ImageSig: A signature transform for ultra-lightweight image recognition
(Supplementary)

Mohamed R. Ibrahim'
'The Alan Turing Institute
London, UK

mibrahim@turing.ac.uk

1. ImageSig as a python module

Here is an example for training and inference using Im-
ageSig as a python module.

Training

from imagesig import image_signatrue
SIG_DEPTH = 4

IMAGE_SIZE = (64,64)

TRAIN_DIR = "data/training_set"
TEST_DIR = "data/test_set
train_sig = image_signature (

image_dir = TRAIN_DIR,
depth = SIG_DEPTH,
image_size = IMAGE_SIZE,
flatten=FLATTEN,

log_sig = False,
two_direction = True,

augment_flip_horizontal = True,

augment_flip_vertical =True,
augment_brightness= True
)
test_sig = image_signature (
image_dir = TEST_DIR,
depth = SIG_DEPTH,
image_size = IMAGE_SIZE,
flatten=FLATTEN,
log_sig = False,
two_direction=True
)
_,X_train,y_train = train_sig.read_dir ()
_,X_test,y_test = test_sig.read_dir()

Model architecture

Terry Lyons!?

2 Mathematical Institute, Oxford University

Oxford, UK

terry.lyons@maths.ox.ac.uk

Inference

from imagesig import imagesig_predict
model = "checkpoint"

image = "fire. jpg"

pred = imagesig_predict (image,model)

2. Dataset details and accessibility

Table 1 shows how the image samples are distributed per
each class in training and testing for all datasets. Test set
is the data subset where all models are evaluated, in which
the model never seen during training and validation of each
epoch.

Fire dataset access: To be made available upon request.

Fog dataset access: Can be requested from Weath-
erNet’s authors: https://www.mdpi.com/2220-
9964/8/12/549

Concrete crack dataset access: https://data.
mendeley.com/datasets/5y9wdsg2zt/2

CelebA dataset access: https://mmlab.ie.
cuhk.edu.hk/projects/CelebA.html

3. Implementation details

All codes are provided for our implementations in the
ZIP file. Here is a brief description of our implementations:

Image signature: We have created our own python class
for implementing and augmenting signature to images as
paths of streams, as described in this paper, called image
signature. We built image signature based on computing
signature from two different python packages as backends
for image signature so-called Signatory [1] and iisignature
[2]. We did not observe a noticeable effect on which back-
end we used on the performance of a given model. Accord-
ingly, We relied mainly on Signatory for all models, how-
ever, for edge devices such as RaspberryPi we used iisig-
nature, given that signatory depends on Pytorch for accel-
eration whereas iisignature outputs numpy arrays that can

Dataset Subset Classes Sample («)
Fire Training Fire 4,097 1.84
No fire 11,055 0.68

Test Fire 960 -

No fire 2,800 -
Fog Training Fog 589 2.93
No fog 2,860 0.60

Test Fog 129 -

No fog 769 -
Concrete | Training Negative 16,000 1.00
crack Positive 16,000 1.00

Test Negative 4,000 -

Positive 4,000 -

CelebA Training Multi-task 162,770 -

Validation Multi-task 19,867 -

Test Multi-task 19,962 -

Table 1. Data sample distribution and class weight.

fit both tensorflow and Pytorch models without the need for
converting torch tensors to TF tensors. The main models
are computed with input resolution of 64 X 64 and signa-
ture depth = 4. However, in the ablation studies, we show
the effect of various signature depth and image input size
on the performance of the model.

Data augmentations: All models are trained with the
same data augmentation techniques such as normalizations,
horizontal flipping, and changing colour brightness.

Fig. 1 shows an example for the augmented images and
their respective signatures for training.

ImageSig FC-based Mode: We trained several models
with different hyper-parameters that only rely on a single
FC layer. This FC layer comprises 50 neurons and is acti-
vated by a ReLU function. Models are trained with Adam
optimiser of batch size 3000 and for 300 epochs. In ab-
lation studies, we show the effect of the selected different
hyperparameters on the performance of the model such as
changing the number of neurons or batch size.

ImageSig convolution-based model: After computing
signature, we used a simple convolution block comprised
of two CNN 1D layers of feature maps of 32 and 64 re-
spectively and a kernel size of 3, in which both layers are
activated by a ReLU function. Each layer is followed by a
Max-pooling layer of kernel size 3. After the last pooling
layer, the model is flattened and feedforward to a single FC
layer of 50 neurons that is activated by a ReLU function
before the final softmax layer. The model is trained based
on Adam optimisation [3] and a batch size of 3000 for 300
epochs.

ImageSig Attention-based model: after the signature
input, we added a convolution block implemented similar

to the aforementioned architecture. After the convolution
block, we normalized the final output of the last pooling
layer and passed it to a multi-head attention layer of eight
heads. Afterwards, we add a skip connection that connect
the attention outputs and the pooling layer. For each trans-
former layer (50 in total), we added a normalization and a
MLP layers similar to transformer units [64,64]. Finally, we
added an FC layer of 50 neurons. The model is trained with
64 projection dimensions that is equivalent to dimension of
a given input. All layers are activated by a ReLU function,
except the softmax output layer. The model is trained with
AdamW optimiser with a learning rate of 0.001, and a decay
of 0.0001 with a batch-size of 300 and 3000 epochs.

Convolution base models: All image convolution mod-
els are implemented via transfer learning on the given cus-
tom dataset with ImageNet weights. After truncated the
models, we trained an FC and output layers with the same
hyperparameters of the aforementioned architectures. All
models have converged when trained for 20 epochs and
patch size 1024.

ViT base models: We trained transformer models from
scratch on the mentioned datasets. We followed the im-
plementation details for ViT model in their original paper
closely. The model is optimised based on AdamW and
patch size of 1024 and trained for 300 epochs.

4. Further Results

From Fig. 2-7, we show a sample of predictions of our
models on the different datasets showing true and false pre-
diction.

5. Further ablation studies

The effect of the number of neurons:

We noticed a direct effect of the number of neurons of the
fully connected layer on the performance of a given model
and its number of parameters. Table 2 summarises the re-
sults of 10 models to investigate the effect of the number
of neurons. All models are trained with a single fully con-
nected layer of different numbers of neurons. For every 5
models, the image resolution and the depth of the signature
are kept constant, whereas the number of neurons has been
changed between 25-200 neurons. The table shows that, at
a given image resolution and signature depth, by doubling
the number of neurons, a slight increase (< 1%) in the ac-
curacy can be achieved, bearing in mind the double increase
of the mode’s parameters and consequently its disk size. We
found that optimal results as a trade-off between the accu-
racy and model size can be achieved within the choice of 50
neurons as a hyperparameter of the fully connected layer.

The effect of batch size:

In table 3, we show the effect of batch size on accuracy.
From our experiments, larger batch size allows stability in

Image augmentation

Signature augmentation

Wt s Tt

Figure 1. Sample of signature augmentations.

Resolution \ Neurons acc (%) Params Model size Training time

(32,32), Depth =4 25 90.53 96,072 1,180 KB 2.34 min
50 91.54 192,152 2,278 KB 4.16 min
100 92.23 384,302 4,638 KB 2.38 min *
150 92.10 576,452 6,945 KB 2.35 min *
200 93.00 768,602 9,253 KB 2.35 min *

(64,64), Depth =4 25 91.19 192,077 2,332 KB 3.99 min*
50 92.36 384,152 4,528 KB 5.22 min
100 92.39 768,302 9,246 KB 4.02 min*
150 91.99 1,151,452 13,857 KB 4.02 min*
200 92.87 1,536,602 18,469 KB 4.04 min*

Table 2. Comparing the effects of the number of neurons of the single FC layer on the performance.All models are trained with a fixed

signature depth (N=4).

Figure 2. Predicted values: fire, no fog.

training and convergence. Giving that the model requires
very small memory, training it with a large batch size can
be achieved with a minimal shared memory in comparison

to other models such as ResNet or MobieNetV2.

Furthermore, Table 4 shows the effect of the batch size
on the overall performance of a given model in relation to
the signature depth. The table shows a better results at a

Figure 3. Predicted values: No fire, fog.

batch size of 3000 when compared to a batch size of 1024,
for the same image resolution and signature depth.

No Fog

3
8
3
&

Fog

gt B

No Fog

=
=
T8
It

Fog

Fog

2
a
2
&

J
o

Figure 6. A sample of prediction on the fog dataset. Model pre-
dictions (green: correct, red: incorrect).

l
[
L

Figure 4. A sample of prediction on the fire dataset. Model pre-

dictions (green: correct, red: incorrect).

No Fog No Fog Mo Fog
-

No Fog No Fog

No Fire

. No Fog No ch No Fog

No Fire

A
F

" No Fire No Fire

No Fire

No Fire No Fire

Figure 7. A sample of prediction on the fog dataset. Model pre-

dictions (green: correct, red: incorrect).
Figure 5. A sample of prediction on the fire dataset. Model pre-

dictions (green: correct, red: incorrect).
Mathematical Software (TOMS), 2020. 1
Batch size ‘ 64 128 256 12 1024 [3] Diederik P. Kingma and Jimmy Ba. Adam: A method for

acc (%) ‘ 79.01 88.13 90.36 92.52 94.38 stochastic optimization. International Conference on Learn-
ing Representations (ICLR), 2015. 2

Table 3. The effect of batch size on acc on fire dataset

References

[1] Patrick Kidger and Terry Lyons. Signatory: differentiable
computations of the signature and logsignature transforms,
on both CPU and GPU. In International Conference on
Learning Representations,2021. https://github.com/
patrick-kidger/signatory. 1

[2] Jeremy Reizenstein and Benjamin Graham. Algorithm 1004:
The iisignature library: Efficient calculation of iterated-
integral signatures and log signatures. ACM Transactions on

Batch size | Sig. Depth acc (%) Training time (%)

1024 1 83.45 1.54 min
2 89.17 1.94 min
3 90.80 3.21 min
4 92.36 5.22 min
5 92.18 17.42 min
3000 1 80.29 0.72 min
2 89.38 1.02 min
3 91.62 1.88 min
4 93.40 4.47 min
5 93.78 12.23 min

Table 4. Comparing the effects of different batch size on the per-
formance. All models are trained with a single FC layer of 50
neurons for 200 epochs on fire recognition dataset.

