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Abstract

The Once-For-All (OFA) method offers an excellent path-
way to deploy a trained neural network model into multi-
ple target platforms by utilising the supernet-subnet archi-
tecture. Once trained, a subnet can be derived from the
supernet (both architecture and trained weights) and de-
ployed directly to the target platform with little to no re-
training or fine-tuning. To train the subnet population, OFA
uses a novel training method called Progressive Shrinking
(PS) which is designed to limit the negative impact of in-
terference during training. It is believed that higher in-
terference during training results in lower subnet popula-
tion accuracies. In this work we take a second look at
this interference effect. Surprisingly, we find that interfer-
ence mitigation strategies do not have a large impact on
the overall subnet population performance. Instead, we
find the subnet architecture selection bias during training
to be a more important aspect. To show this, we propose
a simple-yet-effective method called Random Subnet Sam-
pling (RSS), which does not have mitigation on the interfer-
ence effect. Despite no mitigation, RSS is able to produce a
better performing subnet population than PS in four small-
to-medium-sized datasets; suggesting that the interference
effect does not play a pivotal role in these datasets. Due
to its simplicity, RSS provides a 1.9× reduction in train-
ing times compared to PS. A 6.1× reduction can also be
achieved with a reasonable drop in performance when the
number of RSS training epochs are reduced. Code avail-
able at https://github.com/Jordan-HS/RSS-
Interference-CVPRW2022

1. Introduction

Deploying deep neural network models for real-world
applications requires accurate and fast inference [37]. Gen-
erally, these accuracy and latency constrains are compet-
ing with one another, with only architecturally optimal net-
works being able to achieve both. Designing these optimal
networks by hand is a challenging task and has led to the
explosion of the neural architecture search (NAS) field.

Some initial NAS methods [1, 26, 40] were based on re-
inforcement learning approaches and proved the concept vi-
able. Unfortunately, these approaches required extremely
high computational resources as they train hundreds of ar-
chitectures. Moreover, these only searched the architectures
which optimise accuracy.

The goal of the approach eventually shifted to producing
optimal networks with high accuracy and fast inference. To
this end, two different approaches were developed: (1) the
direct NAS methods [5, 8, 15, 23, 33]; and (2) the one-shot
methods [2, 3, 11, 34]. The former constructs a continuous
search space and utilises gradient descent for the search.
Whilst, the later uses a discrete search space which only
requires the neural network architecture search space to be
trained once. This means the search becomes much faster
and requires significantly fewer computational resources.

Previous one-shot methods [2, 3, 11, 34] use the trained
search space as a guide for finding optimal networks. Once
the optimal networks are found, they are trained from
scratch before deployment. This presents a problem if
we wish to deploy different network variants for various
deployment platforms. To address this, the Once-For-
All (OFA) method [4] trains a supernet wherein a sub-
network/subnet architecture and its weights can be directly
sampled from the supernet. Once sampled, a small amount
of fine-tuning might be applied before the subnet is de-
ployed; thus, side stepping the need for training the sampled
subnets from scratch for each deployment platform.

To achieve its goal, OFA needs to train a large subnet
population (2×1019 subnets) [4]. When attempting to train
the subnet population using naive approaches they find the
subnets interfere with each other, resulting in significant ac-
curacy drops. This is taken to suggest that modifying the
weights of one subnet could affect the performance of other
subnets in the subnet population. However, this interfer-
ence is not currently well understood. To address the in-
terference, OFA proposes a novel training method, called
Progressive Shrinking (PS). PS trains the largest architec-
ture first (i.e., the supernet) and then progressively samples
and trains smaller subnet architectures. Recent work in [27]
showed that it is possible to improve the accuracy of the
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(a) Training time measured from the start of the first training epoch and
the finish of the last epoch for OFA, RSS (proposed) and RSS-Short
(proposed) methods. Refer to Tab. 1 for number of training epochs.

(b) Subnet population performance of the OFA, RSS (proposed) and
RSS-Short (proposed). Both proposed variants have better top perform-
ing subnets with a lower variance in the population. More detailed re-
sults are reported in Section 6.2

Figure 1. Training time reduction and accuracy improvements of the proposed Random Subnet Sampling (RSS) compared to the Once-
For-All (OFA) method. Results on CIFAR100 dataset [17].

subnets by reducing the search space. The work suggests
the accuracy gained is due to a reduction in interference re-
sulting from the reduced search space. Therefore, the limit-
ing factor on improving subnet population performance ap-
pears to be related to the interference effect between subnets
during training.

In this work, we take a second look at this effect. In par-
ticular we ask the following questions: (1) Does the interfer-
ence effect exists? (2) If it exists, then by how much does
it affect the subnet population’s performance? (3) If any
other factors impact the subnet population’s performance?
To examine these questions, this paper introduces a sim-
ple method dubbed Random Subnet Sampling (RSS), which
randomly samples a single subnet to train at each epoch.
Obviously, RSS does not have any mitigation on the inter-
ference effect. We compare RSS with OFA’s PS method
on four datasets: MNIST [20], Fashion-MNIST [35], CI-
FAR10 [17], and CIFAR100 [17]. To our surprise, the sub-
net population is able to better generalise and achieve higher
accuracies than PS. Fig. 1 shows the main findings from this
work.

Our findings suggest that interference between subnets
has a minimal effect on the subnet population’s perfor-
mance. Instead, we argue that bias in the subnet selec-
tion scheme during training has a larger impact on perfor-
mance. When a subnet architecture is sampled and trained
more often than the others, the subnet tends to have signifi-
cantly higher accuracy. On the other hand, the performance
of rarely sampled subnet architectures tend to have signifi-
cantly lower accuracy. This sampling bias is analogous to
the bias introduced when training a neural network model
with an imbalanced dataset. The proposed RSS method ad-
dresses this sampling bias by uniformly sampling the subnet

architecture during each epoch.
We also observe that the interference effect becomes

more apparent when combining multiple subnets gradients
during a single update step. This corroborates recent find-
ings by Xu et al. [36] in the Natural Language Processing
(NLP) field.
Contributions - Our contributions are listed as follows,

1. In contrast to the recent belief, we show that the in-
terference has minimal effect when training the subnet
population.

2. Instead, we argue that bias in the subnet selection
scheme during training plays a bigger role.

3. We also show that the interference effect becomes
more pronounced when combining the gradients of
multiple subnets in a single update step.

4. To show the above points, we propose a simple-
yet-effective method called Random Subnet Sampling
(RSS). The proposed RSS method outperforms Once-
For-All’s Progressive Shrinking (PS) method which
suggests point (1). In addition, the reason why RSS
has good performance is because it addresses the bias
problem as stated in point (2) and it only trains a single
subnet for each epoch, in line with point (3).

We continue our paper as follows. Related works are dis-
cussed in Section 2. The subnet population training problem
formulation is presented in Section 3. We then introduce the
proposed method in Section 4 and discuss subnet sampling
bias during training in Section 5. Section 6 presents the ex-
perimental results. Finally, Section 7 discusses conclusions
and the future direction of this work.
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2. Related Work

One-Shot NAS - The goal of Neural Architecture Search
(NAS) is to search for an optimal architecture in a large ar-
chitecture search space. This search space can be continu-
ous, in the case of direct NAS methods [5, 8, 15, 23, 33], or
discrete, in the case of one-shot methods [2, 3, 11]. Addi-
tionally, the name ‘one-shot‘ refers to the subnet population
only requiring to be trained once; whereas previous meth-
ods used reinforcement learning and trained hundreds of in-
dividual networks during search [1, 26, 40]. One-shot meth-
ods, such as Once-For-All [4], train large discrete search
spaces using weight sharing techniques [6, 12, 13, 39] re-
moving the requirement to train every architecture. The rel-
ative accuracy of subnets in the subnet population is then
used to find an optimal architecture. Once found, the ar-
chitecture is trained from scratch as the previous shared
weights are not fully optimised. As a further improvement,
various methods were able to remove this need for retrain-
ing [4, 16, 22, 27, 30, 38], allowing subnets to be directly
extracted from the subnet population. Despite its compu-
tational benefits, weight sharing is not a perfect solution as
it is believed to introduce the problem of interference be-
tween subnets. In this work we look to further study this
interference as it is currently under explored.
Interference Effect in One-Shot Training - Most of the
current understanding around the effects of interference
come from observations made during the application of spe-
cific methods. Guo et al. [11] states that the weights in the
supernet are deeply coupled, although no further study to
explain the underlying mechanism of coupling is provided.
Cai et al. [4] state that randomly selecting subnets for train-
ing causes interference and accuracy drops; which Sahni et
al. [27] echo and believe their compound heuristic is able to
reduce interference and therefore improve accuracy. Liu et
al. [34] state that the existence of unnecessary neurons and
connections in the supernet negatively impacts training and
leads to greater interference. Perhaps, the most closely re-
lated study of interference is from the field of Natural Lan-
guage Processing (NLP) by Xu et al. [36]. They conduct a
specific analysis of the interference effect during training a
single-path one-shot NAS method. Their work finds that in-
terference between subnets is caused by diverse gradient di-
rections produced by multiple sampled subnets. Combining
these diverse gradient directions would hamper the train-
ing progress. Furthermore, large architectural differences
between sampled subnets contribute to the diverse gradient
directions. Our work differs as we train a subnet population
constructed from a computer vision-based neural network
model, instead of a single-path subnet population for NLP.
Despite these differences we find their findings to be con-
sistent with our own.
Bias in One-Shot Training - The effect of bias during one-
shot training has been raised recently by Chu et al. [7].
Their work observe an unfair bias in the previous one-shot

methods’ [23, 25] supernet training as the cause for the poor
correlation between the subnet proxy performance and its
corresponding standalone trained performance (i.e., trained
from scratch). Since the proxy performance is used as a
guide when searching for optimal architectures, low corre-
lation with the standalone trained performance will produce
suboptimal architectures. To this end, they propose a strict
fairness based training method. Despite bias being the core
issue, their work only focus on the training fairness issue
and does not extensively explore the bias itself. Different
to their work, in this work we explain bias in the subnet
sampling/selection during training of a OFA subnet popula-
tion, to be analogous to bias in the data imbalance problem.
This analogy allows us to borrow solutions developed for
this problem to help us address the subnet sampling bias.
Data Imbalance - Real world data is not balanced [32]
like the ones commonly used in scientific works. This data
imbalance or bias is a well known problem within image
classification and many solutions have been developed to
address it. These include; Balanced sampling [10, 18, 32];
Hard mining [24, 28, 29, 31] which directly relate to ideas
used by Wang et al. [30] for worst-up training; and focal
loss [9, 21]. As mentioned, we propose that the subnet sam-
pling bias can be explained from the data imbalance per-
spective.

3. Problem Description
We follow the problem definition presented in the orig-

inal OFA work [4]. Let archi ∈ A be the i-th subnet ar-
chitecture. It is assumed that all subnet architectures in A
can be derived/sampled from the supernet (the largest model
amongst all). Let Wo be the weights of the supernet and
Warchi

be the weights of archi. We derive Warchi
from

Wo via a selection function C(·). The subnet population
training problem can then be formalised via a minimisation
problem as,

argmin
Wo

∑
archi∈A

Lval(C(Wo, archi)), (1)

where Lval is the loss on the validation set. Essentially, the
above equation aims at minimising the loss of every subnet
from A on the validation set. In the case of the OFA, and
for this paper, the size of A is 2× 1019 subnets.

4. Subnet Population Training
Due to the large population size (i.e., |A| = 2 × 1019),

directly minimising Eq. 1 is impractical. The general ap-
proach is to sample and train a subset Ã ∈ A. The subset
Ã is sampled according to some selection scheme and set
via C(·). Any subnet that does not belong to Ã will still
be indirectly trained due to its weights being shared with
the subnets in Ã. In this section we first briefly discuss PS,
proposed in the original OFA paper [4], and then propose
Random Subnet Sampling (RSS).
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4.1. Progressive Shrinking

The main idea of the PS [4] is to train the subnets with
respect to their Floating Point Operation (FLOP) size; from
the largest one (i.e., supernet) to the smaller ones progres-
sively.

The supernet is required to be trained prior to using the
progressive shrinking method. Once the supernet is trained,
PS trains the subnet population in three stages by perform-
ing a controlled sampling on three network parameters: (1)
kernel size (e.g., 7x7, 3x3); (2) number of layers in each
block (Depth); and (3) number of channels (Width).

In the first phase, named dynamic kernel training, only
the kernel size is varied while the depth and width are kept
at their maximum values. In this stage a single subnet is
sampled for each update step. In the second phase, called
dynamic depth training, the method varies both the num-
ber of layers and the kernel size, while width still remains
at its maximum value. This stage samples two subnets and
combines the gradient from both for each update step. Fi-
nally, in dynamic width training, the method varies all three
parameters and combines the gradients from four sampled
subnets during each training step.

4.2. Random Subnet Sampling

We propose Random Subnet Sampling (RSS) which is
not designed to mitigate the interference effect. In contrast
to the progressive shrinking method, RSS does not perform
any controlled sampling. It samples the subnets by vary-
ing all three network parameters used in PS (i.e., the ker-
nel size, depth and width). We use uniform randomness to
choose the value for each parameter. Unlike PS which sam-
ples subnets for each update step, or batch, RSS samples a
single subnet for each epoch. We show later that per-epoch
sampling is a more effective method than per-batch sam-
pling. Algorithm 1 illustrates the proposed RSS method.

Algorithm 1 Pseudo code for the proposed Random Subnet
Sampling (RSS) method. Kernel settings, width settings
and depth settings are sets of values. For instance,
width settings = {3, 4, 6}. rand(·) is a sampling function
that uniformly samples values from the input argument.

Input: kernel settings, width settings, depth settings,
n epochs
Output: Trained subnet population

1: while i ≤ n epochs do
2: subnet k← rand(kernelsettings)
3: subnet e← rand(widthsettings)
4: subnet d← rand(depthsettings)
5: subnet← C(subnet k, subnet e, subnet d)
6: train subnet for one epoch
7: end while

The kernel, width and depth settings are one dimensional
vectors with the length prescribed as follows.

The length of the kernel settings vector (subnet k) and
width settings vector (subnet e) is equal to the maximum
depth setting multiplied by the number of blocks in the su-
pernet. As an example, if the supernet has five blocks, with
the maximum depth setting being four. Our kernel and
width settings vectors would therefore contain 20 values
(i.e. 5 blocks × 4 layers = 20). The length of the depth set-
tings vector (subnet d) is equal to the number of blocks.
As we see from Algorithm 1, the values of these three set-
ting vectors are randomised between lines 2-3. The subnet
is then derived by passing the sampled settings into the se-
lection function C(·) and trained. More specifically, we fol-
low OFA [4] to derive the subnet and its weights from the
supernet by using the sampled settings.

5. Subnet Sampling Bias
Different sampling strategies between PS and the pro-

posed RSS can be studied from the sampling bias perspec-
tive. We argue that Eq. 1, bears similarities to the standard
classification problem [19]. To train a classification model,
we can solve the following minimisation problem.

min
W∗

M∑
i=1

Ltrain(W
∗,xi, yi), (2)

Where xi and yi are the i-th data point and its corresponding
class label. W∗ is the neural network weights and Ltrain is
the training loss.

Similar to Eq. 1, the above minimisation problem aims
at reducing the loss for each data point in the training set,
(xi, yi)

M
i=1. The difference for Eq. 1 is that instead of sum-

ming the loss over all the data points, it sums the loss over
all the subnet architectures.

Linking the subnet population training problem pre-
sented in Eq. 1 with the classification problem in Eq. 2 is
appealing as we can use the tools/experience developed in
the classification problem into this field. For instance, bias
in the data is one of the big themes in the classification
field [32]. When training a network with an imbalanced
training set (i.e., some classes have significant higher num-
ber of training data than others), the network will tend to
have stronger confidence scores towards these large classes.

Using this new perspective, we argue that PS is a biased
selection scheme, as it initially trains the supernet before
training the largest to smallest subnets. As described in Sec-
tion 4.1, PS has three phases which progressively varies the
three network parameters. As an example, during dynamic
kernel training the width and depth are set at their maximum
values. This results in only larger subnets being trained dur-
ing this stage. Overall this could lead to the effect obsereved
by Chu et al. [7], with the larger subnets (especially the su-
pernet) performing better than smaller subnets, simply due
to more training.
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Unlike PS, RSS randomly samples subnets for the entire
training duration. This means, the subnet sampling is not bi-
ased towards the larger subnets. We will show in our results
that the subnet sampling bias does indeed play a significant
role in the overall performance; and that this role is similar
to the data sampling bias in the classification problem.

6. Experimental Results
We contrast between the proposed RSS method and PS

in this section. If the interference effect has significant con-
tribution, then RSS will have significant lower performance
than PS. First, the experimental set-up and the datasets are
discussed. Then, we present our main results. Finally, we
show additional ablation experiments.

6.1. Experiment Setup

Datasets and Methods - The datasets used for compari-
son are MNIST [20], Fashion-MNIST (FMNIST) [35], CI-
FAR10 [17], CIFAR100 [17]. These datasets were used to
cover a range of dataset complexities with MNIST being the
least complex and CIFAR100 being the most complex.

We compare three training methods as follows.
OFA [4]- The progressive shrinking method is used.
RSS- The proposed random subnet sampling with the same
number of training epochs as OFA.
RSS-short- The proposed RSS with the same number of
training epochs as only OFA’s supernet training.The train-
ing epochs for each method are shown in Tab. 1.

All training was conducted on a single Nvidia RTX3080
Graphics Processing Unit (GPU) with a initial learning rate
of 0.01 using cosine learning rate decay; batch size of 64;
momentum of 0.9; weight decay of 3e−5 and used cross-
entropy loss, unless otherwise specified.
Subnet Population Architecture - In this work, the Mo-
bileNetV3 [14] is used as the base architecture. From our
empirical observations (provided in supplementary mate-
rial), our findings are still consistent when a different base
architecture is used.

The subnet derivation from the base architecture is kept

Training Epochs
Dataset OFA RSS-Short RSS
MNIST 10(s)+27(ps) 10 37

F-MNIST 25(s)+57(ps) 25 82
CIFAR10 180(s)+410(ps) 180 590

CIFAR100 180(s)+410(ps) 180 590

Table 1. Training epochs for each method on each dataset where
(s) denotes supernet training and (ps) denotes progressive shrink-
ing training. For CIFAR10 and CIFAR100 we use the same train-
ing protocol as detailed by Cai et al. [4]. Training on MNIST
and F-MNIST are scaled versions of the same CIFAR10 and CI-
FAR100 training with less epochs.

consistent with the settings used by OFA. The subnet pop-
ulation is defined along three mutable dimensions, the ker-
nel size, layer width (number of channels), and layer depth
(number of layers for each block). The possible settings for
each dimension are shown below.

• Kernel ∈ {3× 3, 5× 5, 7× 7}.
• Width ∈ {3, 4, 6}.
• Depth ∈ {2, 3, 4}.
The supernet consists of five configurable blocks, shown

in Fig. 2. All subnets are unique combinations of the kernel,
width and depth settings. The kernel is set layer by layer
and controls the active kernel size. The width, or expansion
ratio, is also set layer by layer and is a multiplier for the base
channel count of each layer. The depth is set for each block
and controls the number of active layers in that block. We
follow OFA [4] for transforming supernet weights to derive
the prescribed subnet.
Evaluation Protocol - OFA [4] evaluate their training
methods performance according to the top performing sub-
nets at various latency constraints. However, improving the
performance of top-performing subnets may not correlate
to a better performing subnet population. We instead wish
to evaluate the average performance of the overall subnet
population. This is done by randomly sampling a group
of subnets according to the specific architectural size mea-
surement of Mega FLoating-point Operation Per Seconds
(MFLOPs). The performance of all sampled subnets is then
recorded on the test set. For all datasets, we use the fol-
lowing architecture sizes of evenly spaced MFLOPs values
{4, 6, 8, 10, 12, 14}. Subnets of size 6-12 MFLOPs can be
found by simply randomising all settings until the result-
ing subnet is within the required MFLOP range, ±0.5 in
our case. Subnets with size 4 and 14 MFLOPs are rare and
challenging to sample in this manner. As such, to find these
subnets, the width setting is locked at its minimum value to
aid sampling of 4 MFLOP subnets; and locked at its maxi-
mum to aid sampling of 14 MFLOP subnets. We use the
wall clock to measure the training time for each method
from the start of the first epoch to the conclusion of the last
epoch.

Figure 2. Diagram showing the MobileNetV3 [14] base architec-
ture used to sample subnets with kernel ∈ {3x3,5x5,7x7}, width
∈ {3,4,6} and depth ∈ {2,3,4}.
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(a) MNIST Subnet Population Performance. (b) FMNIST Subnet Population Performance.

(c) CIFAR10 Subnet Population Performance. (d) CIFAR100 Subnet Population Performance.

Figure 3. Comparisons between OFA, RSS (proposed), and RSS-Short (proposed) subnet population performance across four datasets.
RSS is able to consistently train a better performing subnet population for all datasets.

6.2. Main Results

Subnet Population Performance - The main results are
presented in Fig. 3. Across all datasets, RSS achieves the
best performing subnet population. The gap between RSS
and OFA grows larger as the difficulty of the dataset in-
creases (i.e., from MNIST to CIFAR). Furthermore, the
range of best performing to worst performing subnets is sig-
nificantly smaller for RSS methods. These results suggest
that the interference effect between subnets during training
is negligible.

In Section 6.3 we show RSS’s consistent performance
across different subnet sizes is due to both its unbiased sub-
net sampling scheme and reduction of interference. In con-
trast to RSS, OFA shows a significant bias towards larger
subnets in all datasets. We attribute this to its initial super-
net training and PS training procedure which starts from the
larger subnets. Subnet sampling bias is further studied in
Section 6.3.2.
Training Time - Fig. 4 shows the number of hours required

to train each of the methods. Showing RSS and RSS-short
are an average 1.9 and 6.1 times faster than OFA respec-
tively. For RSS-short this is expected as it runs for nearly
half the epochs of OFA; however, RSS and OFA run for the
same number of epochs. This speed up is due to two factors:
(1) RSS is more likely to train smaller subnets each epoch;
and (2) RSS only trains a single subnet each epoch where
OFA’s PS trains two subnets during dynamic depth training
and four during dynamic width training.

6.3. Why does RSS outperform OFA?

Our main results suggest that both proposed RSS vari-
ants outperform OFA. In this section we conduct further in-
vestigations by studying the two main differences between
the methods: (1) the number and frequency of subnets sam-
pled during training; and (2) the selection scheme for se-
lecting subnets during training. We only present the re-
sults from CIFAR100 dataset for the study. We choose CI-
FAR100 as it offers more variations and complexity com-
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Figure 4. Comparisons of the training time, in hours, for each
method as measured on a single Nvidia RTX3080 GPU.

pared to the other datasets. Furthermore, we only use RSS
with the standard number of training epochs (590). Results
(in supplementary material) on RSS-Short are similar; in
addition to showing our results are not limited to specific
hyperparemeter values.

6.3.1 Effect of Number of Subnets Sampled

The proposed RSS method samples a single subnet to train
each epoch, whereas OFA samples and trains up to four sub-
nets per update step. In this section, we modify the RSS
subnet sampling to be similar to OFA, allowing us to com-
pare subnet sampling methods on RSS. More specifically,
we first change RSS’s sampling from each epoch into sam-
pling each batch (i.e., per update step). We then increase
the number of sampled subnets for each batch from one to
two. When sampling two or more subnets, we combine
their gradients in each update step. Fig. 5 shows that de-
spite training fewer subnets, per-epoch sampling produces
a better performing subnet population than per-batch sam-
pling. Indicating interference may be more severe in per-
batch strategies. As an alternative explanation, we specu-
late there could be a benefit to allowing sampled subnets
to train on the entire dataset instead of only a single batch.
Future study is required to investigate this. The interfer-
ence again appears to increase between sampling one and
two subnets per batch. We conjecture this increased inter-
ference is likely due to the combining of diverse gradient
directions, as also shown in [36].

6.3.2 Effect of Different Selection Schemes

The previous section investigated the number of subnets
to sample. In this section, we study the subnet selection
scheme. As mentioned in Section 5, the selection scheme
can induce bias which skews the subnet population’s per-
formance towards the more frequently sampled subnets. In

this section, we intentionally use biased subnet selection
schemes to study the effects on the subnet population.
Single subnet selection - The simplest biased subnet selec-
tion scheme to test is training a single subnet. More specif-
ically, we compare three variants of this biased selection
scheme: (1) smallest only, with all settings at their mini-
mum values; (2) middle only, where kernel=5, expand=4
and depth=3 for all blocks; and (3) largest only, where all
settings are set to their maximum (i.e. the supernet). Fig. 6
shows that the subnet performance is skewed towards the
size of the selected subnet. Furthermore, the performance
drops off as soon as the subnet size deviates from the se-
lected subnet size. Indicating excessive sampling of a sub-
net during training induces a strong bias in the subnet pop-
ulation’s performance.
Two subnet selection - Fig. 6 shows that single subnet se-
lection introduces a bias towards the selected subnet. In this
part, we examine the effect of training two subnets. More
specifically, we select either the smallest or the largest sub-
net for training. We compare three variants of selection
schemes: (1) select the largest subnet for the first half of
the total epochs, then select the smallest subnet the rest of
the training (Max then Min); (2) select the smallest subnet
for the first half of the total epochs, then select the largest
subnet the rest of the training (Min then Max); and (3) al-
ternating between smallest and largest subnets each epoch
(Alternating). Unlike OFA which uses cosine learning rate
decay, in this part of experiment, we use a constant learning
rate throughout the training course. We report the results in
Fig. 7.

Both Min then Max and Max then Min schemes skew
their results towards the subnet most recently trained; how-
ever, it is clear that both subnet populations benefited from
the training of an additional subnet. This is shown by
Max then Min having better performing subnets at larger
MFLOPs when compared to training the smallest subnet
only in Fig. 6. The same can be observed for Min then Max
at lower MFLOPs when compared to training the largest
subnet only in Fig. 6. Interestingly, we do not see mir-
rored results between Min then Max and Max then Min
schemes. This shows that the training sequence within the
selection scheme is an important factor.

Another interesting observation is that the Max then
Min scheme has lower performance than the Min then Max
scheme. OFA has a similar strategy to the Max then Min.
However, OFA uses a decreasing learning rate and a more
controlled selection scheme which might help to mitigate
this issue. A future study on this is warranted.

The Alternating scheme produces the best results with a
more evenly trained subnet population and only slight bias
towards the largest and smallest subnets. This further sug-
gests that mitigating the subnet sampling bias during train-
ing is an important issue to address. Interestingly, despite
never being trained, the subnets in ranges 8-10 MFLOPs
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Figure 5. Effect of sampling different numbers of subnets dur-
ing training. The 1 per epoch strategy is the default RSS method.
When sampling 2 per batch the gradients are combined for the up-
date step. As we can see, performance drops for per-batch strate-
gies. The drop is more significant when more subnets are sampled
per-batch (i.e., 2 per batch).

Figure 6. Resulting population performance from training a sin-
gle subnet only. The smallest only uses only the smallest sub-
net which is constructed by settings all settings to their minimum.
The middle only is when kernel=5, expand=4 and depth=3. The
largest only is the supernet, when all settings are at their maxi-
mum. The results show a heavy bias towards the selected subnet.

perform nearly on par with the larger and smaller subnets.
The Alternating scheme uses an alternating selection strat-
egy, producing a less biased subnet population towards both
trained subnet sizes. The proposed RSS is a step further
by enlarging the subnet selection from two subnets to the
whole subnet population. Moreover, RSS uses random sam-
pling which enables each individual subnet to have the same
chance to be selected for training. The results show there is
benefit to sampling and training more subnets as RSS pro-
duces a better performing subnet population than the Alter-
nating scheme and the other methods.

Figure 7. Resulting population performance from training the
same two largest and smallest subnets in differing sequences,
showing that training sequence does matter.

7. Conclusion

This work revisited the interference effect in an OFA
based subnet population during training. Interference was
believed to be the constraining factor in achieving good per-
formance. To limit interference, OFA proposed progressive
shrinking as a novel training method. However, we showed
that interference is not the only constraining factor. Ad-
ditionally, we must consider the subnet sampling bias of
our selection scheme during training. Subnet sampling bias
states that subnets which receive the most training will per-
form the best. We drew this conclusion by first connect-
ing the subnet sampling bias to the data imbalance problem
in general classification training. We then demonstrate this
by proposing a simple-yet-effective training method called
Random Subnet Sampling (RSS), which only mitigates the
sampling bias, not interference. By mitigating only the bias,
RSS trains a better performing subnet population than pro-
gressive shrinking on four small-to-medium datasets while
also being 1.9 times faster. Furthering our experiments pro-
vided insight into both the interference and bias problems.
We found interference to be more significant when combing
the gradients of multiple sampled subnets. Additionally, we
found the impact of bias depends on the subnet training se-
quence. In the future, we plan to test our hypothesis in large
computer vision datasets such as the ImageNet dataset.
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