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Abstract

Vision transformers (ViT) have recently attracted con-
siderable attentions, but the huge computational cost re-
mains an issue for practical deployment. Previous ViT
pruning methods tend to prune the model along one dimen-
sion solely, which may suffer from excessive reduction and
lead to sub-optimal model quality. In contrast, we advo-
cate a multi-dimensional ViT compression paradigm, and
propose to harness the redundancy reduction from attention
head, neuron and sequence dimensions jointly. Firstly, we
propose a statistical dependence based pruning criterion
that is generalizable to different dimensions for identifying
the deleterious components. Moreover, we cast the multi-
dimensional ViT compression as an optimization problem,
objective of which is to learn an optimal pruning policy
across the three dimensions while maximizing the com-
pressed model’s accuracy under a computational budget.
The problem is solved by an adapted Gaussian process
search with expected improvement. Experimental results
show that our method effectively reduces the computational
cost of various ViT models. For example, our method re-
duces 40% FLOPs without top-1 accuracy loss for DeiT
and T2T-ViT models on the ImageNet dataset, outperform-
ing previous state-of-the-art ViT pruning methods.

1. Introduction

Vision transformers (ViT) [8,26] have achieved substan-
tial progress in prevalent computer vision tasks such as im-
age classification, object detection and semantic segmen-
tation. However, ViT models suffer from excessive com-
putational and memory cost, impeding their deployment in
resource-restricted or low-powered applications. Although
various model compression algorithms have been proposed
for convolutional neural networks (CNN), it is not imme-
diately clear whether they are the same effective for vision
transformers and there are only few works [5,22,23,25,33]
on accelerating vision transformers.
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Figure 1. The accuracy-FLOPs curve of our compressed vision
transformer models compared with the baseline models.

Prior works on compressing transformer models [6, 28,
32] in natural language processing (NLP) place their fo-
cus on addressing the quadratic complexity of the softmax-
attention operation, presumably because the input has very
long sequence in NLP tasks. However, for vision trans-
formers, the softmax-attention operation constitutes a small
fraction of the total FLOPs, as shown in Table 1. Instead,
the projection layers are the major computation bottleneck.
The computation complexity of these projection layers are
affected by the number of attention heads, the number of
neurons, and sequence length jointly.

Model Softmax-attention MHSA projections FFN projections Total

DeiT-S [26] 0.36G (8%) 1.39G (30%) 2.79G (61%) 4.6G
DeiT-B [26] 0.72G (4%) 5.58G (32%) 11.15G (64%) 17.5G

Table 1. FLOPs composition of DeiT-S/-B models. “MHSA”:
multi-head self-attention. “FFN”: feed-forward network.

ViT models split the input image into a sequence of im-
age tokens. Considering that not all tokens contribute to
the final predictions [23] and the high similarity between
tokens within a layer [25], recent ViT compression meth-
ods [23,25,33] adopt unstructured token pruning by remov-
ing the redundant and unimportant tokens. Since the self-
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attention operator can process variable sequence length,
these unstructured token pruning methods can achieve prac-
tical acceleration. However, to achieve more compelling
computational cost reduction, excessive pruning of a sin-
gle dimension (i.e., sequence length) leads to unacceptable
accuracy loss, as will be discussed in Section 4.4. This mo-
tivates our study on how to search an optimal compression
policy to reduce the computational cost from multiple di-
mensions jointly, in order to achieve better computation-
accuracy trade-off. In this work, we consider reducing the
number of attention heads in MHSA modules, the number
of neurons in FFN modules, and the sequence length jointly.

Multi-dimensional ViT compression is challenging.
Most of the current pruning algorithms are designed by
the unique property of a single dimension, e.g., using the
column mean of the attention matrix for sequence reduc-
tion [27]. These methods may hardly generalize to other
pruning dimensions. Moreover, the large decision space
stemming from three integrated dimensions makes it hard to
decide how much of each dimension should be compressed.

Our contributions. To rectify the aforementioned prob-
lems, we firstly propose a general data-aware pruning cri-
terion that is applicable to both structured neuron or head
reduction and unstructured sequence reduction. The crite-
rion measures the statistical dependency between the fea-
tures of a dimension and the output predictions of the model
based on the Hilbert-Schimdt norm of the cross-variance
operator. Moreover, we formulate the multi-dimensional
ViT compression as an optimization problem, seeking the
optimal pruning policy (i.e, pruning ratios across the three
dimensions) that maximize the compressed model’s accu-
racy under a target computational cost. Considering the
non-differentiability of the problem and the optimization ef-
ficiency, we propose to use Gaussian process (GP) search
with expected improvement to estimate the compressed
model’s accuracy for different pruning policies, and solve
the problem by non-linear programming solver. To fit a GP,
we need to evaluate the actual accuracy of a small set of
sampled pruning policies. We further design a weight shar-
ing mechanism for fast accuracy evaluation without training
each compressed model from scratch. Experimentally, our
method achieves higher accuracy than previous state-of-the-
art ViT compression methods under same FLOPs. When
compressing DeiT [26] and T2T-ViT [37] on ImageNet [7],
our method reduces 40% ∼ 60% FLOPs and yields 1.3× ∼
2.2× practical speedup without significant accuracy drop.

2. Related Works
Model compression on vision transformer. To improve
the efficiency of ViT models, [5,38] applies structured neu-
ron pruning or unstructured weight pruning. [22, 23, 25, 33]
applies dynamic or static token sparsification. [26] proposes

a knowledge distillation method specific to transformer
by introducing a distillation token. [20] uses post-training
quantization to reduce the model size. However, multi-
dimensional compression of ViT models has been rarely ex-
plored, and its effectiveness compared to uni-dimensional
compression is unknown. In this work, we will show that
excavating the redundancy from multiple dimensions is im-
perative to achieve more appealing FLOPs reductions, and
our method achieves state-of-the-art pruning results com-
pared to previous methods.

Multi-dimensional pruning methods have been pro-
posed for compressing CNNs. [13, 17, 31] impose sparsity
regularization, e.g., group LASSO, to prune channels and
layers in CNNs. [10] uses L1 regularization to prune chan-
nels and feature-map spatial sizes in CNNs. In addition to
the regularization-based methods, [21, 29] directly search
the number of channels, layers and spatial sizes under a
FLOPs budget by reinforcement learning or polynomial re-
gression. In contrast, our method is specially designed
for ViT compression by jointly pruning attention heads in
the MHSA modules, neurons in the FFN modules, and se-
quence. We propose a dependency based pruning criterion
and an efficient Gaussian process search to learn the optimal
compression policy.

One-Shot NAS. Our multi-dimensional ViT compression
method is also inspired by one-shot NAS [2,11,16]. In one-
shot NAS, the architecture search space is encoded into a
supernet, whose weight is shared among different architec-
ture candidates. In the first stage, the weight of the supernet
is trained by sampling different subnets during optimiza-
tion. The second stage is to search the optimal architecture
by ranking the performance of different subnets using the
weight inherited from the supernet. AutoFormer [4] and
GLiT [3] proposed one-shot NAS frameworks dedicated to
vision transformer search. The differences of our method
are summarized as follows: (1) our method is to compress
an existing architecture; (2) we propose a Gaussian pro-
cess search to solve the multi-dimensional ViT compression
problem; (3) the weight sharing in our method is guided by
our dependency based pruning criterion.

3. Methodology
3.1. Preliminary

ViT model contains interleaved multi-head self-attention
(MHSA) and feed-forward network (FFN) modules. De-
note the input features to MHSA and FFN in the l-th layer
by X l, Zl ∈ RN×d, where N is the sequence length and d
is the embedding dimension. The MHSA module performs
the following operations:

MHSA(X l) =

H∑
h=1

softmax(
QhK

T
h√

dh
)VhW

o
h ,
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where the query, key and value features are computed
by Qh = X lWQ

h ,Kh = X lWK
h , Vh = X lWV

h

(WQ
h ,W

K
h ,WV

h ∈ Rd×dh ), H is the number of attention
heads, and W o

h ∈ Rdh×d is the output projection. The FFN
module performs the following operations:

FFN(Zl) = σ(ZlW1 + b1)W2 + b2,

where σ denotes the non-linear activation function and
W1,W

T
2 ∈ Rd×d′

, b1 ∈ Rd′
, b2 ∈ Rd are the projection

matrices and biases.

3.2. Dependency based pruning criterion

Our goal is to accelerate ViT models by pruning multi-
ple dimensions jointly, including the number of neurons in
FFN modules, the number of heads in MHSA modules, and
the sequence length. We need a general criterion to identify
the deleterious features in different dimensions. Intuitively,
the unimportant features contribute least to the output pre-
dictions. In other words, the output of the model has weak
dependency on the unimportant features. Thus, we propose
a dependency based pruning criterion, which evaluates the
importance based on the statistical dependency between the
features and the output predictions of the model.

Denote the random vector of the features by Z and the
random vector of the model outputs by Y . Let PZ,Y be
the joint distribution between the two random variables.
To measure the dependence between Z and Y , we use the
cross-covariance operator [1] defined as:

Czy := Ezy[(Φ(z)− µz)⊗ (Ψ(y)− µy)], (1)

where Φ (or Ψ) represents a kernel mapping from the fea-
ture space (or the model output space) to a reproducing ker-
nel Hilbert space (RKHS), with mean vector µz (or µy). ⊗
denotes the tensor product. To summarize the degree of de-
pendence between Z and Y , we use the Hilbert-Schmidt
norm of the cross-covariance operator Czy , which is de-
noted by ∥Czy∥2HS and is computed by the trace ofCzyC

T
zy .

As shown in the following theorem by [9], ∥Czy∥2HS can
characterize the independence between random variables:

Theorem 1 (Czy and Independence) Given RKHSs with
characteristic kernels. Then, ∥Czy∥2HS = 0 if and only if Z
and Y are independent.

Characteristic kernels, such as Gaussian RBF kernel
k(x, x′) = exp

(
− ∥x− x′∥22/(2σ2)

)
, allows us to measure

an arbitrary mode of dependence (including non-linear de-
pendence) between Z and Y . Features with high ∥Czy∥2HS

value have high dependency with the outputs of the model,
indicating that the features have considerable influence to
the output predictions, thus they should be retained.

To use the dependency criterion in practice, we need an
empirical estimate from a batch of training samples. Denote

the kernel functions by k(z, z′) and l(y, y′). Let K,L be
the Gram matrices (Ki,i′ = k(zi, zi′), Li,i′ = l(yi, yi′))
computed over the features and model outputs ofB training
samples. An empirical estimator of ∥Czy∥2HS is given by:

̂∥Czy∥2HS := (B − 1)−2 tr(KCLC), (2)

where C = IB − (1/B)1B1
T
B is the centering matrix

(IB ,1B represent identity matrix and all-ones vector) and
tr(·) is the matrix trace operation. As shown in [9], this em-
pirical estimator converges sufficiently: with high probabil-
ity, | ̂∥Czy∥2HS −∥Czy∥2HS | is bounded by a small constant.

Our proposed dependency based pruning criterion can be
applied to prune different dimensions, including attention
heads, neurons, and sequence length, introduced next:

FFN neuron reduction. We prune neurons in the inter-
mediate layer of FFN modules. Denote the features from
the intermediate layer in the l-th FFN by Zl ∈ RB×N×d′

,
where each neuron j ∈ [d′] has features Zl

:,:,j ∈ RB×N .
Given a neuron pruning ratio κl, we retain ⌈(1 − κl)d′⌉
important neurons. We compute the dependency score for
each neuron in the layer by ψl

j = tr(Kl
jCLC), where

Kl
j ∈ RB×B is the Gram matrix defined over Zl

:,:,j , i.e.,
[Kl

j ]i,i′ = k(Zl
i,:,j , Z

l
i′,:,j). Then, we rank the dependency

scores in descending order, and identify the important neu-
rons by ArgTopK({ψl

1...ψ
l
d′}; ⌈(1−κl)d′⌉), which gives the

neuron indices with the top ⌈(1−κl)d′⌉ dependency scores.
The remaining bottom-ranking neurons are pruned.

Attention head reduction. Denote the output features
of the self-attention operator in the l-th MHSA by Zl ∈
RB×N×H×dh . Given a head pruning ratio ζl, the head prun-
ing procedure is similar to neuron pruning, except that each
head h ∈ [H] has output features Zl

:,:,h,: ∈ RB×N×dh .
To construct the feature Gram matrix, we perform mean
pooling along the embedding dimension to obtain Z̃l

:,:,h =

mean(Zl
:,:,h,:; dim=-1) (-1 means the last tensor dimension),

which has a size of RB×N . Then, we compute the Gram
matrix Kl

h over Z̃l
:,:,h and the head dependency score ψl

h.
We keep those heads with the top ⌈(1− ζl)H⌉ dependency
scores and prune the other bottom-ranking heads.

Sequence reduction. To achieve unstructured sequence
reduction, we insert token selection layer (TSL) (no extra
parameters) after the MHSA module and before the FFN
module at each transformer layer. Let Zl ∈ RB×N×d be
the input features to l-th TSL. Given a sequence reduc-
tion ratio νl, TSL outputs the selected ⌈(1 − νl)N⌉ im-
portant tokens from Zl ∈ RB×N×d according to indices
ArgTopK({ψl

1...ψ
l
N}; ⌈(1 − νl)N⌉). That is, TSL extracts

a sub-tensor from the input features, the output has size
RB×⌈(1−νl)N⌉×d. The token importance scores ψl

n, n ∈
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[N ] are computed based on the Gram matrix Kl
n defined

over the token features Zl
:,n,: ∈ RB×d. After TSL, the se-

quence length in subsequent layers becomes ⌈(1 − νl)N⌉.
And the subsequent TSLs select tokens from what are pre-
served by the previous TSLs.

3.3. Multi-dimensional ViT compression via Gaus-
sian process search

Formulation. We aim to strike a balance among the three
pruning dimensions so that the compressed model has the
best accuracy under a computation constraint. To this end,
the multi-dimensional compression is formulated as:

max
{κl,ζl,νl}L

l=1

Accuracy({κl, ζl, νl}Ll=1), (3)

s.t. C({κl, ζl, νl}Ll=1) ≤ T ,

where Accuracy(·) gives the accuracy of the compressed
model with pruning ratios {κl, ζl, νl}Ll=1, C(·) represents
the FLOPs of the compressed model, and T is the con-
straint.

Gaussian process search. To solve problem (3), we re-
sort to Bayesian optimization, as it provides an efficient
framework for objectives that may not be differentiable
or expressed in a closed-form. We use Gaussian process
(GP) [24] with expected improvement (EI) to estimate the
accuracy function in closed form, so that problem (3) can
be transformed to a simpler and solvable constrained non-
linear optimization. As a guideline, the pseudo-code of our
method is provided in Algorithm 1.

We denote a pruning policy by ω = {κl, ζl, νl}Ll=1. A
Gaussian process is described by:

f ∼ GP(µ(·), k(·, ·)),

where the GP has a mean function µ(ω) = E[f(ω)] and a
covariance kernel k(ω, ω′) = E[(f(ω) − µ(ω))(f(ω′) −
µ(ω′))]. We sample m different pruning policies Ω =
{ωi}mi=1 satisfying the constraint T , obtain m compressed
models using our dependency based pruning, evaluate their
actual accuracy A(ωi) on a hold-out set, and fit the GP
model by the set {ωi,A(ωi)}mi=1. At a new pruning policy
ω̂, the posterior of f at this point is given by:

f̂ ∼ N (µ̂, Σ̂),

µ̂ = µ(ω̂) + k(ω̂,Ω)k(Ω,Ω)−1(A(Ω)− µ(Ω)),

Σ̂ = k(ω̂, ω̂)− k(ω̂,Ω)k(Ω,Ω)−1k(Ω, ω̂).

The expected improvement in accuracy at this new policy ω̂
is computed in closed form by:

EI(ω̂) = (A∗ − µ̂)Φ
(
(A∗ − µ̂)/Σ̂

)
+ Σ̂ϕ

(
(A∗ − µ̂)/Σ̂

)
,

Algorithm 1: Multi-dimensional ViT compression.
1 Input: An L-layer ViT model with weights

W = {w1, ...,wL}; pre-training iterations Tpre; target
computational cost T ; population size m; GP search
iterations Tgp; finetuning iterations Tft; training set Dtr;
hold-out validation set Dval ;

2 Output: Compressed ViT model satisfying the constraint
T and its optimal weights W∗ ;
/* Pre-training with Eq.(5) */

3 Randomly initialize the model weights W;
4 for each training iteration t ∈ [Tpre] do
5 Sample a mini-batch (x, y) from Dtr, sample a

pruning policy ω from UT , and select weights
W(ω) by weight sharing as described in Sec.3.3 ;

6 Compute training loss L(y|x;W(ω)), backprop and
update W ;

/* GP search as described in Sec.3.3

*/
7 Randomly sample m different pruning policies {ωi}mi=1

satisfying T , get m compressed models (with weights
W(ωi)) by dependency based pruning as described in
Sec.3.2, evaluate their actual accuracy A(ωi) on Dval,
and fit a GP model with Ω = {ωi,A(ωi)}mi=1 ;

8 for each search iteration t ∈ [Tgp] do
9 Solve the non-linear programming Eq.(4) by SQP to

get pruning policy ω∗
t ;

10 Evaluate the actual accuracy of ω∗
t on Dval;

11 Augment {ω∗
t ,A(ω∗

t )} to Ω and refine the GP model
;

/* Final pruning and finetuning */
12 Compress the ViT model with the optimal pruning policy

ω∗
Tgp using dependency based pruning ;

13 Finetune the compressed model by Tft iterations ;

where Φ, ϕ represent the CDF and PDF of the standard nor-
mal distribution, and A∗ is the accuracy of the best policy
in Ω. Therefore, the most promising policy ω∗ to evaluate
is the solution to the following non-linear programming:

max
ω̂

EI(ω̂), s.t. C(ω̂) ≤ T . (4)

Since both the objective and constraints1 in (4) have closed-
form formulas, the problem can be solved by standard
constrained optimization solver, and we use sequential
quadratic programming (SQP) [15]. We iterate the search
process by using the obtained ω∗ and its actual accuracy
A(ω∗) to refine the GP model, and find the next (more op-
timal) policy until no accuracy improvement is observed.
With the final optimal pruning policy, we apply our depen-
dency based pruning, and finetune the compressed model.

1FLOPs of a ViT model can be computed by closed-form formula with
the pruning ratios in three dimensions.
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Accuracy evaluation in GP search. Our GP search in-
volves evaluating the actual accuracy of different com-
pressed models. Instead of training many models with dif-
ferent pruning policies from scratch, we apply weight shar-
ing [11] for efficient accuracy evaluation. We pre-train the
full model weights W in a way that the accuracy of sub-
models with inherited weights are predictive for the accu-
racy obtained by training them independently. Our pre-
training objective is given by:

min
W

E(x,y)∼D,ω∼UT [L(y|x;W(ω))] (5)

where D is the training set, UT is a constrained uniform
sampling distribution2 of pruning policies, and L is the loss
function. W(ω) means selecting weights from W to form
the compressed model with pruning policy ω. For neuron
and head dimensions, we keep the weights corresponding
to neurons or heads with the top dependency scores as de-
scribed in Section 3.2. Reducing sequence dimension does
not require modification to the model weights, thus all pa-
rameters are shared. Thanks to the weight sharing, we only
need to train one set of weights and directly evaluate the
accuracy of different pruning policies by inheriting weights
from the full model. This takes much less time than train-
ing each compressed model from scratch and makes our GP
search efficient.

4. Experiments
4.1. Setup

We conduct experiments on the ImageNet dataset [7]
with represntative ViT models, DeiT [26] and T2T-
ViT [37], which were also used by previous ViT compres-
sion methods [5, 22, 23, 25, 33]. All experiments run on Py-
Torch framework with Nvidia A100 GPUs. We firstly pre-
train the models from scratch with Eq.(5), and follow the
same training hyper-parameters as the paper of DeiT and
T2T-ViT. Then, we conduct Gaussian process (GP) search
to obtain the optimal pruning policy. The target computa-
tional costs are listed as the FLOPs reductions in Table 2.
The initial population size to fit a GP model is 100, and
the GP search runs for 100 iterations. We randomly sample
50k images (50 images per class) from the training set of
ImageNet for accuracy evaluation during GP search. Our
GP search process is computationally efficient, taking less
than 1 hour on a single A100 GPU for all cases. Based
on the optimal pruning policy, we compress the pre-trained
models along head, neuron and sequence dimensions using
our dependency based pruning. The compressed model is
finetuned following the same training strategy as [25, 26].
To compute the dependency score in Eq.(2), we randomly

2We sample the pruning policy repeatedly until the compressed model
FLOPs satisfies the constraint T .

Method Top-1 Top-1 drop FLOPs FLOPs
reduction

DeiT-Small model
Baseline [26] 79.8% - 4.6G -
SPViT [12] 78.3% 1.5% 3.3G 29%
IA-RED2 [22] 79.1% 0.7% 3.1G 32%
S2ViTE [5] 79.2% 0.6% 3.1G 32%
Evo-ViT [33] 79.4% 0.4% 2.9G 37%
DynamicViT [23] 79.3% 0.5% 2.9G 37%
Ours 79.9% -0.1% 2.9G 37%
UVC [36] 78.4% 1.4% 2.4G 48%
Ours 79.3% 0.5% 1.8G 60%

DeiT-Base model
Baseline [26] 81.8% - 17.5G -
VTP [38] 81.3% 0.5% 13.8G 22%
IA-RED2 [22] 80.3% 1.5% 11.8G 33%
S2ViTE [5] 82.2% -0.4% 11.8G 33%
SPViT [12] 81.6% 0.2% 11.7G 33%
Evo-ViT [33] 81.3% 0.5% 11.7G 33%
DynamicViT [23] 81.3% 0.5% 11.2G 36%
Ours 82.3% -0.5% 11.2G 36%
UVC [36] 80.6% 1.2% 8.0G 55%
Ours 81.5% 0.3% 7.0G 60%

T2T-ViT-14 model
Baseline [37] 81.5% - 4.8G -
PatchSlim [25] 81.1% 0.4% 2.9G 40%
Ours 81.7% -0.2% 2.9G 40%

Table 2. Comparison of our compressed ViT models versus base-
lines and previous methods on ImageNet. Results of “Ours” on
DeiT-S/-B are obtained by applying the proposed method to re-
duce 40% and 60% FLOPs respectively, in order to compare with
different methods. Negative “Top-1 drop” means that the accuracy
improves over the baseline.

sample a mini-batch of 256 images from the training set
and use Gaussian kernel with bandwidth σ = 1. In contrast
to [23,36], our method does not use knowledge distillation.

4.2. Comparison with the state-of-the-art ViT com-
pression methods.

We compare with the latest ViT model compression
methods, including sequence reduction methods (Dynam-
icViT [23], IA-RED2 [22], PatchSlim [25], Evo-ViT [33]),
weight pruning methods (VTP [38], S2ViTE [5]), unified
ViT compression method UVC [36], and NAS-based ViT
pruning method [12]. The results are shown in Table 2.

Our method achieves noticeably higher accuracy than
previous methods under same FLOPs. For example, our
pruned DeiT-S model with 37% FLOPs reduction outper-
forms DynamicViT and Evo-ViT by 0.6% and 0.5% accu-
racy, respectively. On the other hand, at the same target ac-
curacy, our method achieves higher FLOPs reduction. For
example, our pruned DeiT-B model yields 60% FLOPs re-
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Method DeiT-Ti DeiT-S
Top-1 FLOPs Top-1 FLOPs

Baseline 72.2% 1.3G 79.8% 4.6G
Baseline2× 73.9% 1.3G 81.0% 4.6G
Manifold [14] 75.1% 1.3G 81.5% 4.6G
UP-DeiT [35] 75.8% 1.3G 81.6% 4.6G
NViT-DeiT [34] 76.2% 1.3G 82.1% 4.6G
Ours 77.0% 1.3G 82.1% 4.6G

Table 3. Results of expand-then-compress on ImageNet. “2×”
means doubling the training epochs when training the baseline.

Method Top-1 FLOPs Top-1 FLOPs

GLiT [3] 76.3% 1.4G 80.5% 4.4G
AutoFormer [4] 74.7% 1.3G 81.7% 5.1G
Ours 77.0% 1.3G 82.1% 4.6G

Table 4. Comparison with NAS results on ImageNet.

duction with 81.5% top-1 accuracy, compared to Dynam-
icViT and Evo-ViT yielding less than 36% FLOPs reduc-
tion. These results clearly evidence the advantage of prun-
ing multiple dimensions in the ViT models, when we aim to
achieve compelling FLOPs reduction without compromis-
ing too much accuracy.

4.3. Results of expand-then-compress.

Apart from compressing the model for faster inference,
our method can improve existing models for higher accu-
racy under the same FLOPs, as shown in Table 3. More ex-
actly, we apply our method to compress a scaled-up DeiT-
Ti model (width scaled by 2×), with the goal of reducing
its FLOPs to the same level as the original DeiT-Ti. No-
tably, the obtained model achieves 77% top-1 accuracy at
1.3 GFLOPs, outperforming the original DeiT-Ti (trained
with longer training epochs) by 3.1%. Same phenomenon
also applies to DeiT-S where our method achieves 82.1%
top-1 accuracy, improving the baseline by 1.1%. These re-
sults suggest that heavily compressed larger ViT models
may achieve higher accuracy than small models. In sum-
mary, our method achieves better Pareto frontier compared
to existing models as shown in Figure 1.

Comparison with NAS results. We also compare the
expand-then-compress results obtained by our method
against NAS results [3, 4]. As shown in Table 4, compress-
ing a larger ViT model to smaller FLOPs can achieve higher
accuracy than searching ViT architecture from scratch.

4.4. Ablation study.

Effect of multi-dimensional compression. We investi-
gate the effectiveness of multi-dimensional compression
in Table 5, where we compare with reducing the neuron,
head or sequence individually for DeiT-B on ImageNet.

Model Neuron Head Sequence Top-1 FLOPs

DeiT-B

- - - 81.8% 17.5G
✓ - - 79.4% 7.4G
- - ✓ 79.5% 7.0G
✓ ✓ - 80.4% 7.1G
✓ - ✓ 80.7% 7.0G
- ✓ ✓ 80.2% 7.0G
✓ ✓ ✓ 81.5% 7.0G

Table 5. Ablation study on the effectiveness of multi-dimensional
ViT compression. “✓” means that pruning is conducted along the
corresponding dimension, while “−” means no pruning along the
dimension. In the last row, jointly pruning along the neuron, head
and sequence dimensions achieves the best accuracy. Results are
obtained with DeiT-B model on ImageNet.
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Figure 2. Top: Layer-wise pruning ratio in our learned multi-
dimensional pruning policy by GP search. Bottom: Layer-wise
FLOPs reduction. Results are obtained by applying our method to
DeiT-B model on ImageNet.

Firstly, certain uni-dimensional compression method (e.g.,
head pruning alone) cannot yield significant FLOPs reduc-
tion, since the FLOPs of all the MHSA modules only ac-
count for 40% of the total FLOPs. Secondly, although
each dimension is prunable to some extent, excessive prun-
ing of whichever dimension causes unacceptable accuracy
loss, even for the fine-grained sequence reduction. In con-
trast, our multi-dimensional compression (last row of Ta-
ble 5) achieves more FLOPs reduction with better accu-
racy. Searching the optimal policy to balance the FLOPs
reduction from different dimensions is of vital importance
if we aim to achieve significant acceleration on vision trans-
formers. In Figure 2, we also visualize the learned pruning
policy by plotting the layer-wise pruning ratio and FLOPs
reduction. Most of the head and neuron reductions come
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Figure 3. Compare our dependency criterion versus other metrics for pruning each dimension individually. The plots show the pruned
accuracy (before finetuning) versus pruning ratios along each dimension. Results are obtained with DeiT-S on ImageNet.

Model DeiT-S DeiT-B T2T-ViT-14
Base Pruned Base Pruned Base Pruned

(FLOPs reduction) (0%) (37% / 60%) (0%) (36% / 60%) (0%) (40%)

Top-1(%) 79.8 79.9 / 79.3 81.8 82.3 / 81.5 81.5 81.7
Throughput (img/s) 2773 4050 / 5523 1239 1792 / 2649 1940 2527

Table 6. Compare the throughput of our compressed models with
baseline models, measured on one Nvidia A100 GPU.
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Figure 4. Visualization of the attention-maps (averaged over 256
images) produced by all heads in the DeiT-B model. Red box
means the head is pruned based on our dependency criterion.
Number of heads removed follow our pruning policy in Table 5.

from shallower layers while most of the sequence reduc-
tions occur at deeper layers. Moreover, deeper layers tend
to have more redundancy, reflected by the increased layer-
wise FLOPs reduction.

Actual inference speedup. We compare the throughput
of our compressed models over baselines on a single Nvidia
A100 GPU with a fixed batch size of 256. A shown in
Table 6, our compressed models achieve 1.3× ∼ 2.2×
throughput improvement without significant accuracy loss.

Model Method Top-1 FLOPs

DeiT-S
Random search 76.4% 1.8G
GP search (ours) 79.3% 1.8G

Table 7. Compare GP search with random search.

Different pruning criteria. In Figure 3, we compare our
dependency based pruning criterion with previous metrics
for a specific pruning dimensions: SpAtten [27] for head
pruning, attention probability [27] (AttenProb) for sequence
reduction, and row-wise norm of the weight matrix (Mag-
nitude) for neuron pruning. All criteria (including ran-
dom selection) perform well when the pruning rate is small
(< 20%), suggesting that the redundancy indeed exists in
each dimension. However, our dependency based pruning
achieves relatively higher accuracy at larger pruning rates.

In Figure 4, by visualizing the attention-maps produced
by all the heads in DeiT-B model, we observe that depen-
dency based pruning indeed removes the redundant heads.
In Figure 5, by visualizing the attention-maps produced by
the top-ranking and bottom-ranking heads in the last block
of the DeiT-B model, we see that our proposed dependency
criterion can identify the heads that are more important to
the model prediction.

GP search versus random search. Compared to random
search [16] which determines the pruning policy by select-
ing the candidate with best validation accuracy from a ran-
dom population, our GP search obtains better compressed
model with 2.9% higher accuracy at the same FLOPs, as
shown in Table 7.

GP search process is visualized in Figure 6. Our GP
search firstly randomly samples 100 populations (pruning
policies that satisfy the computation target) to fit GP model,
which are shown on the left of the figure. On the right,
the plot shows the validation accuracy of the pruning policy
obtained by solving Eq.(4) at each search iteration. As the
search process iterates, the obtained pruning policy gradu-
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Image High dep. head Low dep. head

Figure 5. Examples of the attention-maps produced by top-ranking
and bottom-ranking (in terms of our dependency based pruning
criterion) attention head in the last block of DeiT-B model for dif-
ference input images.

Figure 6. GP search process with DeiT-B model on ImageNet by
plotting the validation accuracy over search iterations.

ally improves in terms of the top-1 accuracy until conver-
gence. And the final policy achieves notably higher accu-
racy than the best result in the initial random sampling.

4.5. Results of object detection

For object detection, we apply our method to com-
press RetinaNet [18] with PVT-Small [30] backbone on
COCO2017 dataset [19]. Following [30], models are
trained on COCO train2017 (118k images) and evalu-
ated on val2017 (5k images). We use the same training
hyper-parameters as [30] to finetune the compressed model:
AdamW optimizer with a batch size of 16, an initial learn-
ing rate of 1 × 10−4, standard 1× training schedule (12

Method FLOPs AP AP50 AP50 APS APM APLreduction

PVT-Small [30] 0% 38.7 59.3 40.8 21.2 41.6 54.4
Ours 30% 38.6 58.8 40.6 21.0 41.5 54.4

Table 8. Results of RetinaNet with PVT-Small backbone on
COCO2017 data for object detection task.

epochs), learning rate is decayed by 10 at epoch 8 and 11.
The training image is resized to have a shorter side of 640
pixels, and during testing the shorter side of the input image
is fixed to 640 pixels.

PVT-Small is an efficient ViT models. It already has
progressive sequence shrinking strategy and als performs
Q-K reduction in the self-attention operators. Accordingly,
we modify our sequence reduction strategy for PVT-Small.
The token selection layer no longer discard the unimpor-
tant tokens (those with bottom-ranking dependency scores).
Instead, they are directly skipped without participating any
computations. The important tokens selected based on our
dependency based pruning criterion participate the compu-
tations in the MHSA and FFN modules, and the output will
be concatenated with the skipped unimportant tokens.

The results are shown in Table 8. Our compressed model
achieves almost the same AP values compared to the base-
line model, while yielding 30% FLOPs reduction.

5. Conclusion
In this paper, we present a novel ViT model compres-

sion framework which prunes a pre-trained ViT model from
attention head, neuron, and sequence dimensions jointly.
We propose a statistical dependency based pruning criterion
based on the Hilbert-Schmidt norm of the cross-covariance
operator in order to identify the deleterious features in dif-
ferent dimensions. Moreover, our framework learns the
optimal pruning policy by casting multi-dimensional com-
pression as an constrained non-linear optimization and us-
ing Gaussian process search with expected improvement to
solve it. Our results on ImageNet with various ViT models
outperform previous state-of-the-art ViT pruning methods
under same computational budget.

Limitation. One limitation is that our method does not
explicitly incorporate model depth into the compression
space. Instead, depth reduction is implicitly covered since
pruning all the neurons or heads would remove the layer
except for the skip connection. However, we did not ob-
serve such case in our optimal pruning policy (cf. Figure
2), suggesting that layer removal may be too aggressive for
current ViT models. Nevertheless, this study demonstrates
the potential of jointly pruning multiple dimensions for ac-
celerating ViT models, and we hope our results to be useful
for future research.
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