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The supplementary material is organized as follows:

• Sec. 1 presents the detailed results of MNIST and Ima-
geNet dataset, as referred from the main paper. Further
details and visualization of CIFAR-10 experiments on
adversarial robustness are also presented here.

• Sec. 2 presents the, computation load for clustering
and some ablation studies on the most important hy-
perparameters of SymDNN.

• Sec. 3 presents the details about all the building blocks
used by us in this work with their licensing details.

1. Extended Results and Visualizations
This section presents more elaborate results supporting
SymDNN’s inference mechanism over multiple datasets.

For the experiments in the current section, a model
white-box / defense black-box setting is used, where
SymDNN works best (see Sec. 5.2 of main paper). The
gradient obfuscation [3] problem is mostly manifested in
a complete white-box setting. We use 100 iterations for
finding adversarial examples in the gradient based attacks,
and 10 iteration for the Expectation over Transformation
(EoT) [4]. These are standard iteration values used in the
literature, and default in TorchAttacks [17]. Using very high
values for iterations may imply that an adversary has access
to an enormous amount of computing power and significant
time at hand for crafting adversarial examples [22].

It is important to note that with increase in the strength
ϵ of an attack, the attacked images begin to show visually
identifiable distortions. Inherent robustness to adversarial
attacks is essential within a bound, where the changes are
visually imperceptible. The visualizations in the current
section highlight this aspect. This part is referred in Sec.
5.2 of the main paper.

1.1. Adversarial Robustness of MNIST

Tab. 1 provides extended results on the attacks on the
MNIST dataset and the corresponding LeNet-5 model [9].

For most of the attacks, when the attack is effective, namely
the attacked image is misclassified but no visually iden-
tifiable patterns are present, SymDNN successfully de-
fends those. This happens when the maximum changes
per pixel is limited to ϵ = 8/255. For higher attack
strengths SymDNN’s inference accuracy drops, albeit re-
maining much higher than the standard non-symbolic infer-
ence accuracy. Fig. 1 and Fig. 2 provide visual illustrations.

Table 1. MNIST symbolic inference accuracy after attack. Re-
sults are reported on randomly selected 2000 images from MNIST
test set. ‘s’ indicates SymDNN inference that uses a 64 symbol
codebook.

Attacks Strength Acc. Acc.s

Auto Attack [8]
ϵ = 8/255 95.60 98.05
ϵ = 16/255 85.50 93.65
ϵ = 32/255 22.35 68.60

EOTPGD [33]
ϵ = 8/255 95.65 98.05
ϵ = 16/255 85.90 93.65
ϵ = 32/255 29.80 69.75

DIFGSM [30]
ϵ = 8/255 96.45 98.05
ϵ = 16/255 86.95 94.00
ϵ = 32/255 31.00 69.20

RFGSM [29]
ϵ = 8/255 95.60 98.05
ϵ = 16/255 85.95 93.65
ϵ = 32/255 29.09 68.70

MIFGSM [12]
ϵ = 8/255 95.60 98.05
ϵ = 16/255 85.95 93.60
ϵ = 32/255 29.60 69.10

PGD [19]
ϵ = 8/255 95.75 98.05
ϵ = 16/255 86.15 93.65
ϵ = 32/255 29.60 69.10

OnePixel [26]
pixels = 1 98.60 98.60
pixels = 5 94.15 94.60
pixels = 10 94.55 94.65

1.2. Adversarial Robustness of CIFAR-10

We have reported the efficacy of SymDNN on the
CIFAR-10 dataset and the corresponding model [32] in
the main paper. Some of the attacks (AutoAttack [8],
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(a) Autoattack with ϵ = 16/255: there is neither identifiable visual distortion, nor miss-
classification on attack

(b) Autoattack with ϵ = 32/255: pattern for 2 faded out at places and is identifiable.
SymDNN provides resistance and survives the attack.

(c) DIFGSM with ϵ = 32/255: pattern for 7 faded out at places and is identifiable.
SymDNN provides resistance and survives the attack.

Figure 1. A visual comparison. For each set of 3 images Column 1 (Orig:) shows the clean original image, Column 2 (Sym:) shows the
image reconstructed by SymDNN, Column 3 (orig perturb:) shows the original image after attack and Column 4 (Sym perturb:) shows the
symbolically reconstructed image after attack.
For ϵ = 16/255, the adversarial attack is effective on the original image, but fails to cause misclassification in SymDNN. At ϵ > 16/255,
we observe that SymDNN misclassified, but the attacks are not adversarially effective, that is, the attacked image has visually identifiable
changes. High ϵ is used here to highlight the patch replacement by representative symbols in SymDNN.

DIFGSM [30], RFGSM [29], APGDT [8], and variants of
APGD [8]), using a strength greater than ϵ=2/255 (L∞) re-
sults in visually identifiable changes on CIFAR-10 images.
Fig. 3 illustrates one such example where AutoAttack [8]
is applied at different strengths. It may be noted that both
standard and SymDNN robust accuracy drops heavily in
these cases. This is consistent with the observation in [1],
that k-centroid clustering is inherently robust to small set of
changes, if such a clustering is well separated. We find most
of our centroids are well separated in terms of the dissim-
ilarity measure used in [16]. As it is difficult to visualize
a 2048 × 2048 matrix here, we present a heatmap of clus-
ter distances in Fig. 4 for MNIST similarity index, with 32
centroid patches.

We report the results on CIFAR-10 using L2 distance
measure in Tab. 2.

To compare the SymDNN inference and the standard
non-symbolic inference in terms of numbers, we consider
the following outcomes:

Table 2. CIFAR-10 symbolic inference accuracy after attack us-
ing L2 distance. Results are reported on randomly selected 2000
images from CIFAR-10 test set. ‘s’ indicates SymDNN inference
that uses a 2048 symbol codebook. MSRs is the Multi-Sym Ran-
domized inference mechanism defined in the Sec. 4.2.2 of the
main paper.

Attacks Strength Acc. Acc.s

Auto Attack [8] ϵ = 8/255 57 81

Square [2] ϵ = 8/255 79 86

FAB [7] ϵ = 8/255 58 85

APGDT [8] ϵ = 8/255 57 82

APGD(CE) [8] ϵ = 8/255 57 81

APGD(DLR) [8] ϵ = 8/255 58 82

1. Clean non-symbolic. The original image is correctly
classified.



Figure 2. Efficacy of SymDNN on MNIST digits under PGD attack: for each set of 4 images the first column (Orig:) is the clean original
image, second column (Sym:) is the symbolically abstracted clean image, third column (orig perturb:) is the image after attack and the
fourth column (Sym perturb:) is the symbolically abstracted image after attack.
At ϵ = 8/255, the attack is very effective, i.e., the attacked image is misclassified but there are no visual changes in the image (orig perturb).
SymDNN not only results in a correct classification in most cases (except for 8), but keeps a clear mark in the symbolically abstracted
perturbed image (Sym perturb), depicting that some undesirable changes have happened to the image. The reader is requested to zoom in
for finding the pattern in the images labeled Sym ( perturb). One such image is presented in the last row.



(a) Visible changes with ϵ=8/255

(b) Changes are still identifiable with ϵ=4/255

(c) At ϵ=2/255 changes are not visually identifiable

Figure 3. Visually identifiable changes in some CIFAR-10 images under Autoattack: For each set of 4 images the first column (Orig:)
shows the clean original image, the second column (Sym:) shows the symbolically reconstructed clean image, the third column (orig
perturb:) shows the image after attack, and the fourth column (Sym perturb:) shows the symbolically reconstructed image after attack.
Autoattack results in visually identifiable patterns on the images for changes per pixel greater than 2/255

2. Clean symbolic. The SymDNN reconstructed image is
correctly classified.

3. Robust non-symbolic (post attack). The original image
is correctly classified even after attack.

4. Robust symbolic (post attack). The SymDNN recon-
structed image is correctly classified even after attack.

Based on these outcomes, we partition the results into the
following cases:

Case-1 This refers to the instances where all the above cor-
rectly infer the ground truth label.

Case-2 This refers to the rare cases where only the

SymDNN reconstructed image is misclassified after at-
tack.

Case-3 This refers to the instances where the clean im-
ages were correctly classified, the SymDNN recon-
structed images were correctly classified after attack,
but the original images were misclassified after the at-
tack. These instances are most relevant for demonstrat-
ing the benefit of SymDNN.

Case-4 These are instances where both the original and
SymDNN reconstructed images are misclassified af-
ter the attack. As discussed earlier, many of these
cases show significant visual distortions after attack
and thereby rendering the attacks ineffective from an



Figure 4. A heatmap of cluster centroid separation for MNIST clustering model with 32 centroids .

adversarial point of view.

Case-5 These are instances where the SymDNN recon-
structed images are misclassified without any attack.

Case-6 These are instances where the original clean images
are misclassified.

The case distributions and accuracy of SymDNN and non-

symbolic inference against some adversarial attacks are
shown in Fig. 5. We present these results in two different
sets:

1. Set 1 (Fig. 5b) illustrates the attacks against which
SymDNN performs very well, and

2. Set 2 (Fig. 5d)the attack for which the robust accuracy



(a) Accuracy for various attacks (b) Distribution of cases for the attacks

(c) Accuracy for the other set of attacks (d) Distribution of cases for the other set of attacks

Figure 5. The distribution of inference outcomes for the 6 different cases defined in Sec. 1.2. We segregate the adversarial attacks into two
different sets, based on their effect on robust accuracy. Figures (a) and (b) illustrate the accuracy and distribution of cases respectively, for
the attacks against which SymDNN results in high robust accuracy gain. Figures (c) and (d) illustrate the accuracies and distribution of
cases respectively, for the attacks against which SymDNN results in relatively lower robust accuracy gain.

gain is limited.

The attacks in Set 2, mostly generate adversarial ex-
amples with improved transferability. The perturbations
in such examples are relatively higher as these attacks try
to maximize the confidence instead of minimizing the dis-
tance [10]. We have already discussed this issue in Sec. 5.2
& Sec. 5.4 of the main paper, and we believe that a more
strongly separable clustering may help SymDNN to thwart
adversarial examples with larger perturbations.

1.3. ImageNet Adversarial Robustness.

We perform ImageNet adversarial tests with Fool-
Box [23]. Tab. 3 presents the results of these preliminary
experiments.

In this section we report some interesting observations
regarding SymDNN inference on Imagenet images. Fig. 6
illustrates examples where we find that SymDNN preserves
inference against adversarial attacks, however the symbol-

Table 3. ImageNet robust symbolic Foolbox.

Attack Acc. Acc.s

FGSM [14, 27] 0 62.5

Adam-PGD [23] 0 68.5

CW [5] 0 68.5

PGD [19] 0 68.75

DeepFoolL2 [20] 0 31.25

ically reconstructed images contain spurious patterns that
are not present in the original images. Fig. 7 illustrates the
different cases of symbolic and non-symbolic inference on
ImageNet.

1.4. Illustrative Example on Compaction.

We provide an illustration below for data reduction re-
sults, as presented in the main paper. The first part of this



(a) The symbolic image showing a pattern not present in the original image: leafhopper under C & W attack

(b) The symbolic image of loafer showing a pattern inside the shadow region, absent in the original image: PGD

(c) The symbolic image of kite showing a pattern in the sky, not present in the original image: PGD

(d) The symbolic image showing marks in the upper left and right, absent in the original image: PGD

Figure 6. Some symbolically abstracted images have visual distortion, although the symbolic inference is correct. This shows that SymDNN
inference may not be used for visual reconstruction, however it is inference preserving from a CNN perspective. For each set of 4 images
the first column (Orig:) is the clean original image, second column (Sym:) is the symbolically abstracted clean image, third column (orig
perturb:) is the image after attack and the fourth column (Sym perturb:) is the symbolically abstracted image after attack.



(a) Both symbolic and non-symbolic inferences are correct, no effect of APGD attack

(b) Both symbolic and non-symbolic inferences are affected by attack

(c) Only non-symbolic inference is affected by attack

(d) Only non-symbolic inference is affected by attack

Figure 7. Visualization of different inference outcomes of ImageNet images under different adversarial attacks: for each set of 4 images
the first column (Orig:) is the clean original image, second column (Sym:) is the symbolically abstracted clean image, third column (orig
perturb:) is the image after attack and the fourth column (Sym perturb:) is the symbolically abstracted image after attack.



reduction, ∆a, comes from the symbolic abstraction. We
can calculate this guaranteed compaction by finding out the
reduction for representing each patch. For a 2× 2 patch we
need 2×2×8 = 32 bits, assuming 8 bit per pixel represen-
tation. For representing a 2 × 2 patch we use one symbol.
Considering a 512 symbol codebook, this requires 9 bits to
encode one symbol. This results in the ∆a compaction of
71.8%.

To employ entropy encoding over this compaction, we
assume a distribution similar to the 10000 image testset of
CIFAR-10. We apply Huffman encoding and obtain a distri-
bution illustrated in Fig. 8. We find that using a 512 symbol
codebook results in extra 22.67% compaction. The com-
bined compaction of 78.3% is reported as the ∆e in the
main paper. This compaction can be useful when the im-
age has to be communicated, say, from an edge device to an
edge server in a computation offloading scenario [11].

Figure 8. Huffman encoding of symbols: Variable number of bits
assigned to encode the symbols based on their frequency of occur-
rence in the CIFAR-10 testset.

2. Patch Clustering

All the experiments in this section are conducted on a 32
core Intel(R) Xeon(R) Silver 4108 CPU 1.80GHz worksta-
tion with 128 Gibibytes of RAM, and NVIDIA P1000 GPU
(4 Gigabytes memory). We use the GPU for unsupervised
clustering of ImageNet patches.

2.1. Clustering Computation Load

This part supplements Sec. 4.1.1 and Sec. 5.4 of the
main paper.

Fig. 9 illustrates the increasing time required for cluster-
ing patches from the CIFAR-10 dataset, as the number of
clusters are increased. The patch extraction overhead be-
comes comparatively less with increasing number of cen-
troids. It may be noted that here we extract patches from
each channel of the image, collate the patches from all the
images, and pass these patches to FAISS k-means for build-
ing the index at one go.

Figure 9. Compute load of CIFAR-10 unsupervised clustering of
patches.

Collating all the patches and passing those to the FAISS
library has a peak memory load of 22GB for CIFAR-10
dataset. For ImageNet, index building from all patches is
not feasible in our setup as the number of patches gener-
ated is very high. In this case, we extract patches from
each channel of the image, collate the patches from sev-
eral images, and pass these patches to FAISS k-means for
building the index incrementally. Building an index on Im-
ageNet training set (images of resolution 224× 224) , with
a patch size of 2 × 2 and 2048 patch centroids generates
a patch dataset of 112 × 112 × 3 × 150000 = 5.6448 bil-
lion patches, each having a dimensionality of 4. Here we
have M = 2048, N = 5.6448 billion and P 2 = 4. This
takes 15 days in total, of which 4 days are needed for patch
extraction.

With a patch size of 4 × 4, and 512 centroids a total
time of 98 hours is needed of which 48 hours are needed for
patch extraction.

We plan to explore the possibilities of vectorizing the
patch extraction code or creating and storing a patch dataset
in advance in the future, to reduce this overhead.

2.2. Optimal Number of Centroids

To find the optimal number of cluster centroids for
CIFAR-10, we use the knee detection method of [25].
Fig. 10 illustrates the change in the within cluster sum



square (WCSS) error for using an increasing number of cen-
troids. The knee point detection algorithm of Fig. 10 aptly
finds out the maximum curvature for 4 centroids. However,
we find that using 4 centroids the SymDNN inference ac-
curacy is 17%. This shows that the traditional method for
finding optimal centroid may not be suitable in the context
of symbolic inference.

Figure 10. Knee point detection for finding the optimal number of
clusters for symbolic inference on CIFAR-10 dataset. Y-axis val-
ues of within cluster sum square (WCSS) error values are obtained
from the FAISS kmeans inertia metric.

2.3. Optimal Patch Sizes

This part is referred from Sec. 5.4 of the main paper.
Fig. 11 illustrates that 2× 2 patches result in best accuracy
on MNIST dataset. The accuracy reduces with the increase
in patch size, and drops by almost 10% for an 8 × 8 patch
size. We also observe that 8 × 8 patch size gives better
accuracy with a larger number of symbols.

For ImageNet, using a 4×4 patch size and 512 symbols,
the SymDNN Top-1 accuracy of ResNet-152 comes down
to 46% from 70% with a 2×2 patch size and 2048 symbols.

For MNIST, the robust accuracy remains highest on us-
ing a lower number of symbols. This is illustrated in Fig. 12.

2.4. Conclusion about the Ablation studies

We conclude that 2 × 2 patches results in inference
preservation for all the datasets we tested. There is some
correlation between the combination of a particular patch
size and number of symbols, with the inference accuracy,
which could not be established with the limited set of ex-
periments we performed.

We believe that Neural Architecture Search (NAS) [13,
18, 34], which has helped in designing compact DNNs can
be applied to SymDNN as well. Instead of brute force trials,
evolutionary or reinforcement learning based optimization
in NAS can be applied in this context. The purpose of such

Figure 11. Inference accuracies corresponding to different patch
sizes.

Figure 12. A comparison of robust accuracy for different numbers
of symbols used for SymDNN inference, under different attack
strengths (maximum change per pixel).

a search will be to find the optimal value of SymDNN hy-
perparameters, with respect to the non-smooth gradient of
the SymDNN inference accuracy.

3. Details of Assets Used
This part provides additional details over Sec. 5.1 of the
main paper.

Architectures. For ImageNet we use publicly available
pre-trained models: WideResNet [31], ResNet-152 [15]
and MnasNet [28] from PyTorch model repository1. We
did not find any separate licensing for these models. We
point the reader to the Facebook Open Source – Terms of
Use: https://pytorch.org/assets/tos-oss-
privacy-policy/fb-tos-privacy-policy.
pdf. All these models are trained on the ImageNet dataset.

1https://pytorch.org/vision/stable/models.html

https://pytorch.org/assets/tos-oss-privacy-policy/fb-tos-privacy-policy.pdf
https://pytorch.org/assets/tos-oss-privacy-policy/fb-tos-privacy-policy.pdf
https://pytorch.org/assets/tos-oss-privacy-policy/fb-tos-privacy-policy.pdf


The licence for ImageNet can be found at: https://
www.image-net.org/.

For CIFAR-10 we train the models on our own infras-
tructure following the ResNet-20 architecture [32]. We
could not find explicit licensing terms for this repository
https://github.com/zhuchen03/gradinit or
the paper [32].

We use the public LeNet-5 [9] architecture for MNIST
experiments.

Adversarial Attacks. We choose Torchattacks [17]
and the corresponding repository Adversarial-Attacks-
PyTorch: https : / / github . com / Harry24k /
adversarial-attacks-pytorch for attack imple-
mentations. This repository has a MIT license: https:
/ / github . com / Harry24k / adversarial -
attacks-pytorch/blob/master/LICENSE.

We select Adversarial-Attacks-PyTorch for primarily
two reasons: (A) It implements most of the successful and
the most recent attacks. (B) Unlike many other frameworks,
it does not expose an integrated API for adversarial image
generation and testing of accuracy. This is important for
an easy integration of SymDNN. The symbolic inference
needs to modify the image after the adversarial attack, be-
fore it is fed to the DNN for inference. SymDNN can also
be integrated to frameworks that do not return the adversar-
ial examples directly, however that would require a modifi-
cation in such adversarial attack frameworks.

For demonstrating efficacy of SymDNN on already
robust models, we use RobustBench [6]. These robust
models that we use for evaluation purpose are available
from: https://robustbench.github.io/ re-
leased with a MIT license: https://github.com/
RobustBench / robustbench / blob / master /
LICENSE.

We compare and integrate our work two state-of-the-art
input defenses:

1. NRP [21], available from: https://github.
com/Muzammal-Naseer/NRP with a MIT li-
cense: https://github.com/Muzammal-
Naseer/NRP/blob/master/LICENSE.

2. DefenseGAN [24] PyTorch implementation, available
from: https://github.com/sky4689524/
DefenseGAN-Pytorch with no specified license.
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