
MAPLE-Edge: A Runtime Latency Predictor for Edge Devices

Saeejith Nair1, Saad Abbasi1, Alexander Wong1,2, Mohammad Javad Shafiee1,2
1University of Waterloo, Waterloo, Canada

2DarwinAI, Waterloo, Canada
{smnair,srabbasi,a28wong,mjshafiee}@uwaterloo.ca

Abstract
Neural Architecture Search (NAS) has enabled automatic

discovery of more efficient neural network architectures, es-
pecially for mobile and embedded vision applications. Al-
though recent research has proposed ways of quickly esti-
mating latency on unseen hardware devices with just a few
samples, little focus has been given to the challenges of esti-
mating latency on runtimes using optimized graphs, such as
TensorRT and specifically for edge devices. As devices like
NVIDIA’s Jetsons get more popular in embedded comput-
ing and robotics, we observe a pressing need to more accu-
rately estimate inference latency of neural network architec-
tures on diverse runtimes, including highly optimized ones.
In this work, we propose MAPLE-Edge, an edge device-
oriented extension of MAPLE, the state-of-the-art latency
predictor for general purpose hardware, where we train
a regression network on architecture-latency pairs in con-
junction with a hardware-runtime descriptor to effectively
estimate latency on a diverse pool of edge devices. Com-
pared to MAPLE, MAPLE-Edge can describe the runtime
and target device platform using a much smaller set of CPU
performance counters that are widely available on all Linux
kernels, while still achieving up to +49.6% accuracy gains
against previous state-of-the-art baseline methods on op-
timized edge device runtimes, using just 10 measurements
from an unseen target device. We also demonstrate that un-
like MAPLE which performs best when trained on a pool of
devices sharing a common runtime, MAPLE-Edge can ef-
fectively generalize across runtimes by applying a trick of
normalizing performance counters by the operator latency,
in the measured hardware-runtime descriptor. Lastly, we
show that for runtimes exhibiting lower than desired accu-
racy, performance can be boosted by collecting additional
samples from the target device, with an extra 90 samples
translating to gains of nearly +40%.

1. Introduction
Despite the success of deep learning based approaches in

computer vision tasks such as object detection [15,16], clas-

sification [9, 18, 20], and segmentation [8, 17], it remains a
challenge to manually design neural network architectures
that are both fast, efficient and at the same time accurate.
The field of Neural Architecture Search (NAS) [26] aims to
address this problem by automating the architecture discov-
ery process. However, most of the previous state-of-the-art
techniques such as DARTS or ENAS [12, 14], formulate
the optimization and search process with only the accuracy
constraint as the main objective function in the search pro-
cess.

The explosion of consumer applications for mobile and
embedded devices necessitates the importance of multi-
objective NAS methods that can discover models at the
pareto-optimal frontier of accuracy, and constraints such as
latency, memory, or power consumption. For embedded vi-
sion applications where extra focus gets paid to minimizing
inference latency, NAS methods have relied on either mea-
suring the model latency directly on-device [19] or estimat-
ing the inference latency using look-up-tables (LUTs) [2,3,
5,21,23] or latency prediction modules (LPMs) [1,7,22,24].

Due to the increasing size of NAS search spaces, as well
as the diverse number of hardware devices and execution
contexts (e.g. PyTorch, TensorFlow, TensorFlow Lite, Ten-
sorRT, OpenVino, etc.), performing measurements directly
on-device is computationally intractable. Mechanisms like
LUTs on the other hand are much faster at estimating la-
tency in near constant time based on the assumption that
the end-to-end latency of a network can be approximated
by summing up individual latencies in a layer-wise man-
ner. However as different studies such as Dudziak et al.
showed [7] such LUT based approaches are not accurate
and the layer-wise latencies can significantly deviate from
the true latency; which means that the supposedly pareto-
optimal models predicted by NAS methods may not actually
lie on the pareto-optimal frontier. Instead, state-of-the-art
approaches like HELP [10] use learning based approaches
to predict the end-to-end model latency.

While these methods perform more accurately than LUT
based estimators, the study presented in nn-Meter [25]
showed that existing LPMs have difficulty estimating la-

3660



tency when inference is executed on runtimes that optimize
model graphs; we also further investigate this issue here in
this manuscript. For example, frameworks like TensorRT
(TRT) perform kernel auto-tuning and layer and tensor fu-
sion to accelerate inference [4]. In other words, some lay-
ers and operations may get fused or executed in parallel,
compared to the sequential execution order specified by the
model designer. nn-Meter tackles this by creating a more
fine-grained LUT approach which characterizes models at
the kernel level, but their approach involves exhaustive test-
ing and characterization of all sampled kernels which can
take anywhere from 1 to 4.4 days based on the execution
runtime.

Here we propose MAPLE-Edge, an edge device-oriented
extension of the state-of-the-art latency predictor so-called
MAPLE [1] for general purpose hardware, designed specif-
ically for embedded devices. We show that by characteriz-
ing the hardware device and runtime at the operator level
in just minutes (not days), the proposed MAPLE-Edge al-
gorithm can accurately estimate the end-to-end latency of
neural network architectures executed on optimized, previ-
ously unseen runtimes.

MAPLE-Edge is an LPM approach based on a hardware-
aware regression model that can estimate the inference la-
tency of a deep neural network architecture on an unseen
embedded target device accurately. The proposed method
specifically formulates the function f(a,S; θ) → ŷ where
a is the DNN architecture encoding, S is a quantitative
hardware descriptor, ŷ is the inference latency, and f is the
regression model mapping architecture encoding and hard-
ware descriptor to the inference latency [1].

We show that with some simple, but important modifica-
tions to the data processing and hardware characterization
stages proposed in MAPLE [1], the proposed MAPLE-Edge
becomes the most effective way of estimating latency on
optimized edge runtimes, paving the way forward to more
accurate NAS methods for embedded vision applications.
As such our key contributions are as follows:

• A new latency estimator for optimized edge runtimes
using an LPM algorithm is proposed. To the best of our
knowledge, this is the first work exploring the idea of
using an LPM algorithm to estimate neural network ar-
chitecture latency on optimized runtimes such as Ten-
sorRT. It is very important to account for the effect of
runtime in latency prediction for edge devices.

• A new runtime characterization on embedded devices
using a hardware descriptor is proposed that can be
easily constructed on all Linux devices. We show that
by reducing the performance metric-based hardware
descriptor proposed by MAPLE into a more dense
form containing performance counters that are sup-
ported by Intel and ARM processors alike, embedded

device runtimes can be accurately characterized in just
minutes.

• We propose two simple but very effective techniques
to adapt MAPLE for diverse edge devices. We empir-
ically show that our proposed techniques of targeted
uniform sampling and performance counter normaliza-
tion, have a significant impact on accuracy, resulting in
average gains of up to +48.81% compared to MAPLE
on certain runtimes.

• We provide comprehensive experimental results illus-
trating how using only 10 measurements from an un-
seen edge runtime, the proposed MAPLE-Edge can
achieve state-of-the-art accuracy results outperforming
the state-of-the-art methods including MAPLE [1] and
HELP [10].

The rest of the manuscript is organized as follows; the
next section describes the main methodology and the pro-
cedure of acquiring the training data from the edge devices.
Section 3 dives into the experimental results and compares
the proposed method and competing algorithms. Finally we
conclude the paper in Section 4.

2. Method
In this section, we describe the framework for predict-

ing the latency on edge devices including the search space,
hardware descriptor, hardware cost collection pipeline, pre-
processing, and data augmentation strategies.

2.1. MAPLE-Edge

The seminal MAPLE technique [1] was evaluated on
general purpose hardware including Intel processors and
server class GPUs. While the proposed algorithm outper-
formed other state-of-the-art techniques in estimating the
latency, our experiments showed that MAPLE cannot al-
ways achieve strong results on ARM based embedded de-
vices due to the added diversity in the device pool which
needs further extension to address the issue. To this end, we
propose a simple yet very effective trick to make the predic-
tor generalize better: i) we take advantage of a targeted uni-
form sampling for selecting adaptation architectures, and ii)
a new approach to represent hardware performance counters
by the corresponding operator latency, to make the hard-
ware descriptor adapt across diverse edge device runtimes.

2.1.1 Targeted Uniform Adaptation Sampling

The proposed MAPLE algorithm used a random selection
approach to identify the adaptation set. While this approach
makes the algorithm fairly easy and practical, it might result
in instances where the selected samples may not be a good
representation of the larger distribution.

3661



Figure 1. MAPLE-Edge overview. MAPLE-Edge is an edge device-oriented extension to MAPLE, designed specifically to estimate the
latency of neural network architectures on unseen embedded devices. MAPLE-Edge trains a LPM-based hardware-aware regression model,
that can effectively estimate architecture latency. To do this, it trains the LPM on a dense hardware descriptor made up of CPU performance
counters, in conjunction with architecture-latency pairs. In the data collection stage, MAPLE-Edge uses an automated pipeline to convert
models in NAS-Bench-201 to their optimized counterparts, deploy it to the corresponding target device, and profile inference. To adapt to
previously unseen architectures, MAPLE-Edge creates a training set T consisting of an initial set of architectures X from a pool of known
devices, as well as an adaptation set of architecture samples X̂ from the unseen device, which are selected through a targeted uniform
sampling algorithm.

To minimize this risk, MAPLE-Edge leverages a targeted
uniform sampling strategy where adaptation samples are se-
lected to maximize the probability of falling across the la-
tency space. Specifically, by creating N bins correspond-
ing to the N adaptation samples and ranking architectures
based on the measured end-to-end latency for each device
in the training pool, we improve the probability of select-
ing a diverse set of samples, thereby representing the space
more effectively. The ranked architectures for each device
are then distributed uniformly across the N bins, yielding a
total of M ·X/N architectures per bin, where M is the num-
ber of training devices, and X is the number of architectures
in the initial training set. One adaptation architecture is then
randomly sampled per bin.

The intuition behind this is that although the absolute
latency values are different across device runtimes, the rel-
ative orderings of architectures tend to be similar. Thus,
by merging the latency distributions of all architectures in
the training pool together and sampling from the combined
pool, we create a more robust prior to sample the adaptation
architectures from. Figure 2 demonstrates the effect of the
proposed Targeted Uniform sampling compared to random
selection. As seen, the selected samples via the random se-
lection exhibits similar latencies while the selected samples

by the proposed sampling approach show a more diverse set
spread across the distribution of training architectures.

2.1.2 Performance Counter Normalization

Due to the limited diversity of devices in the training pool,
MAPLE was able to effectively characterize devices using
the raw performance counters obtained directly from the
Perf tool [13]. However on edge devices, there can be
significant variance between the various runtimes and de-
vices. Table 1 shows the mean latencies across the first
2700 neural network architectures in NAS-Bench-201 for
an ImageNet style input of size 224 × 224 with batch size
1. The differences in latency between runtimes and even
among devices of the same runtime imply that a hardware
descriptor containing absolute performance counters mea-
sured over the entire duration of inference will be less suit-
able as a runtime descriptor, and as result the latency pre-
dictor will have to learn an additional mapping between an
operator metric and its corresponding latency. Instead, to
provide more effective representation and accelerate learn-
ing in the predictor, MAPLE-Edge normalizes all perfor-
mance counters collected by Perf by the measured latency
of the respective operator. By dividing each performance

3662



Figure 2. Comparison of the random adaptation sampling technique used by MAPLE (left) versus the targeted uniform sampling strategy
proposed by MAPLE-Edge (right). The orange dots highlight ten adaptation architectures that were sampled using both methods from
the first 900 architectures in NAS-Bench-201. The targeted uniform sampler intentionally selects architectures from across the latency
distribution whereas the random sampler has no prior, and may result in the selected architectures being drawn from a narrow band of
the latency space. By maximizing coverage of the latency space, we ensure that the LPM is more likely to be trained on samples that are
representative of the test device.

Table 1. Average measured latency across architectures [0,2699]
in NAS-Bench-201 (averaged over 50 trials each), using Tensor-
Flow Lite and TensorRT runtimes. The large variance in latency
between the different runtimes makes it difficult for the MAPLE
hardware descriptor to effectively represent diverse device run-
times. We mitigate this issue by applying the performance counter
normalization trick described in Section 2.1.2

Runtime

Device TensorFlow Lite [s] TensorRT [s]

Jetson TX1 1.0 ± 0.5 0.05 ± 0.01
Jetson TX2 0.9 ± 0.5 0.03 ± 0.01
Jetson Nano 1.1 ± 0.6 0.07 ± 0.02
Raspberry Pi 4B 0.6 ± 0.2 -

counter by the latency, this effectively transforms the hard-
ware descriptor from an embedding of absolute values (e.g.
cache-misses) to an embedding of relative rates (e.g. cache-
misses per second).

2.2. Data Collection Pipeline

Embedded vision applications routinely operate under
tight deadlines with low latency constraints. To maximize
performance in production, expert domain knowledge can
be used to optimize deep learning models to more efficient
formats (e.g. through the use of runtime specific compil-
ers), as well as hardware modifications (e.g. overclocking,
memory swapping, power usage maximization). Similar
to HW-NAS-Bench [11], MAPLE-Edge leverages this do-

main knowledge to build an optimized, generic hardware-
cost collection pipeline that automates the process of col-
lecting latency measurements (as seen in Figure 1).

On the NVIDIA Jetson devices, MAPLE-Edge executes
inference on the GPU using models compiled to serialized
TensorRT (TRT) engine format, while CPU based infer-
ence is executed on all devices using the TensorFlow Lite
(TFLite) runtime engine. Unlike HW-NAS-Bench however,
MAPLE-Edge also records hardware performance counters
for all 15 operations in NAS-Bench-201 [6], by executing
the Linux Perf [13] tool while running inference.

2.3. Edge Dataset

Similar to MAPLE [1], BRP-NAS [7], HELP [10],
and HW-NAS-Bench [11], MAPLE-Edge also uses the
NAS-BENCH-201 [6] dataset for all experiments. NAS-
BENCH-201 is a collection of 15,625 neural cell candi-
dates with each architecture having a fixed cell topology
with five possible operations in its search space including
{none, skip-connection, conv1x1, conv3x3, avgpool3x3}.
Each operation allows 16, 32, or 64 input and output chan-
nels, yielding a total of 15 possible variations for the opera-
tions that can be used in designing new architectures.

The key observation in MAPLE was that the latency
search space can be effectively characterized at the operator
level, if the operator latency is augmented with a hardware
description vector. Unlike methods like nn-Meter, MAPLE
quickly builds a hardware descriptor for a device or runtime
by executing the Linux tool Perf to measure 10 hardware
performance counters while a model gets executed.

MAPLE-Edge follows a similar strategy, but builds a

3663



hardware descriptor using only 6 out of the original 10 per-
formance counters that were found to be supported by de-
fault on all Linux kernels. These include performance coun-
ters for CPU-cycles, instructions, cache-references, cache-
misses, level one (L1) data cache loads, and L1 data cache
load misses. Even though we do not collect any metrics
relating to LLC (last level cache) counters due to limited
support on some ARM based processors, we show that the
results are still competitive and achieve strong gains over
all baselines. Each operation is characterized by running
inference for N = 1000 runs, and the Perf tool is launched
from a Python Subprocess to profile the execution of the
inference occurring in the main thread.

To create our dataset, we measure the end-to-end latency
of the first 2,700 architectures in NAS-Bench-201 on a va-
riety of different edge devices and runtimes. These devices
were selected due to their ubiquity in industrial embedded
vision applications and include a i) 4GB 4xA57 core Jet-
son Nano with 128 NVIDIA Maxwell CUDA cores, ii) 4GB
4xA57 core Jetson TX1 with 256 NVIDIA Maxwell CUDA
cores, iii) 8GB 6xA57 core Jetson TX2 with 256 NVIDIA
Pascal CUDA cores, and iv) a 4GB 4xA72 core Raspberry
Pi 4B running 64-bit Raspbian OS. Of these 2,700 architec-
tures, we sample from the first 900 architectures for training
our predictor, and report the test accuracy of all methods on
architectures in range [1,800, 2,699]. This test strategy lets
us evaluate how well the method performs on completely
unseen architectures.

To train the regression model, we collect an initial set of
architectures X from all devices in the training pool, along
with an adaptation set of few (i.e., typically 10) architec-
tures X̂ from devices in the test pool. The initial set X helps
the model generalize to the search space while the adapta-
tion samples X̂ help the predictor specialize to the test de-
vices.

2.4. Data Augmentation

MAPLE-Edge also applies a simple yet effective data
augmentation strategy where all selected adaptation sam-
ples from the test device are naively cloned K − 1 times
to increase their representation in the training pool. Given
the limited number of samples we collect, we empirically
find that this approach helps the model prioritize the adapta-
tion samples. However, we find that this data augmentation
technique may result in worse performance if the adapta-
tion samples are poorly chosen to begin with (such as with
a random selection strategy) instead of a more representa-
tive selection strategy such as targeted uniform sampling,
which is more robust to outliers. Unless otherwise noted,
all experiments in this paper use an augmentation factor of
K = 7, meaning that for each adaptation sample, 6 addi-
tional clones are created.

We follow the same training strategy proposed in

MAPLE [1], including the feedforward regression model,
model training regime, loss function, and evaluation crite-
ria. As such, training MAPLE-Edge remains fast, and takes
less than 2 mins to train from scratch until completion (200
epochs, batch size 128) on a single NVIDIA GTX-1080Ti
machine.

3. Results & Discussion
In this section we evaluate the performance of the pro-

posed MAPLE-Edge approach and compared it with the
state-of-the-art method in predicting the latency of neural
network architectures on different edge devices. We also
study the effect of each proposed techniques individually to
illustrate the importance of the each step in improving the
model accuracy.

3.1. Experimental Setup

To evaluate the performance of the proposed MAPLE-
Edge, we compare it against look-up table (LUT) based
method as the baseline and the state-of-the-art algorithms
including HELP [10] and MAPLE [1]. For all experiments,
HELP, MAPLE, and MAPLE-Edge were trained using ar-
chitectures [0,899] from NAS-BENCH-201 across 10 tri-
als, each with a unique adaptation set generated using our
uniform targeted sampling technique. The 10 adaptation
samples were kept consistent across all methods to ensure
that the results are due to the technique’s ability to general-
ize and not because the adaptation samples are drawn from
a more representative distribution. A more detailed study
comparing the original MAPLE algorithm with each of our
proposed improvements can be found in Section 3.3 and Ta-
ble 4. Similar to BRP-NAS and MAPLE, we evaluate all
methods using a ±10% error-bound accuracy metric, which
describes the percentage of models with predicted latency
within the corresponding error bound relative to the mea-
sured latency [7]. All methods were also evaluated on ar-
chitectures [1800,2699] for consistency.

3.2. Results

Table 2 shows the comprehensive comparison analysis
of the proposed method and competing algorithms. We can
see how the LUT baseline performs well on the TensorFlow
Lite runtimes but fails to generalize to any of the TensorRT
runtimes. This is because the LUT approach estimates the
total end-to-end latency by adding together the latency of
each individual block and operator, without accounting for
any runtime optimizations made by the execution engine.
For example, NVIDIA’s TensorRT automatically eliminates
layers with unused outputs and fuses together distinct layers
to improve efficiency of running networks on the GPU [4].
Because of such optimizations, the resulting graph may not
bear a lot of semblance to the original stack of layers, thus
rendering the LUT based approach incapable of accurately

3664



Table 2. Summary of results comparing MAPLE-Edge to a LUT based estimator as well as HELP, and MAPLE baselines. The method
column describes the method and training paradigm used. For example, MAPLE-Edge TFLite implies that each test device in that row was
trained on MAPLE-Edge using a device pool containing only TensorFlow Lite runtimes. All methods were trained for ten trials with unique
set adaptation samples (for each trial) used across all methods for consistency (selected using our targeted uniform sampling technique).

Test Runtime - Mean ±10% Accuracy

Method Raspberry Pi
TFLite

Jetson TX1
TFLite

Jetson TX2
TFLite

Jetson Nano
TFLite

Jetson TX1
TRT

Jetson TX2
TRT

Jetson Nano
TRT

LUT 55.18 80.96 80.22 79.96 12.07 0.00 7.85

HELP TFLite 42.77±5.07 54.90±9.62 58.82±12.00 58.67±11.99 - - -
MAPLE TFLite 45.04±7.69 99.22±0.31 96.81±1.75 98.53±0.83 - - -
MAPLE-Edge TFLite 54.00±11.43 98.89±0.35 97.4±1.59 96.18±1.85 - - -

HELP TRT - - - - 79.88±6.34 82.64±5.25 79.54±5.36
MAPLE TRT - - - - 96.52±1.79 96.64±2.05 94.37±2.76
MAPLE-Edge TRT - - - - 96.68±1.01 94.89±2.37 93.67±3.07

HELP TRT + TFLite 47.62±5.60 52.28±9.55 53.43±10.45 57.43±10.43 67.93±4.80 63.56±7.99 68.50±8.36
MAPLE TRT + TFLite 51.37±3.28 98.94±0.67 96.89±1.93 98.40±0.44 45.61±23.69 27.59±20.04 80.01±8.13
MAPLE-Edge TRT + TFLite 54.23±4.21 99.34±0.24 99.19±0.42 98.19±0.94 91.71±2.00 76.64±6.66 82.08±7.05

estimating architecture latency. This can be easily seen in
Figure 3 which shows how skewed the latency distribution
looks for optimized edge runtimes, due to the LUT predictor
overestimating architecture latency. On the other hand for
un-optimized runtimes such as PyTorch under CPU based
execution on an Intel processor, we can see how LUT based
estimators achieve nearly perfect accuracy. This is why
LUT based approaches have continued to be successful in
a variety of non-embedded contexts, but this further under-
scores the need for more robust latency estimation methods
for optimized edge runtimes.

The performance of all other methods were evaluated
using two different types of training pools; runtime based
pooling and combined pooling. In runtime based pooling,
the initial set of samples are drawn from devices sharing
the same runtime as the test device, excluding the test de-
vice itself. For the combined pooling setup, the initial set of
samples are drawn from all available devices, excluding the
test device. In almost all cases, we can see in Table 2 that
MAPLE-Edge shows strong gains over the HELP baseline,
especially in the case of runtime-based pooling where fewer
devices are available. This is particularly significant in an
embedded vision context as most applications would only
have the infrastructure to support a single runtime instead of
all available runtimes. By being able to effectively general-
ize to an unseen device on the same runtime, MAPLE-Edge
can propel significant advancements in the field of neural
architecture search for embedded vision contexts.

The effectiveness of MAPLE-Edge is most evident in
Table 3 where we attempt to predict the latency on a test

device, using only a single device in the training pool.
The reported results are obtained using leave-one-out cross-
validation, where we rotate a device into the training pool
to ensure that the results are representative of all available
devices for that particular runtime. Here we can see that
despite only being trained on 900 samples from a single
device, MAPLE-Edge can effectively estimate the latency
of architectures being executed on an unseen device. The
strong gains over both HELP and MAPLE shows that the
proposed LPM algorithm is very capable of estimating la-
tency on optimized graphs, something that current state-of-
the-art estimators have trouble with.

3.3. Improvements Over MAPLE

Table 4 provide a detailed glimpse into the impact of our
proposed improvements on the MAPLE algorithm. The re-
sults labelled with a ⋆ represent the performance of original
MAPLE (i.e. with no performance counter normalization,
no data augmentation, and using a random adaptation sam-
ple selection strategy). Although MAPLE shows strong per-
formance across the board (90+% top ±10% accuracy), it
appears to get particularly challenged when presented with
a diverse group of devices such as the device pool with com-
bined TRT and TFLite runtimes. In such a scenario, the re-
gression model appears unable to effectively generalize the
hardware descriptor it has learned, to the adaptation sam-
ples presented from the test device. This is particularly vis-
ible in the Jetson TX1-TRT and Jetson TX2-TRT columns
for MAPLE (TRT+TFLite) with baseline accuracies near
47% and 27% respectively. By applying the targeted uni-

3665



Figure 3. Look-up-table (LUT) latency predictions versus true latency for edge runtimes Jetson Nano TRT, and Raspberry Pi TFLite
compared to non-edge runtime (PyTorch CPU inference on Intel i5-7600k). The red lines represent the ±10% error bound and the yellow
line represents a perfect prediction. Note how LUT based estimation tends to overestimate the latency for inference executed on optimized
graph, as it cannot take into account the runtime optimizations performed by the execution engine.

Table 3. Results from predicting the latency on each test device,
using only one device in the training pool. Reported values are
mean ±10% accuracy, obtained using leave-one-out cross valida-
tion across multiple training devices.

Test Runtime - Mean ±10% Accuracy

Method Jetson TX1
TRT

Jetson TX2
TRT

Jetson Nano
TRT

HELP TRT 78.95±5.02 76.35±7.13 76.44±6.54

MAPLE TRT 76.63±19.05 81.93±12.53 59.52±26.39

MAPLE-Edge TRT 95.23±3.27 96.59±2.09 91.04±4.567

form adaptation sampling strategy, the accuracy is seen to
increase +1.99% on average. Stacking this with the la-
tency normalization provides an average gain of +7.24%
as well as a significant jump of +28.93% and +48.81% for
the lowest performing TX1-TRT and TX2-TRT runtimes.
Thus by only applying these small tricks, we show that the
core ideas behind MAPLE can be successfully extended to
diverse hardware pools as well, and that MAPLE-Edge can
be used in Neural Architecture Search as an effective LPM
tailored towards edge devices.

3.4. Effect of Adaptation Samples

Despite showing strong gains against baselines for all
runtimes on the Jetson family of devices, MAPLE-Edge
does not make any gains against the LUT approach for
the Raspberry-Pi TensorFlow Lite runtime. To investigate
which hyperparameters affect our method the most, we con-
duct an ablation study and experiment with varying the val-
ues of the number of adaptation samples (previously fixed
at 10) as well as the number of clones created per adapta-
tion sample. The results of our experiments can be seen in
Figure 4 which shows how additional adaptation samples

Figure 4. Impact of adaptation samples and augmentation factor
on mean ±10% accuracy for Raspberry Pi TensorFlow Lite run-
time. Each curve shows the result for using different number of
augmentation sample K. Note, how increasing the number of
adaptation samples from 10 to 100 provides a nearly 40% boost
in prediction accuracy when no data augmentation is applied. On
the other hand, we see that data augmentation proves most benefi-
cial when adaptation samples are limited, and that beyond a certain
point, additional data augmentation may in fact even harm accu-
racy. The training pool for this experiment consisted of all edge
device runtimes excluding Raspberry Pi TFLite.

and augmentation factor work together to significantly im-
prove generalization, boosting the estimation accuracy on
the Raspberry Pi TensorFlow Lite runtime from around 50%
accuracy to nearly 90% accuracy. Although this requires al-
most 10x the number of adaptation samples, we believe that
the additional time spent collecting samples (10 minutes vs.
100 minutes) is a tradeoff worth making in industrial sce-
narios, as it can significantly improve the latency estimation
accuracy on embedded devices.

3666



Table 4. Detailed results showing how the additions we propose to MAPLE (targeted uniform adaptation sampling, performance counter
normalization, and data augmentation) on average provide additive gains over the baseline method. The method column is broken down
into 3 main sections: (top) These are the results from experiments where the device pool only consists of TensorFlow Lite runtimes.
(middle) These are the results from experiments where the device pool only consists of TensorRT runtimes. (bottom) These are the results
from experiments where the device pool consists of both TensorRT and TensorFlow Lite runtimes. The top row in each section is labelled
with a ⋆ signifying that these are the absolute accuracy values for the original MAPLE algorithm when evaluated on the corresponding test
device runtime. A †, ⊕, and ∪ labels correspond respectively to targeted uniform adaptation sampling, latency based performance counter
normalization, and data augmentation. These techniques are shown to augment the accuracy of MAPLE, with each technique providing
additional additive gains over the baseline on average.

Test Runtime - Mean ±10% Accuracy

Method Raspberry
Pi TFLite

Jetson TX1
TFLite

Jetson TX2
TFLite

Jetson Nano
TFLite

Jetson TX1
TRT

Jetson TX2
TRT

Jetson Nano
TRT

MAPLE (TFLite) ⋆ 41.70 98.53 94.39 95.33 - - -
MAPLE (TFLite) ⋆† +3.34 +0.69 +2.42 +3.20 - - -
MAPLE (TFLite) ⋆ † ⊕ +3.09 +0.83 +3.73 +2.18 - - -
MAPLE-Edge (TFLite) ⋆ † ⊕∪ +12.30 +0.36 +3.01 +0.85 - - -

MAPLE (TRT) ⋆ - - - - 94.10 94.66 91.91
MAPLE (TRT) ⋆† - - - - +2.42 +1.98 +2.46
MAPLE (TRT) ⋆ † ⊕ - - - - +3.32 -1.74 -0.81
MAPLE-Edge (TRT) ⋆ † ⊕∪ - - - - +2.58 +0.23 +1.76

MAPLE (TRT+TFLite) ⋆ 44.86 98.96 93.99 96.59 46.89 27.09 79.06
MAPLE (TRT+TFLite) ⋆† +6.51 -0.02 +2.90 +1.81 -1.28 +0.50 +0.95
MAPLE (TRT+TFLite) ⋆ † ⊕ +4.48 +0.42 +5.08 +1.18 +28.93 +48.81 +1.83
MAPLE-Edge (TRT+TFLite) ⋆ † ⊕∪ +9.37 +0.38 +5.20 +1.60 +44.82 +49.55 +3.02

4. Conclusion

In this work, we propose MAPLE-Edge, a simple yet
highly effective extension to MAPLE, enabling the most
accurate latency estimation on embedded devices includ-
ing optimized graphs. MAPLE-Edge leverages a reduced
hardware descriptor that characterizes the device using just
6 performance counters that are available by default on all
Linux kernels. We show that by measuring CPU based
performance counters while executing inference using op-
timized graphs on embedded devices, we can more accu-
rately estimate latency on TensorRT and TensorFlow Lite
runtimes, compared to previous state-of-the-art approaches
like HELP. We also observe additional gains over MAPLE
by applying our proposed targeted uniform sampling and
normalization strategies. We validate the proposed methods
by conducting experiments with ten random trials each, us-
ing a unique set of adaptation samples in each trial. We
find that on average, with ten adaptation samples and a
targeted uniform adaptation sampling technique, MAPLE-
Edge yields an improvement of 26.08% over HELP and
7.65% increase over MAPLE when there is more than one
device in the training pool. MAPLE-Edge exhibits particu-
larly strong gains when estimating the latency when trained

on just 900 architectures from a single device, yielding
17.04% improvements over HELP and 21.59% improve-
ment over MAPLE on average. By requiring significantly
fewer adaptation samples than other techniques, MAPLE-
Edge demonstrates that it is possible to effectively estimate
latency on optimized edge runtimes, paving the way for
more efficient architectures to be discovered for embedded
vision using Neural Architecture Search.

References
[1] Saad Abbasi, Alexander Wong, and Mohammad Javad

Shafiee. Maple: Microprocessor a priori for latency estima-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2022. 1, 2, 4, 5

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 1

[3] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 1

[4] NVIDIA Corporation. Nvidia tensorrt, 2022. 2, 5
[5] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei

Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming

3667



Wu, Yangqing Jia, et al. Chamnet: Towards efficient network
design through platform-aware model adaptation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 11398–11407, 2019. 1

[6] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending
the scope of reproducible neural architecture search. arXiv
preprint arXiv:2001.00326, 2020. 4

[7] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah,
Royson Lee, Hyeji Kim, and Nicholas Lane. Brp-nas:
Prediction-based nas using gcns. Advances in Neural Infor-
mation Processing Systems, 33:10480–10490, 2020. 1, 4, 5

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2961–
2969, 2017. 1

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1

[10] Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju
Hwang. Hardware-adaptive efficient latency prediction for
nas via meta-learning. Advances in Neural Information Pro-
cessing Systems, 34, 2021. 1, 2, 4, 5

[11] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang,
Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, and
Yingyan Lin. Hw-nas-bench: Hardware-aware neural archi-
tecture search benchmark. arXiv preprint arXiv:2103.10584,
2021. 4

[12] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 1

[13] The Linux Kernel Organization. perf: Linux profiling with
performance counters, 2022. 3, 4

[14] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning,
pages 4095–4104. PMLR, 2018. 1

[15] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 1

[16] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in Neural Information Pro-
cessing Systems, 28, 2015. 1

[17] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 1

[18] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

[19] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2820–2828, 2019. 1

[20] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019. 1

[21] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, et al. Fbnetv2: Differentiable neural architec-
ture search for spatial and channel dimensions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12965–12974, 2020. 1

[22] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng
Zhu, Chuang Gan, and Song Han. Hat: Hardware-aware
transformers for efficient natural language processing. arXiv
preprint arXiv:2005.14187, 2020. 1

[23] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 10734–10742, 2019. 1

[24] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Bowen
Shi, Qi Tian, and Hongkai Xiong. Latency-aware dif-
ferentiable neural architecture search. arXiv preprint
arXiv:2001.06392, 2020. 1

[25] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng,
Ting Cao, Yuqing Yang, and Yunxin Liu. Nn-meter: Towards
accurate latency prediction of deep-learning model inference
on diverse edge devices. In Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications,
and Services, pages 81–93, 2021. 1

[26] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 1

3668


