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Abstract

Current neural networks are compatible with high-
performance GPU/CPUs. However, implementing neural
networks on emerging embedded sensor for inference is
challenging due to sensor’s unique hardware architecture
and stringent computing resources. With this in mind, this
work presents new methods to implement fully convolu-
tional neural networks (FCNs) on Pixel Processor Array
(PPA) sensors with many techniques to fully use the limited
resources on sensor. Specifically, we, for the first time, de-
sign and train binarized FCN for both binary weights and
activations using batchnorm, group convolution, and learn-
able threshold for binarization, producing networks small
enough to be embedded on the focal plane of the PPA, with
limited local memory resources, and using parallel elemen-
tary add/subtract, shifting, and bit operations only. We
demonstrate the first implementation of an FCN on a PPA
device, performing three convolution layers entirely in the
pixel-level processors. We use this architecture to demon-
strate inference generating heat maps for object segmenta-
tion and localisation at over 280 FPS using the SCAMP-5
PPA vision chip.

1. Introduction

Fully convolutional neural networks (FCN) have been
used across many modern computer vision tasks such as
object detection [10], classification [14] and segmentation
[18,25]. However, the deployment of deep FCN usually re-
lies on powerful GPU/CPUs which are typically not present
in emerging embedded edge devices, where cost and en-
ergy considerations dictate stringent limits on storage and
computing resources. Despite this, there is an ever increas-
ing demand for artificial intelligence on such edge devices.
One promising approach to the edge computing hardware is
represented by Pixel Processor Arrays (PPA). Unlike con-
ventional vision systems, which consist of separate sensing
and computing hardware, PPA devices are emerging vision

architectures, integrating sensing, storage, and computing
on a single silicon chip (Fig.1) [4, 1 3]. Such integration op-
timises data movements in the system, promising high per-
formance and low-power consumption, but requires careful
algorithm implementation, in order to efficiently utilise the
hardware resources available in an on-sensor computing de-
vice.

Networks with binary weights and activations are diffi-
cult to train and usually suffer from performance drop when
compared to their floating-point equivalent. Use of batch
normalisation has been proposed to avoid gradient explo-
sion and train binarized neural networks successfully [29].
In this work we introduce batch normalisation into bina-
rized FCNs to improve the training efficiency and the per-
formance of inference on PPA arrays. We implement a
purely binary convolutional network containing both bina-
rized weights and activations. The use of binary activa-
tions alleviates accumulative errors introduced by approx-
imate computations used to perform image convolutions
upon PPA hardware devices [ 1]. This error mitigation al-
lows our approach to perform deeper networks than previ-
ous work [2, 3,20] wholly upon the focal plane without en-
countering an increasing loss of accuracy that would occur
otherwise. Furthermore, it is noted that the implementa-
tion of the batch normalisation, the sign activation function,
and learnable activation threshold for binarized activations
is equivalent to adding a bias matrix to the layer activa-
tions, which significantly simplifies the inference process
on sensor. With this binarized FCN, the inference calcu-
lation process can be implemented entirely with efficient
add/subtract, threshold, and shifting operations for all lay-
ers. This scheme specifically benefits PPA computing de-
vices such as the one shown in Fig. | because it matches
the simple instruction set of these devices, and reduces the
impact of calculation errors caused by noise accumulation
when using analogue registers (AREG) for storage and cal-
culations, especially for activations. For experiments, we
train binarized FCN and deploy it on the PPA for object lo-
calisation and coarse segmentation.

On-Sensor Computing and the SCAMP-5d Vision Sys-
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Figure 1. (a) Hardware architecture of the Pixel Processor Array (PPA) used in this work. The SCAMP-5 camera is based on a PPA vision
chip with 256 x256 Processing Elements (PE), which are simple programmable processor cores where parallel image processing is con-
ducted by directly operating on analogue signals (e.g. electric current from photodetector PIX, which is proportional to the light intensity)
within analogue registers (AREG) and bit operations within digital registers (DREG). (b) The ultra-compressed sensing capabilities with
% 32,000 data reduction and a low operation power on PPA using the proposed FCN for 2D localisation.

tem: The concept of on-sensor computing originates from
emerging novel circuit designs that enable direct signal pro-
cessing on the sensing chip [32]. The SCAMP vision sen-
sor [6] used in this work is based on a PPA concept imple-
mented using mixed-signal analog/digital datapath (Fig. 1),
other devices such as SONY IMX500' or Aistorm Mantis”
integrate sensing and computing resources in a single de-
vice using alternative strategies. Our work takes advantages
of the SCAMP analog/digital PPA to efficiently implement
a binarized FCN. As shown in Fig. 1, each sensing element
converts light into analogue signals that are immediately
processed on the focal plane. Unlike the hardware architec-
ture of standard computer vision systems, the PPA does not
involve Analogue-Digital-Conversion (ADC) after sensing.
Instead it directly operates on analogue electric currents, in
physical proximity to the image sensor pixel circuits, accel-
erating the signal processing and avoiding the bottleneck of
ADC and data transmission process to external processor
units. However, such analogue processing introduces errors
into the computation and data is prone to noise and temporal
decay [11]. Fig. 1b shows the data extraction capabilities of
the PPA based on the proposed FCN, effectively reducing
images of thousands of pixels to specific contextual infor-
mation within a tiny number of bits.

Contributions: The main contributions of this work are: 1)
We propose, train, and demonstrate the use of a purely bina-
rized network (both binary weights and activations) specif-
ically for PPAs. This approach of binary activations ad-
dresses the accumulation of analogue computing errors and
value saturation after each layer, thus enabling deeper net-
works while maintaining performance. 2) We present the
first implementation of an FCN architecture for PPAs. New
methods for group convolutional layers [30] and hundreds
of convolutional filter weights storage upon the focal plane

https://developer.sony.com/develop/imx500/
thtps://aistorm.ai/mantis—Z/

of the PPA are proposed. 3) Unlike earlier work, we apply
batch normalisation during training and utilise this to learn
bias parameters to be easily applied during inference on the
PPA device. 4) We provide the first demonstration of ob-
ject localisation and coarse segmentation tasks on a PPA,
with previous works being only concerned with classifica-
tion tasks.

2. Related Work

The SCAMP vision sensor has been demonstrated in
several applications in the field of robotics [16, 17,21,27]
and computer vision [1, 5,26]. Recent work for PPAs has
concentrated on CNNs and demonstrated on classification
tasks [2, 3, 20]. However we found no previous PPA work
on FCNs which are important for further tasks like localisa-
tion and segmentation. The research on CNN implemen-
tation and inference within PPA was pioneered by Bose
et al. [2] where a CNN with a single convolutional layer
was implemented upon the PPA array and a fully-connected
layer upon its controller chip. Their work performs 16-
bit image convolution operations using 4x4 DREG ‘Su-
per Pixel’ blocks and demonstrates live digit classification
based on MNIST dataset at speed of around 200 frames
per second (FPS). To fully take advantage of PPA’s paral-
lel computing characteristics and further improve the CNN
inference efficiency, Bose et al. [3] proposed the idea of in-
pixel weight storage, where the network’s weights are di-
rectly stored within the registers of the PPA’s processing el-
ements. This enabled both parallel computation of multiple
convolutions, and implementation of a fully connected layer
upon the PPA array resulting in a x22 faster CNN infer-
ence (4464 FPS) on the same digit recognition task. Based
on these two works, Liu et al. [20] further proposed a high-
speed lightweight neural network using BinaryConnect [8]
with a new method for computing convolutions upon the
PPA, allowing for varying convolutional stride. Their work
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Figure 2. (a) The binarized CNN forward propagation with batch norm and learnable activation function. (b) The simplified inference
process on the PPA device by transforming batch norm and activation function into a ’bias’ B to be subtracted from Y. The inference
process is significantly simplified, with only addition/subtraction and sign operations required.

demonstrated four different classification tasks with frame
rates ranging from 2,000 to 17,500 FPS with different stride
setups. Based on their network, a direct servo control using
real-time CNN inference results [23] and a simulated robot
tracking from a drone [22] with on-sensor CNN comput-
ing results are presented. Moreover, AnalogNet [31] imple-
ments convolution with value approximation for multiplica-
tion on the focal plane using 3 kernels and fully-connected
layer on the micro-controller based on the MNIST. Differ-
ent from above-mentioned works, this paper advances state-
of-the-art in neural network methods on PPA. We propose
a new FCN network architecture suitable for PPA imple-
mentation, including three convolutional layers with binary
weights and binary activations. The network firstly utilises
group convolution and is trained using batch normalisation,
and enables new segmentation-related applications.

3. Method

Neural network architectures for PPAs must be carefully
designed taking into account model size, architecture, and
the feasibility of exploiting the PPA’s parallel computation
and on-sensor storage. This is essential due to the limited
on-sensor resources compared to standard computer hard-
ware which may have access to powerful GPU/CPUs. This
section attempts to find a balance between the network per-
formance and its implementation on the PPA.

3.1. CNN with Binary Weights and Activations

The neural network training in our work is based on Bi-
narized CNN [9], with binary weights and neuron activa-
tions, which can be stored and processed with bit-wise op-
erations. Compared to BinaryConnect, Binarized CNN re-
duces the intermediate memory storage for activations and
replaces most arithmetic operations with bit-wise opera-
tions. Such fully binarized networks are thus highly suit-
able for PPAs due to their small memory footprint. For the
forward propagation, we take different strategies to bina-
rise the weights and activations to simplify the binarization
process. All the weights are binarized with a deterministic
function Eq.1

gnu) =1 1)
Wy = sign(wy ) = )
b 9 —1 otherwise
. +1 ar > «a,
ap = Slgn(aﬁr - Oé) = {—1 otherwise (2)

where w,. is floating-point weights and wy, is the bina-
rized weights. In terms of activations, we train channel-
wise learnable thresholds « to binarise the activations to
obtain more informative binary feature maps, inspired by
work [24]. Additional coefficients, introduced by channel-
wise thresholds, have low impact on the implementation ef-
ficiency on the PPA. In Eq.2, « is the trainable thresholds
for binarization of each channel, a, is the real-valued activa-
tions and ay, is the binarized activations. During the training
process, using standard backpropagation and stochastic gra-
dient descent, the gradients are calculated with the floating-
point weights. The weights and activations are only bina-
rized during forward pass. In our work, the Binarized CNN
is trained on a PC machine and the CNN inference process
is implemented on the SCAMP-5d vision system.

The training process for batch norm parameters can be
seen from [19] Algorithm 1, in which e is used to avoid a
zero denominator and the main scaling and shifting param-
eters y and S for batch norm are learned during the training
process. Then the batch norm can be applied to manipulate
activations [19]. In Fig. 2, for a single layer of Binarized
CNN during forward propagation process:
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Figure 3. An overview of an on-sensor FCN architecture and inference process using a PPA for heat map generation. A three-layer
FCN architecture is used in our work. The first convolutional layer can be seen from Fig. 6 in detail. In the second convolutional layer,
128 convolutional kernel filters are applied upon the 16 input binary feature maps from the first layer, generating 64 feature maps with a
convolution group setup of eight. The fusion of intermediate extracted features is implemented by addition within each group. The third
layer uses binary filters with a size of 64 x 1 x 1, hence the final feature maps can be obtained by *multiplication’ with bit operation based
on DREG. The final heat map is generated by combining these input 64 feature maps by shifting and addition operations.

Vo2 +e

Z =sign(Y — B)  (5) B:N+Oé—77 B (©)
i

In Equation 6, 02 = %Z?Zl(a:l — ) =130 @,
where 3, v, and « are all trainable parameters that can
be obtained directly after training. Thus the ’bias’ B
can be calculated used these parameters offline, before
implementing it on the PPA. During the inference process,
the batch norm and activation reduces to a bias term, as
shown in Equation 5 B on Y. Hence, the inference process
on the PPA can be simplified as shown in Fig. 2b.

3.2. FCN architecture on sensor

FCN is a CNN architecture providing pixel-level classifi-
cation, targeting image segmentation [25]. This paper firstly
proposes a 3-conv layer FCN that can be implemented on a
PPA sensor. In this paper, FCN is used for heat map gen-
eration by adding one convolutional layer with 128 filters
and replacing the final fully-connected layer with a convo-
lutional layer of kernel size 1x1. Fig. 3 shows the overall
FCN architecture with configurations for each layer. Fig. 6
illustrates the first convolution layer, generating 16 binary
feature maps. The second layer adopts group image convo-
lution [7] of 8 on the input 16 feature maps to make a trade
off between convolution computation complexity and net-
work performance, where each of 64 outputs is generated
by adding two intermediate feature maps (Fig. 9). These
64 binary feature maps from the second convolutional layer
are stored in 4 DREG. The third layer then generates the

final heat map representing the prediction probability distri-
bution, taking these 64 binary feature maps and combining
them within an AREG. Each binary feature map being mul-
tiplied by an associated weight of -1/1.

3.3. FCN Implementation on the PPA

This section gives the implementation detail of the bina-
rized FCN on the PPA sensor hardware.
First Layer: 16 binary filters are replicated to fill a DREG
(Fig. 7) for parallel convolution purpose [3, 20]. Fig. 5
shows the image convolution process on the PPA. The im-
age convolution on the PPA can be decomposed as *multi-
plications’, shifting and addition and the convolution result
is obtained by performing shifting and addition process for
16 times with a stride = 1. Then the pre-calculated bias B
is plotted into 4 x4 grids on a AREG and is subtracted from
the feature map (seen in Fig. 6 ). Then the output binary
image is obtained by binarizing feature map after subtract-
ing B. In this layer, tanh is used as the activation function.
When implementing inference on sensor, the tanh activa-
tion function is transformed into binarisation with a sign
function, with offset computed from batch norm parameters
as can be seen from Eq. 4. This layer shares some similar-
ity with work [20] including the image resize, replication,
and image convolution but with extra activation binarization
process.
Second Layer: Group convolution is an advantageous ap-
proach for embedded devices due to the reduced number of
parameters generated by group computing. It is, however,
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Figure 7. The layout of 16 binarized convolutional kernels in a
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difficult to implement in parallel on the unique hardware ar-
chitecture of the PPA. The key to the second layer is to im-
plement the group convolution with 16 feature maps as in-
puts and 64 as outputs. By dividing them into eight groups,
thus there are 128 binary filters need to be stored on sensor.
The layout of filters directly affects the inference efficiency.
We design a storage structure for filters in first (Fig. 7) and
second layer. Fig. 8 illustrates the layout of these filters
within one DREG. As can be seen, each time to perform a
convolution, the corresponding kernel filters are activated in

Activated and replication

Layout of 128 (8x16) kenel filters

Layout of 16 kemel filters after paralle!
replicating to fullill each 64x64 block

Figure 8. Left: The layout of 8 filers in a block of size 64x64.
Each 4 x4 filter is replicated and stored within a 16 x32 PE block.
Middle: The layout of 128 kernel filters stored in one DREG. Be-
fore performing a convolution operation (8 times in total) in the
2nd layer, each set of kernels (yellow blocks are for one set, for
instance) are replicated to fully fill each 64 x64 block (right), cov-
ering the whole 256256 PE array with 16 replicated filters.

parallel, shifted, and replicated to fill each 64 x64 block in
256 %256 PEs. This filter storage structure can also extend
to store more filters following the similar way to fill all PEs
with 16 filters. In Fig. 9, to implement second convolution
layer with 8 groups, the input 16 binary feature maps are
first transformed by switching position of adjacent maps.
This is followed by convolution with associated 32 filters
for these 32 feature maps. Then 16 gray-scale feature maps
are obtained by adding each two of 32 maps. By perform-
ing convolution for another 96 filters, 64 gray-scale feature
maps can be derived. The bias matrix is subtracted and then
after binarization, 64 binary feature maps are generated.

Third Layer: In this layer, as shown in Fig. 3, 64 1-bit
filters are plotted on a DREG, followed by 'multiplication’
with the 1-bit feature maps from the previous layer. After
1 x 1 convolution, these 64 feature maps in 4 DREG is re-
located to 1 AREG after 2 x 2 maxpooling. The summation
of these extracted feature can be obtained by shifting and
adding into one 64 x 64 heat map (shown in Fig. 4). Unlike
in the previous two layers, the activation function for this
layer is ReLU to generate a gray-scale feature map as the
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final prediction result of the network.

4. SCAMP-5 Inference, Experiments, and
Evaluation

This section demonstrates the application of the pro-
posed network architecture to coarse segmentation and ob-
ject 2D localisation from a bird’s eye view. We implement
the FCN algorithm on the SCAMP vision system hard-
ware (Fig. 10). We set up a realistic environment in We-
bots [28] robot simulator (Fig. 11) for data collection and
the validation of FCN deployment on sensor. Training, test-
ing and validation datasets are collected by repeatedly tak-
ing images from a flying drone equipped with a simulated
”SCAMP” and then validation images are sent to the PPA
hardware for inference. Binarized FCN is trained offline
based on these datasets with the method proposed in Section
3. The whole neural network for both coarse segmentation
and localisation is performed on sensor.

4.1. Coarse Segmentation

Fig. 11 shows the samples of collected datasets and their
annotations for segmentation of road and grass. To validate
the performance of the proposed network on different tasks,

Task ToU
Road segmentation on simulation (Computer) 74.0%
Road segmentation on sensor (PPA) 69.3%
Grass segmentation on simulation (Computer) 76.6%
Grass segmentation on sensor (PPA) 72.9%

Table 1. Intersection over Union (IoU) performance compari-
son between simulation on computer and execution on-sensor for
coarse segmentation.

aroad and grass coarse segmentation is explored in this sec-
tion. As shown in Fig. 11, we directly use the road/grass
shape as the ground truth for coarse segmentation. Notice
that the trees and grass areas often share similar gray-scale
levels with the road, making coarse segmentation unfeasible
by simply using binary thresholding. Tab. 1 shows the Inter-
section over Union (IoU) performance comparison between
FCN inference on simulation and on sensor. Specifically,
IoU is measured here by counting the number of intersected
pixels over the number of united pixels of the predictions
and groundtruth. In addition, Fig. 13 compares the FCN
training process for segmentation task between using and
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Figure 10. Experimental setups using a robot simulator and a real SCAMP vision system where the neural networks are fully computed on

the PPA.

Figure 11. The data collection environment where a vehicle is
moving around and images are generated from a bird’s eye view
of a drone. Top left: A robot simulator for environment setup
and collection of training data. Middle left: The collected images
from the drone’s camera are converted into gray-scale images for
the PPA and the segmentation annotations of the road. Right: The
training and annotated datasets for grass segmentation. Bottom
left: this work uses the Gaussian distribution to represent the ve-
hicle position within an image.

not using batch norm, which shows the binarized FCN dose
not converge without batch norm, justifying its use here.
Some of the results can be seen from Fig. 12. Tab. 1
compares the experimental results on sensor and its coun-
terpart baseline on computer with identical neural networks
and validation images.

4.2. Object Detection

We also implemented an object detection task, based on
the heat map. As for the object localisation, rather than us-
ing the vehicle segmentation image as the ground truth for
training, we use Gaussian position distribution (Fig. 11) as
the ground truth since the probability distribution is ade-
quate to represent the object 2D localisation. For the vali-
dation, a distance threshold is set from O to 63 to count the
number of predictions with a distance to the groundtruth
that falls into this threshold. A zero distance means a per-
fect prediction. The final localisation is obtained by the

Figure 12. FCN inference results on-sensor. Left column is the
input gray-scale image on sensor with yellow dots indicating the
FCN inference localisation prediction and right column is the in-
ference results for coarse segmentation on sensor. The density
and distribution of colourful points (right) represent the possibil-
ity of position of the road (bright yellow) and grass (green) seg-
mentation. The experimental performance for localisation (accu-
racy) and segmentation (IoU) on the PPA can be seen from Fig.
14. and Tab. 1. Experimental video: https://vimeo.com/
636976542

—— binarized FCN training with Batchnorm
—— binarized FCN training without Batchnorm

N
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Figure 13. Training process comparison for grass segmentation
with and without batch norm.

weighted sum of all the possible positions. After the test,
within a distance of 10 pixels, the vehicle localisation ac-
curacy for simulation and SCAMP is around 88% and 83%
respectively (Fig. 14). Tab. 2 shows the FCN performance
in terms of time, power consumption and model size.
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Processing Steps Time Cost (1)
Image replication 112
1st Image convolution 184
1st Batch norm and activation 235
kernel filter activation and replication 212
2nd Group convolution 184x4 =736
2x2 maxpooling 35x4 =140
2nd Batch norm and activation 235x4 =940
Third convolutional layer 966
Total time cost 3525 (283 FPS)
number of weights 2,578
power consumption ~ 1.5W
model size ~ 0.31 KB

Table 2. Computation time, performance and weights for heat map
generation with the binarized FCN on sensor.
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Figure 14. Performance comparison between simulation and on
sensor for localisation task.

Figure 15. Selection of pupil images (Left) and their annotations

(Right) from TEyeD datasets.

Eﬂ;ﬁ‘_ -1'_

Figure 16. Selection of inference results comparison between FCN
with off-sensor simulation (top) and on-sensor PPA (bottom). The
red dot at the bottom left of each frame is the final position pre-
diction calculated from the heat map on the right. Experimental
video: https://vimeo.com/ 636978456

4.3. Pupil detection

Considering the light weight and low-power consump-
tion of the PPA chip and the increasing popularity of virtual
and augmented reality (VR/AR) based on the eye move-
ment, it is promising to mount the PPA chip to a wearable
device such as glasses in the near future, hence we explore
the pupil detection with the proposed binarized FCN based
on the public dataset of eye images: TEyeD [15]. Fig. 15
shows some of the training images and their annotations
and Fig. 16 shows results comparison between SCAMP
and simulation inference, where the accuracy curve is plot-
ted according to the Euclidean distance between simula-
tion/scamp inference results and the groundtruth. Within
a distance of 10 pixels, the localisation accuracy for simula-
tion and scamp is around 88% and 83% respectively. More
experimental videos can be shown under the requirement of
reviewers in an anonymous manner.

Notice that there is around 5% - 6% performance gap for
the experiment on sensor compared to the simulation. This
is due to noise in the convolution operation performed on
AREG because of the inherent non-idealities of analogue
computation [12] and some random bit-flipping errors ob-
served in DREG when performing massively parallel shift-
ing and replications. Mitigation of these issues requires fur-
ther software or hardware solutions. In this work, we tried
to find a balance between network complexity and viability
for deployment upon the available PPA prototype hardware.
Pixel-wise accurate segmentation, with a quality equal to
one that can be obtained using a CPU/GPUs hardware, us-
ing embedded low-power SCAMP-5d vision system, is still
a challenging task with current hardware and neural net-
work architecture.

5. Conclusion and Future Work

On-sensor computing is important for embedded and
low-lag, low-power vision systems. Due to their compact-
ness and computational advantages, binary FCNs are in-
creasingly appealing. In this paper, we propose and im-
plement a new method that demonstrates carrying out an
inference with a binarized FCN on an on-sensor computing
device. In contrast to previous works that have mainly fo-
cused on classification with a fully-connected layer, we, for
the first time, exploit the FCN architecture design, imple-
mentation method, and inference on sensor. We validate,
using a real pixel processor array (PPA) hardware, on the
visual competences of region segmentation and target ob-
ject localisation with a latency of 3.5 milliseconds for each
inference. With the development of future generation of on-
sensor devices in terms of image resolution, manufacturing
techniques, and local memory capacity, we believe our pro-
posed binarized FCN can be extended with extra layers for
more challenging applications.
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