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Abstract

This paper introduces a new lightweight method for im-
age recognition. ImageSig is based on computing signa-
tures and does not require a convolutional structure or an
attention-based encoder. It is striking to the authors that it
achieves: a) an accuracy for 64 X 64 RGB images that ex-
ceeds many of the state-of-the-art methods and simultane-
ously b) requires orders of magnitude less FLOPS, power
and memory footprint. The pretrained model can be as
small as 44.2 KB in size. ImageSig shows unprecedented
performance on hardware such as Raspberry Pi and Jetson-
nano. ImageSig treats images as streams with multiple
channels. These streams are parameterized by spatial di-
rections. We contribute to the functionality of signature and
rough path theory to stream-like data and vision tasks on
static images beyond temporal streams. With very few pa-
rameters and small size models, the key advantage is that
one could have many of these ”detectors” assembled on the
same chip; moreover, the feature acquisition can be per-
formed once and shared between different models of differ-
ent tasks - further accelerating the process. This contributes
to energy efficiency and the advancements of embedded AI
at the edge.

1. Introduction
Image recognition represents the backbone for all vi-

sion tasks in which its accuracy and efficiency are sem-
inal for tasks such as classification, object detection, or
semantic segmentation. Advances in image recognition
have been achieved relying on very deep convolution mod-
els [1–4]. Most recently, Attention-based models such
as Vision Transformers (ViT) [5] have also shown strong
progress for vision tasks at scale when trained in large
datasets. While both approaches (Convolution-based and
attention-based models) have yielded high accuracies in
most benchmark datasets (e.g. ImageNet [6]), this perfor-
mance often comes at the expense of the model weights,
the number of parameters and subsequently the time and

resources needed for training and inference. Even with
mobile-friendly methods (e.g. MobileNets [7–9]) and post-
training quantization techniques [10,11], the number of pa-
rameters still exceeds millions. This makes it a challenge
for embedding AI for microcontrollers or devices with min-
imal computational resources when implementing an entire
pipeline of multiple vision models.

In this paper, we introduce a new method, called Image-
Sig, that is suitable for training lightweight vision models.
Based on rough path theory [12, 13], we treat a single im-
age as a stream of paths over a virtual time, whereas pixels
evolve instantaneously over its spatial attributes. The archi-
tecture of ImageSig relies on extracting a unique signature
from these paths that can be trained directly by a fully con-
nected layer for classification without the need for extract-
ing features based on expensive operations such as 2D con-
volution layers or attention-based structures. We reveal that
ImageSig can provide a faster and efficient way for training
deep models with very few parameters and model footprint
that is often less than 1 MB without quantization and drops
as low as 44.2 KB after quantization.

2. Related work
There are three domains that are relevant to the stated is-

sue. We have reviewed the relevant work, and here we high-
light the key challenges where further research is needed.

Lightweight convolution models: Training fast, effi-
cient, and lightweight convolution models is ongoing re-
search [7–9]. There are several approaches that are of par-
ticular interest to scholars and have been intensively ad-
dressed in the literature. First, lightweight models have
been achieved by training smaller networks of a larger one
of the same family (e.g. ResNet18 vs ResNet 101 [1]).
However, this approach often comes at the expense of accu-
racy when compared to the larger networks of the same fam-
ily. The second approach is by training a larger network and
distillates its knowledge to a smaller network with fewer
parameters [14]. Transferring knowledge from teacher to
student architecture was key in many applications. How-
ever, on others, it remains an expensive solution for train-
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ing a given task. Nevertheless, the weights of a student
network do not often show drastic changes in the overall
number of parameters. Instead, it is often reported as a
slightly lighter version of a given teacher network. Third,
by relying on various factorization-based methods (e.g. sep-
arable convolutions [2], dimension-wise convolutions [15]),
various mobile-friendly methods have been achieved for
lightweight vision tasks such as MobileNets [7–9], Shuf-
fleNetV2 [16], MNASNet [17], and ESPNetv2 [18], which
have been proven to be more efficient in comparison to deep
convolution models. Yet, these models have been reported
with millions of parameters for training. Nevertheless, this
lightweight comparing to deeper models, comes at the ex-
pense of accuracy. Last, post-training pruning [19] and
quantization [10, 11, 20, 21] have shown success in improv-
ing model efficiency through reduced precision arithmetic
without compromising its overall utility and accuracy.

Transformers, patch and position embeddings: Ap-
plying transformers [22] to visual perceptions has opened
the door for understanding vision tasks beyond the need
for a convolutional structure. In Vision Transformers (ViT)
[5], a given Image is subdivided into small and fixed-size
patches in which their positions are spatially registered by
embeddings and then feedforward to a transformer encoder.
Images are transformed into patch embeddings, in which a
given 2D image X ∈ RH X W X C is reshaped and flatted
to 2D patches XP ∈ RN X (P 2XC) where (H,W ) is the
resolution of the given image, C is the number of channels,
(P, P ) is the resolution of the given patch, and N repre-
sents the number of patches, given that N = HW/P 2. In
addition to the patch embeddings, a learnable 2D position
embedding is added to preserve the positional information
of each patch without inductive bias; the spatial relations
among the patches need to be learned from scratch. While
this approach has achieved 88.55% in the ImageNet dataset,
it requires a large network with millions of parameters and
expensive computational resources (30 days on a TPUv3
with 8 cores) trained exclusively on large datasets. To allow
ViT to be trained on small-sized datasets, a Compact Con-
volution Transformer (CCT) [23] is introduced. Unlike ViT,
the CCT model introduced a convolution block, in which
image patching and embeddings are implemented to its out-
put to reduce the latent representation of the transformer
where X0 = MaxPool(ReLU(Conv2d(X)). This allows
the model to learn from relatively smaller datasets based
on the inherited inductive bias and spatial relationships of
the pixels. This also allows changing the resolution of the
given image without increasing the number of parameters
of the model. However, this remains at the expense of the
sequence length and, subsequently, the computational re-
sources. On the other hand, a Perceiver [24] is introduced to
leverage an asymmetric attention mechanism to iteratively
map a byte array (at a pixel level) as an input to a smaller

latent array. This approach allows the transformer to han-
dle a large input size of various modalities by uncoupling
the depth of the transformer and the exponential size of the
latent representation of the transformer based on the input
resolution. While there are also several modifications of
transformer models that leverage one or more of the afore-
mentioned concepts [25–31], the challenges remain on how
to handle large size byte arrays to the latent representation
of a given transformer encoder with respect to the number of
the parameters and subsequently computational resources.

Signature-based methods: Based on rough path the-
ory, a signature is a unique summary of a given path
[12, 13, 32–34]. What makes signature a robust method for
describing a path is its invariant characteristics to the repa-
rameterisation of the given path. This provides a natural
feature of linear functionals that only capture the key ele-
ments of the given path by mapping the orders of the infor-
mation of the stream instead of mapping precisely the loca-
tion of the path at each instance [13]. Transforming datasets
into streams is a modelling issue that requires assumptions
regarding to how the system is altered once new informa-
tion arrives [32]. There are no signature-based methods
for image recognition. However, Signature transforms with
deep learning have been introduced [35], in which different
scholars have utilised it for various machine learning appli-
cations. For example, a deep model for recognising online
handwritten characters from temporal paths has been intro-
duced [36]. Based on pose estimation, a signature transform
has been applied to recognise human actions based on their
landmarks [37]. This paper contributes to extending rough
path theory and signature transform directly to vision tasks
and stream-like data regardless of the presence of an explicit
path.

3. Methodology
3.1. Image signature

In this research, we contribute to how signature methods
can be applied to stream-like data. Nevertheless, we assume
that signature transforms can be perceived as the equivalent
of spatial embeddings that can offer orders for a byte array
(at a pixel level) while reducing its dimensionality. We as-
sume that V is a d-dimensional vector (Banach) space of
basis B = v1, ...vd and defined based on tensor algebra as:

T (V ) : =

∞⊕
k=0

V
⊗

k (1)

given that V
⊗

0 := R. We denote the projection of
T (V ) → V

⊗
n by πn where n ∈ N0 and the truncated

tensor algebra is defined as:

T (n)(V ) : =

n⊕
k=0

V
⊗

k (2)
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An image is transformed into paths by imagining a given
2D image X ∈ RH X W X C as patches of streams Ωv ⊂
V of discontinuous paths γ : [a, b] → V where a given
pixel (i) evolves, in magnitude, from left to right over a
virtual time to the adjacent pixel given that i ∈ W . In this
order, changes occur instantaneously given that signature is
invariant to reparameterisations. The channels of a given
image C represents the depth of a given path (See Fig. 1).
The truncated signature of γ at a given depth N is defined
as:

Sa,b(γ) =

N⊕
n=0

Sn
a,b(γ), (3)

given that: Sn
a,b(γ) =

1
n! (γb − γa)

⊗
n

So the signature transform given that SigN = S(Rd) →∏N
n=1 (Rd)

⊗
n is defined as:

SigN (X) = (
∫
·· ·

∫
0<t1<···<tn<1

df
dt (t1)

⊗
· · ·

⊗ df
dt (tn)(24dt1) . . . (24dtn))1≤n≤N

(4)

And the log signature of γ is defined as:

logSa,b(γ)=

N⊕
n=0

(−1)
n−1

n

(
Ŝn
a,b(γ)

)⊗
n

(5)

where S0
a,b(γ) = 1 and Ŝa,b(γ):=

⊕N
n=1 S

n
a,b(γ).

The collection of paths N ⊂ V1[a, b];V , given that
N ∈ H can be summarised as δN = 1

|N |
∑

γ∈N δγ . The
expected signature of the collective paths that represents an
image is the map S : PV1([a, b];V ) → T (V ) in a probabil-
ity (Borel) space and is computed as:

S(µ) := Eµ [Sa,b(X)] =

N⊕
n=0

Eµ

[
Sn
a,b(X)

]
(6)

We highlight that the proposed image signature sum-
marises and reduces the dimensionality of a given image
X into X̂ ∈ RH X Q, where Q =

∑N
n=1 C

n. It is worth
mentioning that we also considered looking at a given im-
age as two-directional streams of paths, horizontally and
vertically, in which we concatenated both outcomes where
X̂ ∈ R2X(H X Q) and we refer to this method as two-
directional streams. Second, the aspect ratio of a given im-
age can be taken into consideration without the need for
finding an equal dimension for both H and W . Last, while
the computed signature is variant to W , the dimensions of
X̂ is invariant to W . This feature allows training a model in
a dataset of images of various aspect ratios, providing that
H remains constant.

3.2. Signature augmentation

While the computed signature is invariant to reparam-
eterisation, it remains variant to change in colour, rota-
tion, and displacement of a given image. Nevertheless,

the order in which images are transformed is a modelling
choice. Accordingly, similar to image augmentation tech-
niques [38–40], we applied several data augmentation tech-
niques such as adding Gaussian noise, brightness, hori-
zontal flipping, rotation, and colour invert to images be-
fore computing their respective signature without altering
a given class of an image.

3.3. Encoder architecture

After computing image signature, we experimented with
three minimalist architectures to show the robustness of Im-
ageSig; one architecture is based on using only a single FC
layer to classify a given image, the second comprises a con-
volution encoder, and the third is based on a transformer
encoder.

A single FC-based model: This model represents the
simplest approach for training a vision model. After com-
puting the image signature and flattening its output, the ar-
chitecture of the model relies only on a single Fully con-
nected layer (FC) of 50 neurons activated by a ReLU func-
tion, followed by an output softmax layer of neurons equal
to the number of classes in a given dataset. Fig. 1 shows the
overall architecture of ImageSig.

A 1D convolution-based model: As shown in Fig. 1, an
encoder can be added to extract features and downsample
the computed signature before the FC layer. The objective
of this architecture is to evaluate the effect of adding a con-
volution block on the overall performance, bearing in mind
the trade-off between performance and the overall weight
of the model. Accordingly, we used a simple convolution
block comprised of two CNN 1D layers, in which each layer
is followed by a Max-pooling 1D layer. After the last pool-
ing layer, the model is flattened and feedforward to a single
FC layer similar to the aforementioned architecture.

Attention-based model: We also feedforward the com-
puted signature (without the Flatten layer) to a transformer
encoder similar to the one implemented in CCT model [23],
but without any patch or position embeddings. And be-
fore the multi-head attention layers, we used CNN1D layers
(similar to the aforementioned architecture) instead of the
CNN2D layers.

3.4. Objective loss

We penalise the introduced method based on a cross-
entropy coupled with a focal loss [41] to account for class
imbalance for data sets of skew representation for each
class. For binary classification, given that y ∈ {0, 1} and
p̂ ∈ [0, 1], the objective loss (L) is defined as:

L(y, p̂) = −αy (1− p̂)
γ
log(p̂)−(1−y)p̂γ log(1− p̂) (7)

where γ represents the focusing parameter that postulates
the confidence level for the contributions of correct predic-
tions to the overall loss (the higher the γ, the higher the
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Figure 1. Proposed method: ImageSig.

rate for down-weighting examples that are easy to classify)
and α represents a hyperparameter that specifies the trade-
off between recall and precision by increasing or decreasing
the weight of errors for the positive class (when α = 1 is
the same as no weighting).

4. Experiments

We report on over 40 ImageSig models, in addition
to base models, trained on four datasets with different
encoder architectures and various hyperparameters which
have been deployed for different hardware (e.g. Raspberry
Pi).

4.1. Datasets

We aim to apply our introduced method to applications
to the real-world (e.g. anomaly detection from images). Ac-
cordingly, we have applied ImageSig to both benchmarked
and custom datasets that are relatively small in size and im-
balanced in classes which are common issues when it comes
to practical applications (See Fig. 2). On the other hand, it
is often under-reported how the introduced state-of-the-art
methods perform in real-world applications beyond bench-
marked datasets. Furthermore, we also aim to show how our
method performs when it compares, for instance, to trans-
formers that usually require large datasets for training.

Fire dataset: Finding a relatively large dataset that can
represent anomaly detection such as fire detection from
images remains a challenge. Accordingly, we have cre-
ated our dataset that represents various conditions of the
environment. The dataset comprises 18,912 images that
are downloaded from the web, specifically Google Images.

Figure 2. Image samples from the four datasets.

Figure 3. A sample of images from fire dataset (first row) and
their low-dimensional representation as a unique signature (second
row).

This dataset is used for training, validating and testing our
method. We manually labelled the dataset to fire and no fire.

Fog benchmark dataset [42]: We also implemented
several experiments for fog detection from street-level im-
ages, which is a crucial task for road safety. We used the
dataset introduced in WeatherNet ensemble model. Also,
we compare our results to their FogNet model. The dataset,
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for fog detection alone, comprises 4,345 RGB images dis-
tributed into 718 and 3,627 for positive and negative classes,
respectively.

Concrete crack benchmark dataset [43, 44]: It com-
prises 40,000 RGB images distributed evenly between pos-
itive and negative cases for concrete crack detection.

CelebA benchmark dataset [45]: It comprises 202,599
RGB images of several facial attributes. We conducted sev-
eral experiments for detecting some facial attributes (e.g.
wearing hat, bald, blond hair).

In supplementary, we show the sample size per class
and its weight in both training and testing sets for the four
datasets. It is worth mentioning that the class weights rep-
resent (α) values in the aforementioned focal loss function.
During training and in absence of validation set, we have
split the training set to train and validate sets in a ratio of
80-20% to train and validate the models per each training
cycle (epoch). During inference, we used the test set, which
the models have never seen during training or validation,
for evaluating our pretrained models, computing metrics,
and comparing their results.

Fig. 3 shows a sample of images (from fire dataset) and
their unique image signature (depth = 4), which shows how
a given image can be translated to a stream of paths and
projected to a lower dimension signature.

4.2. Evaluations

After training several models, we evaluated their pre-
trained weights on the test-set for a given dataset, which
the models have never seen during training and valida-
tion. Several metrics are computed to evaluate the trade-
off between a given model’s performance and efficiency
for computations and inference. Based on the aforemen-
tioned objective loss, we computed accuracy (acc), Average
Precision (AP) and F1 score, which is defined as: F1 =
2·Precision·Recall/(Precision+Recall). We also com-
puted the Receiver operating characteristic (ROC) curve to
evaluate the trade-off between true and false-positive rates.

To reflect on a given model’s computational efficiency,
we have calculated the number of parameters (params) for
each model, its disk size, and the Floating-point Opera-
tions Per Second (FLOPS) for computing the operations of
a given model in a batch size (1).

We compared our results to state-of-the-art models (e.g.
ResNet50, VGG16, and MobileNet) to reflect on both: per-
formance and efficiency for training and computation re-
sources. We also trained a base model of a single FC layer
on images directly to show the effectiveness of ImageSig
with the same FC layer unequivocally.

5. Results
In Table 1, we compare our methods with other state-of-

the-art models when trained and tested on the fire dataset.

Figure 4. ROC curves for trained models on fire and fog datasets.
The ImageSig models are trained on image resolution (64 X 64)
with depth = 4, and batch (3000).

It shows that our methods outperform other models when
trained on the same image resolution (64,64). The table
shows that ImageSig with a single FC layer is 3.6 times
more accurate than relying only on a single FC layer with-
out signature and achieves as high as VGG16 model, but
with almost 50 times fewer parameters when trained on the
same input size. While a higher accuracy can be achieved
when training, for instance, ResNet50 model on a larger
image resolution, the introduced method outperforms all
other methods when it comes to model’s efficiency, the
number of parameters, training time, and FLOPS. In fact,
a fully trained model of ImageSig + CNN1D has achieved
the highest performance, for image resolution (64,64), with
the lowest disk size (0.6 MB), fewer parameters (37,112)
and FLOP of 1.69 million, showing the robustness and effi-
ciency of the introduced method.

Table 2 compares the results of ImageSig with a state-
of-the-art model (FogNet) that relies on ResNet50. Similar
to the previous results, while ResNet50 trained on a larger
input can achieve higher accuracy, we show that ImageSig
achieves a better performance in terms of AP and F1 scores
with fewer parameters.

For anomaly detection, understanding the relationship
between true and false positive rates is crucial. Fig. 4 shows
the ROC curve for the introduced architectures of ImageSig,
FC, CNN1D, Transformer, which shows a uniform relation-
ship between true and false positive and high AUC values
above 0.9 for fire and fog datasets.

Furthermore, we also compare our best results to other
state-of-the-art models on the remaining two benchmarked
datasets. Table 3 shows the results for detecting three facial
attributes (wearing hat, bald and blond hair) on the test set
of CelebA dataset. ImageSig shows competitive results in
comparison to other deeper base models, bearing in mind
the uneven trade-off between the difference in accuracy and
the number of parameters for a given base model. Last,
Table 4 shows the results for detecting concrete crack, in
which ImageSig has achievedd 98.7% accuracy with an in-
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Figure 5. The relationship between image resolution, signature
depth, batch size and model performance for ImageSig + FC mod-
els, neurons= 50.

put size (64 X 64) and at least 620 times fewer parameters
when compared to the other base models.

6. Ablation studies
We trained several models with different hyperparame-

ters to evaluate the performance of the introduced method.
All models are trained on the fire dataset with only a sin-
gle FC layer after flattening the computed signatures. The
aims of these studies are to understand the effect of the in-
put size, signature depth and the type of signature on both
accuracy and number of parameters and subsequently the
memory footprint for a given model. Fig. 5 shows the rela-
tionship between image resolution, signature depth and the
overall performance of a given model.

Images as two directional streams: Table 1 also shows
the effect of modelling images as streams by computing and
combining signatures for both directions (horizontal and
vertical paths) on the overall generalization of ImageSig.
It shows an increase of 1.73 % in accuracy when training
ImageSig + CNN1D on fire dataset. However, this increase
comes at the expense of doubling FLOPS (from 1.69 mil-
lion to 3.49 million).

The effect of signature depth: The depth of the trun-
cated signature directly affects the performance of a given
model. Table 5 shows the results of 16 models of differ-
ent image resolutions and signature depths. For a given
image resolution, the increase in signature depth leads to
a direct increase in the performance of a given model in
a non-linear relationship, whereas an increase in depth af-
ter certain points could exacerbate the performance of the
model. On the other hand, it is worth mentioning that this
increase in depths (within the linear part of the relationship)
comes at the expense of the number of parameters and con-
sequently the training time and the model size. Generally,
for this given classification task, it seems that a depth of 4
provides the top score in relation to the number of parame-

ters and the model’s disk size.
The effect of the input size: While the effect of the in-

put size on the performance of a given model is less signif-
icant when it is compared to the signature depth, a larger
input size seems to provide a trained model with better ac-
curacy at a shallower depth of a signature. This also ben-
efits the trade-off between performance and the number of
parameters. For example, in Table 5, a model of resolution
(32 X 32) at depth 5 achieves a similar accuracy for a model
of resolution (64 X 64) at depth 4, whereas the number of
parameters in the latter model is 1.5 less than the aforemen-
tioned one. Accordingly, a smaller input size does not nec-
essarily mean less number of parameters, but the trade-off
between the input size and the depth of computed signature
requires optimisation for a given task.

Signature vs logarithmic of signature: While the log-
arithmic version of signature leads to normalisation and di-
mensionality reduction of a given input, we found that the
linear version of signature achieves better performance for
a given model. Table 6 shows the results of four models
at two different image resolutions and signature depth, in
which we have changed only the type of signature for each
image resolution. The table shows that the signature outper-
forms the log signature for both image resolutions at differ-
ent depths. However, the log signature can provide models
with fewer parameters and less model size and training time.

Post-training quantization : Table 7 shows the results
of model size before and after post-training dynamic range
quantization for state-of-the-art and imageSig methods. It
shows unprecedentedly that a full vision model can reach a
few kilobytes (44.2 KB) which is suitable for edge devices
with limited memory and computational resources. It also
shows that even after compressing the state-of-the-art meth-
ods, their size remains larger than ImageSig models without
quantization.

Embedded AI at the edge: Table 8 shows that our meth-
ods outperform MobileNetV2 when it comes to efficiency,
in terms of Frame Per Second (FPS), for embedded AI at the
edge. It shows that our method achieves an unprecedented
15.4 FPS on Raspberry Pi v4 (CPU) for a vision model in-
cluding all necessary data structuring and preprocessing and
142.3 FPS when considering only the performance of the
model. It also shows a real-time performance that outper-
forms MobileNetV2 for Jetson nano with GPU acceleration.

Implementation details and further studies regarding
performance, number of neurons in the FC layer and batch
size are addressed in the supplementary section.

7. Remarks and future work
We introduced a new method, called ImageSig, for ultra-

lightweight image recognition that has been tested on sev-
eral datasets without any special fine-tuning for a given task.
ImageSig relies on extracting a unique signature of a given
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Method acc (%) AP F1 Resolution Params Model size Training time FLOPS (M)
Base model (FC)1 25.54 0.74 0 (64,64) 614,552 7.05 MB 4.32 min 1.23
ResNet50 [1] 99.23 - - (224,224) 23,591,810 270 MB 82.2 min* 7,751.21

91.97 0.90 0.94 (64,64) 23,591,810 90.5 MB 6.88 min* 632.90
VGG16 [46] 93.24 0.93 0.95 (64,64) 14,714,688 56.2 MB 7 min* 2,507.18
MobileNet [7] 81.68 0.80 0.88 (64,64) 3,230,914 12.5 MB 3.7 min* 93.58
MobileNet V2 [8] 81.59 0.80 0.88 (64,64) 2,260,546 9.10 MB 4.63 min* 50.11
ViT [5] 75.23 0.76 0.85 (64,64) 4,915,401 59.5 MB 21.42 min 4.65
ImageSig + FC 93.13 0.93 0.95 (64,64) 384,152 4.42 MB 5.2 min 0.77
ImageSig + CNN1D 95.02 0.96 0.97 (64,64) 37,112 0.6 MB 5.4 min 1.69
ImageSig + CNN1D 95.53 0.96 0.97 (224,224) 95,120 1.27 MB 13.1 min 6.17
ImageSig + CNN1D2 96.75 0.97 0.98 (64,64) 59,512 0.9 MB 14.3 min 3.49
ImageSig + Transformer 94.01 0.94 0.96 (64,64) 162,553 2.51 MB 8.1 min 1.79

Table 1. Comparing the results of different methods on the test set of fire dataset. Both ImageSig models are trained from scratch with
a signature depth = 4 and with a batch size (3000). *All convolutional models (only) are trained on this dataset via transfer learning with
ImageNet weights. 1 Training the same FC layer architecture on images directly without signature. 2It refers to computing signature for
two directions of a given image. Models are trained on a single GPU (Titan V).

Method acc (%) AP F1 Resolution Params Model size Training time FLOPS (M)
Base model (FC)1 16.51 0.86 0 (64,64) 614,552 7.05 MB 1.1 min 1.23
FogNet-ResNet50 [42] 95.60 0.86 0.84 (224,224) 23,591,810 270 MB - 7,751.21
ImageSig + FC 87.38 0.93 0.92 (64,64) 384,152 4.42 MB 0.84 min 0.77
ImageSig + CNN1D 88.50 0.95 0.93 (64,64) 37,112 0.6 MB 1.2 min 1.69
ImageSig + Transformer 90.17 0.86 0.89 (64,64) 162,553 2.51 MB 2.1 min 1.79

Table 2. Comparing the results of different methods on the test set of fog dataset. All ImageSig models are trained similar to the ones
trained for fire detection without any additional fine-tuning. 1 Training the same FC layer architecture on images directly without signature.

Method W. Hat Bald Blond Params
acc (%) acc (%) acc (%) (M)

FaceTracer [47] ∗ 89 89 80 -
PANDA-w [48] 91 92 81 > 2
PANDA-l [48] ∗ 96 96 93 > 2
[49]+ANet [45] 93 92 86 > 61
LNets+ANet1 96 95 91 > 61
LNets+ANet 99 98 95 > 61
ImageSig2 91 92 84 0.037

Table 3. Comparing the results of different models on the test
set of CelebA dataset. The results of base models are obtained
from [45]. ANet is based on AlexNet, with estimated params
≈ 61 M. 1refers to ”without pretraining”. ∗Models obtain facial
parts based on landmark points. 2 Refers to ImageSig + CNN1D,
trained similar to the models for the aforementioned datasets with-
out any special fine-tuning.

image that can be feedforward to a single FC layer, CNN
1D, or a transformer for classification. The key advantage of
ImageSig is training efficient models that can be embedded

Method acc (%) F1 Resolution Params (M)
ResNet152 99.5 0.99 (224,224) 60.2
ResNet101 99.9 0.99 (224,224) 44.5
ResNet50 99.9 0.99 (224,224) 25.6
ImageSig1 98.7 0.99 (64,64) 0.037

Table 4. Comparing the results of different models on the test set
of Concrete crack dataset. The results of ResNet models are ob-
tained from [44]. 1 Refers to ImageSig + CNN1D, trained similar
to the models for the aforementioned datasets.

in real-world devices with limited computational resources
and memory footprint (e.g. smart cameras, car sensors, or
fire alarms). With highly accurate models and less than a
million FLOPS, ImageSig method could allow diversifying
the applications of AI at the edge. The second key advan-
tage is its low impact on the environment; a full model can
be trained in a few minutes or less, minimising the power
consumption and CO2 emission when compared to other
state-of-the-art methods of similar performance. As for fu-
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Resolution Depth (N) acc (%) Params Model size Training time FLOPS (M)
(32,32) 1 83.51 4,952 84 KB 1.43 min 0.01

2 88.45 19,352 253 KB 1.21 min 0.04
3 90.10 62,552 759 KB 1.82 min 0.12
4 91.54 192,152 2,278 KB 4.16 min 0.38
5 92.31 580,952 6,834 KB 10.17 min 1.16
6 92.66 1,747,352 20,994 KB 16.34 min 3.49

(64,64) 1 83.45 9,752 140 KB 1.54 min 0.02
2 89.17 38,552 478 KB 1.94 min 0.08
3 90.80 124,952 1,490 KB 3.21 min 0.25
4 92.36 384,152 4,528 KB 5.22 min 0.77
5 92.18 1,161,752 13,640 KB 17.42 min 2.32

(128,128) 1 83.43 19,352 258.5 KB 1.52 min 0.04
2 89.17 76,952 949.7 KB 1.30 min 0.15
3 90.37 249,752 3,023 KB 2.81 min 0.50
4 92.42 768,152 9,244 KB 7.46 min 1.53
5 92.50 2,323,352 27,906KB 22.26min 4.65

Table 5. Comparing the effects of different image resolutions and signature depth on the performance. All models are trained with a single
FC layer of 50 neurons for 200 epochs on fire dataset with a batch size (1024).

Resolution Sig. type acc (%) Params Model size
(32,32), Sig. 92.31 580,952 6,834 KB
N = 5 Log Sig. 89.04 128,152 1,582 KB
(64,64), Sig. 92.36 384,152 4,528 KB
N = 4 Log Sig. 88.91 102,552 1,228 KB

Table 6. Comparing the effects of the type of image signature on
the performance. All models are trained with with a single FC
layer with 50 neurons.

Model Model size Quantized size
ResNet 50 90.5 MB 23 MB
MobileNet 12.5 MB 3.30 MB
MobileNetv2 9.10 MB 2.51 MB
ViT 59.5 MB 8.88 MB
ImageSig + FC 4.42 MB 377 KB
ImageSig + CNN1D 0.6 MB 44.2 KB
ImageSig + CNN1D1 0.9 MB 66.1 KB

Table 7. Model size: Before and after quantization

ture research, we aim to extend ImageSig to other vision
tasks (e.g. object detection and semantic segmentation), in
which further research is required to consider both local and
global signatures.

Method Hardware FPS FPS∗

MobileNetV2 RaspberryPi42 13.9 7.4
Jetson-nano3 46.9 19.8
RTX 2080ti 62.2 37.27

ImageSig + CNN1D RaspberryPi42 142.3 15.4
Jetson-nano3 442.8 24.3
RTX 2080ti 1008.4 90.69

Table 8. Performance of AI at the Edge. All tested models are
trained on fire dataset and converted to tflite. 1 model with reso-
lution (64,64) and depth = 4, trained on fire dataset. 2Raspberry
pi CPU arm71 linux with 4 GB Ram. 3Jetson nano includes a
GPU and 4 GB Ram. ∗ This metric includes data structuring and
prepossessing, in addition to the model inference.
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