches assigned to that par-

tition, that is, p1; = ﬁ ; pi. This generates the up-
pPic;

dated set of partitions C'.

Step 2 to 4 are repeated until a fixed point is reached,
that is, C™ = C¢™+1,

M
. 1

min pi— ——
(C1UCHU...UC=C) |51

. Pi €
J=1 pi€p; ’

2
dopif| M
2

The k-means objective, stated in Eq. (1) is NP-hard. The
iterative approach (Lloyd’s algorithm), with suitable initial-
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ization runs in polynomial time to converge to a local min-
ima. However, the size of the input space which is in the
range of billions, makes the algorithm computationally ex-
pensive. Specifically, step 2 of the above iterative algorithm
has a time complexity of O(M N P?).

The FAISS [29] k-means implementation accelerates this
step by a large factor, which helps us to experiment with dif-
ferent numbers of clusters, patch sizes and handle around
38.5 million patches for the CIFAR-10 dataset and 5.6 bil-
lion for ImageNet.

4.2. Inferencing using Symbolic Abstraction

We consider two use cases for inferencing using the pro-
posed symbolic abstraction. In the first case, we study the
gain in adversarial robustness by virtue of symbolic abstrac-
tion, and reconstruction. In the second case, we study the
compaction of the image by virtue of symbolic abstraction,
which may be useful for communication and / or storage,
and study the loss of inferencing accuracy post reconstruc-
tion. This section outlines these flows.

4.2.1 Resistance Against Adversarial Attacks

SymDNN follows the same defense model as other input
processing based defenses: given a pre-trained classifier
Ny (+), the preprocessor 77 (+) is almost always inference
preserving, that is, Ny(x) ~ Ny(7r7(z)), and the symbolic
reconstruction removes the adversarial perturbation.

The seminal work on gradient obfuscation [4, 58] and
gradient masking [43] have highlighted that in a complete
white box setting, these types of non-differentiable defenses
cannot be backpropagated through to generate adversarial
examples. In [4], BPDA attack creates a differentiable ap-
proximation of these transformation functions and uses that
to backpropagate and generate effective adversarial exam-
ples.

SymDNN, being a non-differentiable defense, also ex-
hibits the same behavior. However, the success of BPDA or
other adaptive attacks depend on how easily and precisely
the transformation function can be approximated. Com-
pared to the transformations used in earlier input process-
ing based defenses [10, 27, 67], which are based on some
analytical formulation, SymDNN’s approximation function
7rT(+) is very difficult to approximate. It is learned from
a large image dataset, and the computational overhead of
building this transformation function is prohibitive even us-
ing a fast indexing and clustering library.

In [4], defenses that employ randomized transformations
to the input are attacked using Expectation over Transfor-
mation (EOT) [5]. Samples of transforms used by a de-
fense is used by EOT to iteratively approximate an expected
transform for generating adversarial examples. SymDNN
also uses a test time randomness, where instead of replac-
ing patch p;; in image x with 7(p;,), we replace it with

a randomly chosen symbol from among the £k nearest cen-
troids. We name this mechanism MSR: Multi-Sym Random-
ized inference, and evaluate the Top-1 and Top-5 accuracy
of our models based on it. In this paper we use 25 most
similar symbols (k = 25) for a given patch from the k-
nearest neighbor graph of centroid patches to achieve the
best clean vs. robust accuracy trade-off. To optimize over
the k-nearest centroid patches for a given centroid patch,
and generate an expected transform is as computationally
demanding as learning the k-NN graph itself. This makes
the test time randomness of SymDNN difficult to break by
an adversary using EOT attack variants, within practically
feasible computation capability and time.

Thus, the key to withstand the adaptive attacks in [4, 58],
is to design the transformation as hard as possible, when
proposing an input processing based defense. For deploy-
ing in embedded systems, such transformation needs to be
computationally efficient as well. Similar results, where
BPDA is less effective can be observed in cases where the
transform is difficult to approximate [45,50]. In [45] a se-
ries of transforms are used, and in [50] a projection into a
Generative Adversarial Network manifold is performed to
achieve the robustness. In contrast, SymDNN executes a
single, computationally efficient transform to achieve simi-
lar robustness.

SymDNN’s robustness is not only limited to complete
white-box setting, against gradient based attacks. The sym-
bolic reconstruction process replaces a bunch of pixels of
patch resolution, with a clean centroid patch from the clus-
tering model. This operation reinstates the values of most
of the pixels as shown in Fig. 2a. Although it throws off
some of the values randomly, our experiments show that the
inference accuracy is preserved in most cases. As shown in
Fig. 2b, this reduction of change per pixel happens at differ-
ent noise levels, although it is most effective at lower attack
strengths.

4.2.2 Compaction and Reconstruction

We define the following mappings for compaction and re-
construction of an image:

s Symbolic Abstraction. The given image z € RI»>*1wx¢

is partitioned into patches of size P x P pixels (with
suitable zero padding if the dimensions are not multi-
ples of P), and arranged into a sequence 7 of patches,
Diys---sDi,- We define 7(x) = s, where s € ¥* is the
string v, , . . ., ,,, such that n(p;;) = a;;. We shall re-
fer to s as the code for x.

» Symbolic Reconstruction. Given the code, s, for the im-
age x, we define 7r(s) = «’, where the image ' is ob-
tained by replacing each o; € s by nr(c;) and rearrang-
ing the patches in the same order as in the original image,
z. In other words, in the reconstructed image, each patch
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Figure 2. Mapping back of pixel changes & Resistance to perturbations due to symbolic abstraction on images

pi; in x is replaced by nrn(p;; ), namely the centroid of
the cluster that contains p; .

The reduction due to abstraction, A%, can be expressed as
log M

follows:
A2 =1[1-
( P2 x B

where B denotes the bits per pixel representation of an im-
age and M is the number of clusters. For storage / commu-
nication entropy encoding e.g., Huffman encoding can be
used for reducing the amortized number of bits per pixel.

) x 100% 2)

5. Experimental Evaluation
5.1. Experimental Setup

Architectures & Datasets. For ImageNet [49] dataset
we use publicly available pre-trained models: WideRes-
Net [68], ResNet-152 [28] and ResNeXt-101 [66] from
PyTorch model repository!. We use ResNet-20 architec-
ture from [70] for CIFAR-10 [31], and LeNet-5 [21] for
MNIST [34] dataset.

Adversarial Robustness. We choose Torchattacks [30]
for attack implementations. For demonstrating efficacy
of SymDNN on known robust models, we use certified
CIFAR-10 models from RobustBench [17]. We use Fool-
Box [46] to perform adversarial attacks on ImageNet pre-
trained models. We specify the threat models, attack iter-
ations and attack strengths corresponding to each result in
the result section.

5.2. Adversarial Robustness

Tab. 1 shows the robust accuracy gains of SymDNN
under all possible attack models described in Sec. 1 and
Sec. 4.2.1, compared to the standard inference. SymDNN
performs best under the white-box model, black-box de-
fense attack model (columns 3-4 of Tab. 1), where the ad-
versary has no knowledge about the defense being used.

Uhttps://pytorch.org/vision/stable/models.html

The accuracy gain in the complete white-box setting (last
column of Tab. 1) is possibly due to obfuscated gradi-
ents [4, 58], except for the BPDA attack (top 3 rows of
Tab. 1). However SymDNN'’s transform is difficult to ap-
proximate, and hence it does not break completely against
BPDA. SymDNN is only effective to complete black-box
attacks under lower attack strengths. This is currently a
limitation, although this is the best we have in an embed-
ded resource limited setting. We also hypothesize that a
more strongly separable clustering may enable SymDNN to
resist attacks with larger values of e. We discuss this aspect
further in Sec. 5.4.

Tab. 2 presents a comparison of SymDNN with NRP [42]
and DefenseGAN [50], two state-of-the-art input defenses.
SymDNN provides a better defense than NRP in 12 out of
the 15 attacks. Specifically, NRP’s defense fails completely
against a recent attack (Jitter [52]). DefenseGAN [50] per-
formance is highly dependent on the generator training. We
trained a generator with 10k iterations, which did not per-
form well against the wide range of attacks we used.

NRP uses a DNN of 16.5 million parameters for the pu-
rification step. DefenseGAN uses a resource intensive Gen-
erative Adversarial Network generator to generate cleaned
images. In the case of the adversarially trained model [47]
(last column of Tab. 2), the model size is 705Mb. Compared
to these methods, SymDNN is suitable for resource-limited
embedded systems. It has very low computation overhead.
SymDNN, with 2 x 2 patches, takes 0.5 milliseconds to
lookup clusters & encode/decode images, with a peak mem-
ory load of 44 Mb.

For MNIST, we observe a minimum of 93% and 68% ro-
bust SymDNN accuracy at (e = 16/255) and (e = 32/255)
respectively, for the 7 attack we tried.

For ImageNet, preliminary experiments using Fool-
Box [46] show approximately 60% boost in robust accuracy
for C&W [12], PGD [38], and FGSM [26]. Detailed results
and visualizations for MNIST & ImageNet are presented in
the supplementary material.

3604



Table 1. SymDNN accuracy(%) under different attacks: Abbre-
viations used:“M” - Model, “D” - Defense, “W” - White-box,
and “B” - Black-box. The attack models are expressed as com-
binations of these. SymDNN performs best under the white-box
model / black-box defense combination. Different row colors de-
note different attack strengths (col 2). “®’ indicates SymDNN ac-
curacy with 2048 clusters. The case of gradient obfuscating [4, 58]
happens under the complete white-box attack model(last column).
SymDNN’s input transform is very difficult to approximate, even
if gradients are shattered. This is evident in the BPDA [4] attack,
against which most input defenses break completely.

ks | s | R | meer | MR
BPDA [4] |le=8/255| 8 48 | 32 45 | 23
TI-FGSM[23]  |e=8/255| 11 28 | 83 81 | 45
AutoAttack [20] |e=8/255| 0 10 | 32 58 | 21
DI-FGSM[65] |e=8/255| 0 8 |32 51 | 40
MI-FGSM [65] |e=8/255| 0 12 | 36 55 | 44
RFGSM [59] le=8/255| 0 10 | 33 55 | 46
EOTPGD[71]  |e=8/255| 0 10 | 35 57 | 5l
APGD(CE)[20] |e=8/255| 1 15 | 32 57 | 30
APGD (DLR) [20] | e =8/255| 0 34 | 64 75 | 30
APGDT [20] le=8/255| 0 33 | 63 75 | 28
Jitter [59] le=8/255| 0 30 | 59 71 | 5l
BPDA [4] le=4/255| 8 49 |61 71 | 42
TI-FGSM [23]  |e=4/255| 50 58 | 72 69 | 63
AutoAttack [20] |e=4/255| 0 37 | 8 18 | 26
DI-FGSM [65]  |e=4/255] 0 39 | 1 1| 58
MI-FGSM[65] |e=4/255| 0 38 | 5 18 | 63
RFGSM [59] le=4/255| 0 40 | 4 18 | 62
EOTPGD[71] |e=4/255| 0 41 | 5 16 | 63
APGD(CE)[20] |e=4/255| 1 51 | 10 21 | 38
APGD (DLR) [20] | € = 4/255| 0 34 |35 52| 30
APGDT [20] le=4/255| 0 33 |30 51 | 28
Jitter [59] le=4/255| 0 30 | 29 47 | 51

5.3. Compaction and Clean Symbolic Accuracy

As summarized in Tab. 3, our proposed SymDNN
has less than 0.4% accuracy drop in Top-1 and Top-
5 accuracy metrics, for different pre-trained models on
50,000 ImageNet testset. The Top-5 metric, popularized in
ILSVRC [49], can be useful for building ensemble mod-
els [64].

The data reduction can be calculated directly from
Eq. (2). For instance, with a patch size of 2 x 2, considering
8 bits per pixel representation and 2048 symbols, SymDNN
achieves around 68% compaction on the ImageNet test set.
On the other hand, using 512 symbols brings down the com-
paction to 74%, with 1% drop in accuracy. Using more than
2048 symbols does not seem to be profitable, as it increases
the computation load for cluster index training and patch

Table 2. SymDNN accuracy(%) comparison with state-of-the-art:
tested on 2000 randomly selected images from CIFAR-10 test-
set. “®” indicates SymDNN inference; codebook size: 2048. At-
tack magnitudes:- € = 8/255, Threat model: whitebox model &
black-box defense, iterations: 100. NRP [42] and DefenseGAN
(GD) [50] are input defenses. Rice20200verfitting [47] is an Ad-
versarially Trained (AT) model. In comparison, SymDNN has
much less compute & memory overhead.

Attacks | Acc. | Ace.® | NRP [42] | DG [50] | AT [47]
BPDA [4] | o] 23] 5 | 16 | 60
C&W[12] | 0] 67 ] 51 | 0 | 20
FAB [18] | o | 8 | &8 | 26 | 52
Square [3] | 11| 59 | 78 | 30 | 60
DeepFool [41] | 3 | 82 | 8 | 20 | ©
T-FGSM[23] | 12 ] 20 | 63 | 25 | 63
AutoAttack [20] | O | 49 | 19 | 34 | 50
DI-FGSM[65] | 16 | 52 | 40 | 22 | 58
MI-FGSM[22] | 2 | 50 | 27 | 23 | 56
RFGSM [59] | 315 | 3 | 54 | 56
APGDT [20] | 0] 67 ] 50 | 30 | 50
APGD(CE)[20] | O | 48 | 20 | 24 | 56
APGD (DLR)[20]| O | 62 | 46 | 26 | 52
EOTPGD[71] | 4 | 52 | 29 | 24 | 57
Titter [52] | 6 |59 ] o | 21 | 53

Table 3. ImageNet SymDNN accuracy (%) & compaction (%) :
Top-1 & Top-5 accuracies reported on full ImageNet testset. “*’
indicates SymDNN inference that uses a 2048 Symbols (# Syms).
For MSR ( defined in Sec. 4.2.1), Top-5 accuracy is reported here.

#Syms Model | Top-1 | Top-1° | Top-5 | Top-5° | MSR® A® |

WideResnet | 71.95 | 71.73 | 89.54 | 89.21 | 88.66

S Resnetls2 | 712 | 71.07 | 892 | 89.08 | 88.78 68

“ ResNext | 72.79 | 72.64 |90.10 | 89.76 | 89.46
WideResnet | 71.95 | 70.61 |89.54 | 88.45 | 87.75

S Resnetl52 |71.19| 70.34 | 89.2 | 88.62 | 87.54 74

ResNext | 7279 | 71.97 | 90.10 | 89.56 | 88.65

extraction, with negligible benefits in terms of accuracy.

5.4. Discussion

We observe that the clustering model for ImageNet can
be used to obtain 88.73% and 99.07% classification accu-
racy on CIFAR-10 & MNIST test sets, respectively. These
values are comparable to the inference accuracy with their
respective clustering models. This shows that a pre-trained
clustering model, learned from a large image dataset, can
be fairly generalized and useful for symbolic inference on
other datasets.

The adversarial robustness of SymDNN depends on the
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Figure 3. Investigation on C&W attack [12]: comparison of L2
distance between clean and attacked image vs. Levenshtein dis-
tance between clean and attacked symbolic image, for varying c.
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Figure 4. Resistance of SymDNN: The symbolic reconstruction
possibly reinstates the faded out patterns of the perturbed image
(3rd from left), by replacing with patch centroids in the recon-
structed image (4th from left). EOTPGD [5] with € = 32/255.

underlying model used for clustering the patches. When the
clustering algorithm is robust to small, potentially adversar-
ial noise, it can map locally altered regions to the same rep-
resentative patch (centroid), as illustrated in Fig. 4. When
the symbolic image is reconstructed from the representative
patches, it remains noise-free. Previous works investigate
noise robustness of clustering algorithms in the context of
random and potentially adversarial noise. In [1], it is proven
in a theoretical framework that k-means clustering is robust
to small set noise if the data is clusterable. For SymDNN,
we find that the cluster centroids are mostly well separated
based on the distances obtained from [29] library. (Please
refer to the supplementary material).

To do further analyses, we choose Carlini & Wagner
Lo attack [12] on CIFAR-10 dataset for these experiments.
In C & W attack, a constant ¢ is introduced for trading
between generation of visually similar adversarial exam-
ples (effectiveness) and large number of adversarial exam-
ples (success rate). We identify the cases where the non-
symbolic inference failed, but the symbolic one survived
against the adversarial attack. We find 1300 such cases
(mean: 1293, std:220) out of 2000 randomly selected im-
ages from CIFAR-10 testset, for varying values of c. We
measure (A) the normalized L, norm between clean and
attacked image, and (B) the normalized Levenshtein (edit)
distance between the reconstructed clean symbolic image
and the symbolic image after the attack.

Fig. 3 shows a visual comparison between the two dis-

tance measures, for different values of ¢. We observe that
the mean value of the normalized edit distance remains sig-
nificantly lower than the Ly norm, till the ¢ value reaches
1. The edit distance remains low as small changes in the
image do not result in significant change to the cluster as-
signments. We believe that the effective adversarial exam-
ples that C & W attack generates, are thwarted by this clus-
tering robustness, resulting in a boost in robust symbolic
accuracy. However, the performance degrades as the value
of ¢ reaches 1 and beyond, i.e., when the perturbations are
larger, the symbol map corresponding to the attacked image
changes significantly. It may be noted that this is a defense
black-box experiment and hence the gradient obfuscation
does not happen here.

It is also evident from Fig. 3 that the edit distance curve
is more aligned to the step-wise increment of the ¢ value,
compared to the L, distance. When using a symbolic in-
ference scheme, we believe that the edit distances between
clean and attacked symbolic images have the potential to
reveal further insights about adversarial attacks.

6. Conclusions

In this paper we have presented the algorithmic basis and
comprehensive evaluation of SymDNN, a scheme for ab-
straction & reconstruction of an input image before DNN
inference. We highlight that the DNNs deployed on embed-
ded systems lack defense mechanisms against a wide vari-
ety of adversarial attacks. Adversarial research community
strives for defenses that are robust against any adversarial
attacks, in a complete white-box setting. There are only a
small number of methods that achieve that aim. However
those methods are not suitable for resource-limited embed-
ded systems. Thus embedded vision tasks are unprotected
against any adversarial attacks. We show that SymDNN
has capability to undo adversarial perturbations for a wide
range of recent attacks, under black-box and white-box at-
tack models, when the defense remains a black-box to the
adversary. Under a complete white-box one attack model,
we show that the key to resist the recent strong adaptive at-
tacks, is designing transformation functions that are as hard
as possible. Our proposed SymDNN employs such an in-
put transformation, which is computationally efficient, and
results in image compression.

Along with these concrete benefits, we also report sev-
eral interesting aspects of SymDNN inference, e.g. the fun-
damental visual symbols learned by the ImageNet code-
book, the potential of Levenshtein distance as a measure
of dissimilarity between clean and attacked images, etc.
We believe that this paper will encourage other researchers
to study the larger potential of discretized and abstracted
images in computer vision. Our future work will be to
strengthen the confluence between symbolic abstraction and
DNN inference.
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